xref: /dpdk/lib/eal/common/malloc_heap.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 #include <stdint.h>
5 #include <stddef.h>
6 #include <stdlib.h>
7 #include <stdio.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <sys/queue.h>
11 
12 #include <rte_memory.h>
13 #include <rte_errno.h>
14 #include <rte_eal.h>
15 #include <rte_eal_memconfig.h>
16 #include <rte_launch.h>
17 #include <rte_per_lcore.h>
18 #include <rte_lcore.h>
19 #include <rte_common.h>
20 #include <rte_string_fns.h>
21 #include <rte_spinlock.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_atomic.h>
25 #include <rte_fbarray.h>
26 
27 #include "eal_internal_cfg.h"
28 #include "eal_memalloc.h"
29 #include "eal_memcfg.h"
30 #include "eal_private.h"
31 #include "malloc_elem.h"
32 #include "malloc_heap.h"
33 #include "malloc_mp.h"
34 
35 /* start external socket ID's at a very high number */
36 #define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */
37 #define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES))
38 
39 static unsigned
40 check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
41 {
42 	unsigned check_flag = 0;
43 
44 	if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
45 		return 1;
46 
47 	switch (hugepage_sz) {
48 	case RTE_PGSIZE_256K:
49 		check_flag = RTE_MEMZONE_256KB;
50 		break;
51 	case RTE_PGSIZE_2M:
52 		check_flag = RTE_MEMZONE_2MB;
53 		break;
54 	case RTE_PGSIZE_16M:
55 		check_flag = RTE_MEMZONE_16MB;
56 		break;
57 	case RTE_PGSIZE_256M:
58 		check_flag = RTE_MEMZONE_256MB;
59 		break;
60 	case RTE_PGSIZE_512M:
61 		check_flag = RTE_MEMZONE_512MB;
62 		break;
63 	case RTE_PGSIZE_1G:
64 		check_flag = RTE_MEMZONE_1GB;
65 		break;
66 	case RTE_PGSIZE_4G:
67 		check_flag = RTE_MEMZONE_4GB;
68 		break;
69 	case RTE_PGSIZE_16G:
70 		check_flag = RTE_MEMZONE_16GB;
71 	}
72 
73 	return check_flag & flags;
74 }
75 
76 int
77 malloc_socket_to_heap_id(unsigned int socket_id)
78 {
79 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
80 	int i;
81 
82 	for (i = 0; i < RTE_MAX_HEAPS; i++) {
83 		struct malloc_heap *heap = &mcfg->malloc_heaps[i];
84 
85 		if (heap->socket_id == socket_id)
86 			return i;
87 	}
88 	return -1;
89 }
90 
91 /*
92  * Expand the heap with a memory area.
93  */
94 static struct malloc_elem *
95 malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
96 		void *start, size_t len)
97 {
98 	struct malloc_elem *elem = start;
99 
100 	malloc_elem_init(elem, heap, msl, len, elem, len);
101 
102 	malloc_elem_insert(elem);
103 
104 	elem = malloc_elem_join_adjacent_free(elem);
105 
106 	malloc_elem_free_list_insert(elem);
107 
108 	return elem;
109 }
110 
111 static int
112 malloc_add_seg(const struct rte_memseg_list *msl,
113 		const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
114 {
115 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
116 	struct rte_memseg_list *found_msl;
117 	struct malloc_heap *heap;
118 	int msl_idx, heap_idx;
119 
120 	if (msl->external)
121 		return 0;
122 
123 	heap_idx = malloc_socket_to_heap_id(msl->socket_id);
124 	if (heap_idx < 0) {
125 		RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n");
126 		return -1;
127 	}
128 	heap = &mcfg->malloc_heaps[heap_idx];
129 
130 	/* msl is const, so find it */
131 	msl_idx = msl - mcfg->memsegs;
132 
133 	if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
134 		return -1;
135 
136 	found_msl = &mcfg->memsegs[msl_idx];
137 
138 	malloc_heap_add_memory(heap, found_msl, ms->addr, len);
139 
140 	heap->total_size += len;
141 
142 	RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20,
143 			msl->socket_id);
144 	return 0;
145 }
146 
147 /*
148  * Iterates through the freelist for a heap to find a free element
149  * which can store data of the required size and with the requested alignment.
150  * If size is 0, find the biggest available elem.
151  * Returns null on failure, or pointer to element on success.
152  */
153 static struct malloc_elem *
154 find_suitable_element(struct malloc_heap *heap, size_t size,
155 		unsigned int flags, size_t align, size_t bound, bool contig)
156 {
157 	size_t idx;
158 	struct malloc_elem *elem, *alt_elem = NULL;
159 
160 	for (idx = malloc_elem_free_list_index(size);
161 			idx < RTE_HEAP_NUM_FREELISTS; idx++) {
162 		for (elem = LIST_FIRST(&heap->free_head[idx]);
163 				!!elem; elem = LIST_NEXT(elem, free_list)) {
164 			if (malloc_elem_can_hold(elem, size, align, bound,
165 					contig)) {
166 				if (check_hugepage_sz(flags,
167 						elem->msl->page_sz))
168 					return elem;
169 				if (alt_elem == NULL)
170 					alt_elem = elem;
171 			}
172 		}
173 	}
174 
175 	if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
176 		return alt_elem;
177 
178 	return NULL;
179 }
180 
181 /*
182  * Iterates through the freelist for a heap to find a free element with the
183  * biggest size and requested alignment. Will also set size to whatever element
184  * size that was found.
185  * Returns null on failure, or pointer to element on success.
186  */
187 static struct malloc_elem *
188 find_biggest_element(struct malloc_heap *heap, size_t *size,
189 		unsigned int flags, size_t align, bool contig)
190 {
191 	struct malloc_elem *elem, *max_elem = NULL;
192 	size_t idx, max_size = 0;
193 
194 	for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
195 		for (elem = LIST_FIRST(&heap->free_head[idx]);
196 				!!elem; elem = LIST_NEXT(elem, free_list)) {
197 			size_t cur_size;
198 			if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 &&
199 					!check_hugepage_sz(flags,
200 						elem->msl->page_sz))
201 				continue;
202 			if (contig) {
203 				cur_size =
204 					malloc_elem_find_max_iova_contig(elem,
205 							align);
206 			} else {
207 				void *data_start = RTE_PTR_ADD(elem,
208 						MALLOC_ELEM_HEADER_LEN);
209 				void *data_end = RTE_PTR_ADD(elem, elem->size -
210 						MALLOC_ELEM_TRAILER_LEN);
211 				void *aligned = RTE_PTR_ALIGN_CEIL(data_start,
212 						align);
213 				/* check if aligned data start is beyond end */
214 				if (aligned >= data_end)
215 					continue;
216 				cur_size = RTE_PTR_DIFF(data_end, aligned);
217 			}
218 			if (cur_size > max_size) {
219 				max_size = cur_size;
220 				max_elem = elem;
221 			}
222 		}
223 	}
224 
225 	*size = max_size;
226 	return max_elem;
227 }
228 
229 /*
230  * Main function to allocate a block of memory from the heap.
231  * It locks the free list, scans it, and adds a new memseg if the
232  * scan fails. Once the new memseg is added, it re-scans and should return
233  * the new element after releasing the lock.
234  */
235 static void *
236 heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size,
237 		unsigned int flags, size_t align, size_t bound, bool contig)
238 {
239 	struct malloc_elem *elem;
240 
241 	size = RTE_CACHE_LINE_ROUNDUP(size);
242 	align = RTE_CACHE_LINE_ROUNDUP(align);
243 
244 	/* roundup might cause an overflow */
245 	if (size == 0)
246 		return NULL;
247 	elem = find_suitable_element(heap, size, flags, align, bound, contig);
248 	if (elem != NULL) {
249 		elem = malloc_elem_alloc(elem, size, align, bound, contig);
250 
251 		/* increase heap's count of allocated elements */
252 		heap->alloc_count++;
253 	}
254 
255 	return elem == NULL ? NULL : (void *)(&elem[1]);
256 }
257 
258 static void *
259 heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused,
260 		unsigned int flags, size_t align, bool contig)
261 {
262 	struct malloc_elem *elem;
263 	size_t size;
264 
265 	align = RTE_CACHE_LINE_ROUNDUP(align);
266 
267 	elem = find_biggest_element(heap, &size, flags, align, contig);
268 	if (elem != NULL) {
269 		elem = malloc_elem_alloc(elem, size, align, 0, contig);
270 
271 		/* increase heap's count of allocated elements */
272 		heap->alloc_count++;
273 	}
274 
275 	return elem == NULL ? NULL : (void *)(&elem[1]);
276 }
277 
278 /* this function is exposed in malloc_mp.h */
279 void
280 rollback_expand_heap(struct rte_memseg **ms, int n_segs,
281 		struct malloc_elem *elem, void *map_addr, size_t map_len)
282 {
283 	if (elem != NULL) {
284 		malloc_elem_free_list_remove(elem);
285 		malloc_elem_hide_region(elem, map_addr, map_len);
286 	}
287 
288 	eal_memalloc_free_seg_bulk(ms, n_segs);
289 }
290 
291 /* this function is exposed in malloc_mp.h */
292 struct malloc_elem *
293 alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
294 		int socket, unsigned int flags, size_t align, size_t bound,
295 		bool contig, struct rte_memseg **ms, int n_segs)
296 {
297 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
298 	struct rte_memseg_list *msl;
299 	struct malloc_elem *elem = NULL;
300 	size_t alloc_sz;
301 	int allocd_pages;
302 	void *ret, *map_addr;
303 
304 	alloc_sz = (size_t)pg_sz * n_segs;
305 
306 	/* first, check if we're allowed to allocate this memory */
307 	if (eal_memalloc_mem_alloc_validate(socket,
308 			heap->total_size + alloc_sz) < 0) {
309 		RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n");
310 		return NULL;
311 	}
312 
313 	allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
314 			socket, true);
315 
316 	/* make sure we've allocated our pages... */
317 	if (allocd_pages < 0)
318 		return NULL;
319 
320 	map_addr = ms[0]->addr;
321 	msl = rte_mem_virt2memseg_list(map_addr);
322 
323 	/* check if we wanted contiguous memory but didn't get it */
324 	if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
325 		RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n",
326 				__func__);
327 		goto fail;
328 	}
329 
330 	/*
331 	 * Once we have all the memseg lists configured, if there is a dma mask
332 	 * set, check iova addresses are not out of range. Otherwise the device
333 	 * setting the dma mask could have problems with the mapped memory.
334 	 *
335 	 * There are two situations when this can happen:
336 	 *	1) memory initialization
337 	 *	2) dynamic memory allocation
338 	 *
339 	 * For 1), an error when checking dma mask implies app can not be
340 	 * executed. For 2) implies the new memory can not be added.
341 	 */
342 	if (mcfg->dma_maskbits &&
343 	    rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
344 		/*
345 		 * Currently this can only happen if IOMMU is enabled
346 		 * and the address width supported by the IOMMU hw is
347 		 * not enough for using the memory mapped IOVAs.
348 		 *
349 		 * If IOVA is VA, advice to try with '--iova-mode pa'
350 		 * which could solve some situations when IOVA VA is not
351 		 * really needed.
352 		 */
353 		RTE_LOG(ERR, EAL,
354 			"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n",
355 			__func__);
356 
357 		/*
358 		 * If IOVA is VA and it is possible to run with IOVA PA,
359 		 * because user is root, give and advice for solving the
360 		 * problem.
361 		 */
362 		if ((rte_eal_iova_mode() == RTE_IOVA_VA) &&
363 		     rte_eal_using_phys_addrs())
364 			RTE_LOG(ERR, EAL,
365 				"%s(): Please try initializing EAL with --iova-mode=pa parameter\n",
366 				__func__);
367 		goto fail;
368 	}
369 
370 	/* add newly minted memsegs to malloc heap */
371 	elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz);
372 
373 	/* try once more, as now we have allocated new memory */
374 	ret = find_suitable_element(heap, elt_size, flags, align, bound,
375 			contig);
376 
377 	if (ret == NULL)
378 		goto fail;
379 
380 	return elem;
381 
382 fail:
383 	rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
384 	return NULL;
385 }
386 
387 static int
388 try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
389 		size_t elt_size, int socket, unsigned int flags, size_t align,
390 		size_t bound, bool contig)
391 {
392 	struct malloc_elem *elem;
393 	struct rte_memseg **ms;
394 	void *map_addr;
395 	size_t alloc_sz;
396 	int n_segs;
397 	bool callback_triggered = false;
398 
399 	alloc_sz = RTE_ALIGN_CEIL(align + elt_size +
400 			MALLOC_ELEM_TRAILER_LEN, pg_sz);
401 	n_segs = alloc_sz / pg_sz;
402 
403 	/* we can't know in advance how many pages we'll need, so we malloc */
404 	ms = malloc(sizeof(*ms) * n_segs);
405 	if (ms == NULL)
406 		return -1;
407 	memset(ms, 0, sizeof(*ms) * n_segs);
408 
409 	elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
410 			bound, contig, ms, n_segs);
411 
412 	if (elem == NULL)
413 		goto free_ms;
414 
415 	map_addr = ms[0]->addr;
416 
417 	/* notify user about changes in memory map */
418 	eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);
419 
420 	/* notify other processes that this has happened */
421 	if (request_sync()) {
422 		/* we couldn't ensure all processes have mapped memory,
423 		 * so free it back and notify everyone that it's been
424 		 * freed back.
425 		 *
426 		 * technically, we could've avoided adding memory addresses to
427 		 * the map, but that would've led to inconsistent behavior
428 		 * between primary and secondary processes, as those get
429 		 * callbacks during sync. therefore, force primary process to
430 		 * do alloc-and-rollback syncs as well.
431 		 */
432 		callback_triggered = true;
433 		goto free_elem;
434 	}
435 	heap->total_size += alloc_sz;
436 
437 	RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n",
438 		socket, alloc_sz >> 20ULL);
439 
440 	free(ms);
441 
442 	return 0;
443 
444 free_elem:
445 	if (callback_triggered)
446 		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
447 				map_addr, alloc_sz);
448 
449 	rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
450 
451 	request_sync();
452 free_ms:
453 	free(ms);
454 
455 	return -1;
456 }
457 
458 static int
459 try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
460 		size_t elt_size, int socket, unsigned int flags, size_t align,
461 		size_t bound, bool contig)
462 {
463 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
464 	struct malloc_mp_req req;
465 	int req_result;
466 
467 	memset(&req, 0, sizeof(req));
468 
469 	req.t = REQ_TYPE_ALLOC;
470 	req.alloc_req.align = align;
471 	req.alloc_req.bound = bound;
472 	req.alloc_req.contig = contig;
473 	req.alloc_req.flags = flags;
474 	req.alloc_req.elt_size = elt_size;
475 	req.alloc_req.page_sz = pg_sz;
476 	req.alloc_req.socket = socket;
477 	req.alloc_req.malloc_heap_idx = heap - mcfg->malloc_heaps;
478 
479 	req_result = request_to_primary(&req);
480 
481 	if (req_result != 0)
482 		return -1;
483 
484 	if (req.result != REQ_RESULT_SUCCESS)
485 		return -1;
486 
487 	return 0;
488 }
489 
490 static int
491 try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
492 		int socket, unsigned int flags, size_t align, size_t bound,
493 		bool contig)
494 {
495 	int ret;
496 
497 	rte_mcfg_mem_write_lock();
498 
499 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
500 		ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
501 				flags, align, bound, contig);
502 	} else {
503 		ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
504 				flags, align, bound, contig);
505 	}
506 
507 	rte_mcfg_mem_write_unlock();
508 	return ret;
509 }
510 
511 static int
512 compare_pagesz(const void *a, const void *b)
513 {
514 	const struct rte_memseg_list * const*mpa = a;
515 	const struct rte_memseg_list * const*mpb = b;
516 	const struct rte_memseg_list *msla = *mpa;
517 	const struct rte_memseg_list *mslb = *mpb;
518 	uint64_t pg_sz_a = msla->page_sz;
519 	uint64_t pg_sz_b = mslb->page_sz;
520 
521 	if (pg_sz_a < pg_sz_b)
522 		return -1;
523 	if (pg_sz_a > pg_sz_b)
524 		return 1;
525 	return 0;
526 }
527 
528 static int
529 alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
530 		unsigned int flags, size_t align, size_t bound, bool contig)
531 {
532 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
533 	struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
534 	struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
535 	uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
536 	uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
537 	uint64_t prev_pg_sz;
538 	int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
539 	bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
540 	unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
541 	void *ret;
542 
543 	memset(requested_msls, 0, sizeof(requested_msls));
544 	memset(other_msls, 0, sizeof(other_msls));
545 	memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
546 	memset(other_pg_sz, 0, sizeof(other_pg_sz));
547 
548 	/*
549 	 * go through memseg list and take note of all the page sizes available,
550 	 * and if any of them were specifically requested by the user.
551 	 */
552 	n_requested_msls = 0;
553 	n_other_msls = 0;
554 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
555 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
556 
557 		if (msl->socket_id != socket)
558 			continue;
559 
560 		if (msl->base_va == NULL)
561 			continue;
562 
563 		/* if pages of specific size were requested */
564 		if (size_flags != 0 && check_hugepage_sz(size_flags,
565 				msl->page_sz))
566 			requested_msls[n_requested_msls++] = msl;
567 		else if (size_flags == 0 || size_hint)
568 			other_msls[n_other_msls++] = msl;
569 	}
570 
571 	/* sort the lists, smallest first */
572 	qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
573 			compare_pagesz);
574 	qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
575 			compare_pagesz);
576 
577 	/* now, extract page sizes we are supposed to try */
578 	prev_pg_sz = 0;
579 	n_requested_pg_sz = 0;
580 	for (i = 0; i < n_requested_msls; i++) {
581 		uint64_t pg_sz = requested_msls[i]->page_sz;
582 
583 		if (prev_pg_sz != pg_sz) {
584 			requested_pg_sz[n_requested_pg_sz++] = pg_sz;
585 			prev_pg_sz = pg_sz;
586 		}
587 	}
588 	prev_pg_sz = 0;
589 	n_other_pg_sz = 0;
590 	for (i = 0; i < n_other_msls; i++) {
591 		uint64_t pg_sz = other_msls[i]->page_sz;
592 
593 		if (prev_pg_sz != pg_sz) {
594 			other_pg_sz[n_other_pg_sz++] = pg_sz;
595 			prev_pg_sz = pg_sz;
596 		}
597 	}
598 
599 	/* finally, try allocating memory of specified page sizes, starting from
600 	 * the smallest sizes
601 	 */
602 	for (i = 0; i < n_requested_pg_sz; i++) {
603 		uint64_t pg_sz = requested_pg_sz[i];
604 
605 		/*
606 		 * do not pass the size hint here, as user expects other page
607 		 * sizes first, before resorting to best effort allocation.
608 		 */
609 		if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
610 				align, bound, contig))
611 			return 0;
612 	}
613 	if (n_other_pg_sz == 0)
614 		return -1;
615 
616 	/* now, check if we can reserve anything with size hint */
617 	ret = find_suitable_element(heap, size, flags, align, bound, contig);
618 	if (ret != NULL)
619 		return 0;
620 
621 	/*
622 	 * we still couldn't reserve memory, so try expanding heap with other
623 	 * page sizes, if there are any
624 	 */
625 	for (i = 0; i < n_other_pg_sz; i++) {
626 		uint64_t pg_sz = other_pg_sz[i];
627 
628 		if (!try_expand_heap(heap, pg_sz, size, socket, flags,
629 				align, bound, contig))
630 			return 0;
631 	}
632 	return -1;
633 }
634 
635 /* this will try lower page sizes first */
636 static void *
637 malloc_heap_alloc_on_heap_id(const char *type, size_t size,
638 		unsigned int heap_id, unsigned int flags, size_t align,
639 		size_t bound, bool contig)
640 {
641 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
642 	struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
643 	unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
644 	int socket_id;
645 	void *ret;
646 	const struct internal_config *internal_conf =
647 		eal_get_internal_configuration();
648 
649 	rte_spinlock_lock(&(heap->lock));
650 
651 	align = align == 0 ? 1 : align;
652 
653 	/* for legacy mode, try once and with all flags */
654 	if (internal_conf->legacy_mem) {
655 		ret = heap_alloc(heap, type, size, flags, align, bound, contig);
656 		goto alloc_unlock;
657 	}
658 
659 	/*
660 	 * we do not pass the size hint here, because even if allocation fails,
661 	 * we may still be able to allocate memory from appropriate page sizes,
662 	 * we just need to request more memory first.
663 	 */
664 
665 	socket_id = rte_socket_id_by_idx(heap_id);
666 	/*
667 	 * if socket ID is negative, we cannot find a socket ID for this heap -
668 	 * which means it's an external heap. those can have unexpected page
669 	 * sizes, so if the user asked to allocate from there - assume user
670 	 * knows what they're doing, and allow allocating from there with any
671 	 * page size flags.
672 	 */
673 	if (socket_id < 0)
674 		size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY;
675 
676 	ret = heap_alloc(heap, type, size, size_flags, align, bound, contig);
677 	if (ret != NULL)
678 		goto alloc_unlock;
679 
680 	/* if socket ID is invalid, this is an external heap */
681 	if (socket_id < 0)
682 		goto alloc_unlock;
683 
684 	if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align,
685 			bound, contig)) {
686 		ret = heap_alloc(heap, type, size, flags, align, bound, contig);
687 
688 		/* this should have succeeded */
689 		if (ret == NULL)
690 			RTE_LOG(ERR, EAL, "Error allocating from heap\n");
691 	}
692 alloc_unlock:
693 	rte_spinlock_unlock(&(heap->lock));
694 	return ret;
695 }
696 
697 void *
698 malloc_heap_alloc(const char *type, size_t size, int socket_arg,
699 		unsigned int flags, size_t align, size_t bound, bool contig)
700 {
701 	int socket, heap_id, i;
702 	void *ret;
703 
704 	/* return NULL if size is 0 or alignment is not power-of-2 */
705 	if (size == 0 || (align && !rte_is_power_of_2(align)))
706 		return NULL;
707 
708 	if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES)
709 		socket_arg = SOCKET_ID_ANY;
710 
711 	if (socket_arg == SOCKET_ID_ANY)
712 		socket = malloc_get_numa_socket();
713 	else
714 		socket = socket_arg;
715 
716 	/* turn socket ID into heap ID */
717 	heap_id = malloc_socket_to_heap_id(socket);
718 	/* if heap id is negative, socket ID was invalid */
719 	if (heap_id < 0)
720 		return NULL;
721 
722 	ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align,
723 			bound, contig);
724 	if (ret != NULL || socket_arg != SOCKET_ID_ANY)
725 		return ret;
726 
727 	/* try other heaps. we are only iterating through native DPDK sockets,
728 	 * so external heaps won't be included.
729 	 */
730 	for (i = 0; i < (int) rte_socket_count(); i++) {
731 		if (i == heap_id)
732 			continue;
733 		ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align,
734 				bound, contig);
735 		if (ret != NULL)
736 			return ret;
737 	}
738 	return NULL;
739 }
740 
741 static void *
742 heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id,
743 		unsigned int flags, size_t align, bool contig)
744 {
745 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
746 	struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
747 	void *ret;
748 
749 	rte_spinlock_lock(&(heap->lock));
750 
751 	align = align == 0 ? 1 : align;
752 
753 	ret = heap_alloc_biggest(heap, type, flags, align, contig);
754 
755 	rte_spinlock_unlock(&(heap->lock));
756 
757 	return ret;
758 }
759 
760 void *
761 malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags,
762 		size_t align, bool contig)
763 {
764 	int socket, i, cur_socket, heap_id;
765 	void *ret;
766 
767 	/* return NULL if align is not power-of-2 */
768 	if ((align && !rte_is_power_of_2(align)))
769 		return NULL;
770 
771 	if (!rte_eal_has_hugepages())
772 		socket_arg = SOCKET_ID_ANY;
773 
774 	if (socket_arg == SOCKET_ID_ANY)
775 		socket = malloc_get_numa_socket();
776 	else
777 		socket = socket_arg;
778 
779 	/* turn socket ID into heap ID */
780 	heap_id = malloc_socket_to_heap_id(socket);
781 	/* if heap id is negative, socket ID was invalid */
782 	if (heap_id < 0)
783 		return NULL;
784 
785 	ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align,
786 			contig);
787 	if (ret != NULL || socket_arg != SOCKET_ID_ANY)
788 		return ret;
789 
790 	/* try other heaps */
791 	for (i = 0; i < (int) rte_socket_count(); i++) {
792 		cur_socket = rte_socket_id_by_idx(i);
793 		if (cur_socket == socket)
794 			continue;
795 		ret = heap_alloc_biggest_on_heap_id(type, i, flags, align,
796 				contig);
797 		if (ret != NULL)
798 			return ret;
799 	}
800 	return NULL;
801 }
802 
803 /* this function is exposed in malloc_mp.h */
804 int
805 malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
806 {
807 	int n_segs, seg_idx, max_seg_idx;
808 	struct rte_memseg_list *msl;
809 	size_t page_sz;
810 
811 	msl = rte_mem_virt2memseg_list(aligned_start);
812 	if (msl == NULL)
813 		return -1;
814 
815 	page_sz = (size_t)msl->page_sz;
816 	n_segs = aligned_len / page_sz;
817 	seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
818 	max_seg_idx = seg_idx + n_segs;
819 
820 	for (; seg_idx < max_seg_idx; seg_idx++) {
821 		struct rte_memseg *ms;
822 
823 		ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
824 		eal_memalloc_free_seg(ms);
825 	}
826 	return 0;
827 }
828 
829 int
830 malloc_heap_free(struct malloc_elem *elem)
831 {
832 	struct malloc_heap *heap;
833 	void *start, *aligned_start, *end, *aligned_end;
834 	size_t len, aligned_len, page_sz;
835 	struct rte_memseg_list *msl;
836 	unsigned int i, n_segs, before_space, after_space;
837 	int ret;
838 	const struct internal_config *internal_conf =
839 		eal_get_internal_configuration();
840 
841 	if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
842 		return -1;
843 
844 	/* elem may be merged with previous element, so keep heap address */
845 	heap = elem->heap;
846 	msl = elem->msl;
847 	page_sz = (size_t)msl->page_sz;
848 
849 	rte_spinlock_lock(&(heap->lock));
850 
851 	/* mark element as free */
852 	elem->state = ELEM_FREE;
853 
854 	elem = malloc_elem_free(elem);
855 
856 	/* anything after this is a bonus */
857 	ret = 0;
858 
859 	/* ...of which we can't avail if we are in legacy mode, or if this is an
860 	 * externally allocated segment.
861 	 */
862 	if (internal_conf->legacy_mem || (msl->external > 0))
863 		goto free_unlock;
864 
865 	/* check if we can free any memory back to the system */
866 	if (elem->size < page_sz)
867 		goto free_unlock;
868 
869 	/* if user requested to match allocations, the sizes must match - if not,
870 	 * we will defer freeing these hugepages until the entire original allocation
871 	 * can be freed
872 	 */
873 	if (internal_conf->match_allocations && elem->size != elem->orig_size)
874 		goto free_unlock;
875 
876 	/* probably, but let's make sure, as we may not be using up full page */
877 	start = elem;
878 	len = elem->size;
879 	aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
880 	end = RTE_PTR_ADD(elem, len);
881 	aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);
882 
883 	aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
884 
885 	/* can't free anything */
886 	if (aligned_len < page_sz)
887 		goto free_unlock;
888 
889 	/* we can free something. however, some of these pages may be marked as
890 	 * unfreeable, so also check that as well
891 	 */
892 	n_segs = aligned_len / page_sz;
893 	for (i = 0; i < n_segs; i++) {
894 		const struct rte_memseg *tmp =
895 				rte_mem_virt2memseg(aligned_start, msl);
896 
897 		if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
898 			/* this is an unfreeable segment, so move start */
899 			aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
900 		}
901 	}
902 
903 	/* recalculate length and number of segments */
904 	aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
905 	n_segs = aligned_len / page_sz;
906 
907 	/* check if we can still free some pages */
908 	if (n_segs == 0)
909 		goto free_unlock;
910 
911 	/* We're not done yet. We also have to check if by freeing space we will
912 	 * be leaving free elements that are too small to store new elements.
913 	 * Check if we have enough space in the beginning and at the end, or if
914 	 * start/end are exactly page aligned.
915 	 */
916 	before_space = RTE_PTR_DIFF(aligned_start, elem);
917 	after_space = RTE_PTR_DIFF(end, aligned_end);
918 	if (before_space != 0 &&
919 			before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
920 		/* There is not enough space before start, but we may be able to
921 		 * move the start forward by one page.
922 		 */
923 		if (n_segs == 1)
924 			goto free_unlock;
925 
926 		/* move start */
927 		aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
928 		aligned_len -= page_sz;
929 		n_segs--;
930 	}
931 	if (after_space != 0 && after_space <
932 			MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
933 		/* There is not enough space after end, but we may be able to
934 		 * move the end backwards by one page.
935 		 */
936 		if (n_segs == 1)
937 			goto free_unlock;
938 
939 		/* move end */
940 		aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
941 		aligned_len -= page_sz;
942 		n_segs--;
943 	}
944 
945 	/* now we can finally free us some pages */
946 
947 	rte_mcfg_mem_write_lock();
948 
949 	/*
950 	 * we allow secondary processes to clear the heap of this allocated
951 	 * memory because it is safe to do so, as even if notifications about
952 	 * unmapped pages don't make it to other processes, heap is shared
953 	 * across all processes, and will become empty of this memory anyway,
954 	 * and nothing can allocate it back unless primary process will be able
955 	 * to deliver allocation message to every single running process.
956 	 */
957 
958 	malloc_elem_free_list_remove(elem);
959 
960 	malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);
961 
962 	heap->total_size -= aligned_len;
963 
964 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
965 		/* notify user about changes in memory map */
966 		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
967 				aligned_start, aligned_len);
968 
969 		/* don't care if any of this fails */
970 		malloc_heap_free_pages(aligned_start, aligned_len);
971 
972 		request_sync();
973 	} else {
974 		struct malloc_mp_req req;
975 
976 		memset(&req, 0, sizeof(req));
977 
978 		req.t = REQ_TYPE_FREE;
979 		req.free_req.addr = aligned_start;
980 		req.free_req.len = aligned_len;
981 
982 		/*
983 		 * we request primary to deallocate pages, but we don't do it
984 		 * in this thread. instead, we notify primary that we would like
985 		 * to deallocate pages, and this process will receive another
986 		 * request (in parallel) that will do it for us on another
987 		 * thread.
988 		 *
989 		 * we also don't really care if this succeeds - the data is
990 		 * already removed from the heap, so it is, for all intents and
991 		 * purposes, hidden from the rest of DPDK even if some other
992 		 * process (including this one) may have these pages mapped.
993 		 *
994 		 * notifications about deallocated memory happen during sync.
995 		 */
996 		request_to_primary(&req);
997 	}
998 
999 	RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n",
1000 		msl->socket_id, aligned_len >> 20ULL);
1001 
1002 	rte_mcfg_mem_write_unlock();
1003 free_unlock:
1004 	rte_spinlock_unlock(&(heap->lock));
1005 	return ret;
1006 }
1007 
1008 int
1009 malloc_heap_resize(struct malloc_elem *elem, size_t size)
1010 {
1011 	int ret;
1012 
1013 	if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
1014 		return -1;
1015 
1016 	rte_spinlock_lock(&(elem->heap->lock));
1017 
1018 	ret = malloc_elem_resize(elem, size);
1019 
1020 	rte_spinlock_unlock(&(elem->heap->lock));
1021 
1022 	return ret;
1023 }
1024 
1025 /*
1026  * Function to retrieve data for a given heap
1027  */
1028 int
1029 malloc_heap_get_stats(struct malloc_heap *heap,
1030 		struct rte_malloc_socket_stats *socket_stats)
1031 {
1032 	size_t idx;
1033 	struct malloc_elem *elem;
1034 
1035 	rte_spinlock_lock(&heap->lock);
1036 
1037 	/* Initialise variables for heap */
1038 	socket_stats->free_count = 0;
1039 	socket_stats->heap_freesz_bytes = 0;
1040 	socket_stats->greatest_free_size = 0;
1041 
1042 	/* Iterate through free list */
1043 	for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
1044 		for (elem = LIST_FIRST(&heap->free_head[idx]);
1045 			!!elem; elem = LIST_NEXT(elem, free_list))
1046 		{
1047 			socket_stats->free_count++;
1048 			socket_stats->heap_freesz_bytes += elem->size;
1049 			if (elem->size > socket_stats->greatest_free_size)
1050 				socket_stats->greatest_free_size = elem->size;
1051 		}
1052 	}
1053 	/* Get stats on overall heap and allocated memory on this heap */
1054 	socket_stats->heap_totalsz_bytes = heap->total_size;
1055 	socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
1056 			socket_stats->heap_freesz_bytes);
1057 	socket_stats->alloc_count = heap->alloc_count;
1058 
1059 	rte_spinlock_unlock(&heap->lock);
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Function to retrieve data for a given heap
1065  */
1066 void
1067 malloc_heap_dump(struct malloc_heap *heap, FILE *f)
1068 {
1069 	struct malloc_elem *elem;
1070 
1071 	rte_spinlock_lock(&heap->lock);
1072 
1073 	fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
1074 	fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);
1075 
1076 	elem = heap->first;
1077 	while (elem) {
1078 		malloc_elem_dump(elem, f);
1079 		elem = elem->next;
1080 	}
1081 
1082 	rte_spinlock_unlock(&heap->lock);
1083 }
1084 
1085 static int
1086 destroy_elem(struct malloc_elem *elem, size_t len)
1087 {
1088 	struct malloc_heap *heap = elem->heap;
1089 
1090 	/* notify all subscribers that a memory area is going to be removed */
1091 	eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len);
1092 
1093 	/* this element can be removed */
1094 	malloc_elem_free_list_remove(elem);
1095 	malloc_elem_hide_region(elem, elem, len);
1096 
1097 	heap->total_size -= len;
1098 
1099 	memset(elem, 0, sizeof(*elem));
1100 
1101 	return 0;
1102 }
1103 
1104 struct rte_memseg_list *
1105 malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[],
1106 		unsigned int n_pages, size_t page_sz, const char *seg_name,
1107 		unsigned int socket_id)
1108 {
1109 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1110 	char fbarray_name[RTE_FBARRAY_NAME_LEN];
1111 	struct rte_memseg_list *msl = NULL;
1112 	struct rte_fbarray *arr;
1113 	size_t seg_len = n_pages * page_sz;
1114 	unsigned int i;
1115 
1116 	/* first, find a free memseg list */
1117 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1118 		struct rte_memseg_list *tmp = &mcfg->memsegs[i];
1119 		if (tmp->base_va == NULL) {
1120 			msl = tmp;
1121 			break;
1122 		}
1123 	}
1124 	if (msl == NULL) {
1125 		RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n");
1126 		rte_errno = ENOSPC;
1127 		return NULL;
1128 	}
1129 
1130 	snprintf(fbarray_name, sizeof(fbarray_name), "%s_%p",
1131 			seg_name, va_addr);
1132 
1133 	/* create the backing fbarray */
1134 	if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages,
1135 			sizeof(struct rte_memseg)) < 0) {
1136 		RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n");
1137 		return NULL;
1138 	}
1139 	arr = &msl->memseg_arr;
1140 
1141 	/* fbarray created, fill it up */
1142 	for (i = 0; i < n_pages; i++) {
1143 		struct rte_memseg *ms;
1144 
1145 		rte_fbarray_set_used(arr, i);
1146 		ms = rte_fbarray_get(arr, i);
1147 		ms->addr = RTE_PTR_ADD(va_addr, i * page_sz);
1148 		ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i];
1149 		ms->hugepage_sz = page_sz;
1150 		ms->len = page_sz;
1151 		ms->nchannel = rte_memory_get_nchannel();
1152 		ms->nrank = rte_memory_get_nrank();
1153 		ms->socket_id = socket_id;
1154 	}
1155 
1156 	/* set up the memseg list */
1157 	msl->base_va = va_addr;
1158 	msl->page_sz = page_sz;
1159 	msl->socket_id = socket_id;
1160 	msl->len = seg_len;
1161 	msl->version = 0;
1162 	msl->external = 1;
1163 
1164 	return msl;
1165 }
1166 
1167 struct extseg_walk_arg {
1168 	void *va_addr;
1169 	size_t len;
1170 	struct rte_memseg_list *msl;
1171 };
1172 
1173 static int
1174 extseg_walk(const struct rte_memseg_list *msl, void *arg)
1175 {
1176 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1177 	struct extseg_walk_arg *wa = arg;
1178 
1179 	if (msl->base_va == wa->va_addr && msl->len == wa->len) {
1180 		unsigned int found_idx;
1181 
1182 		/* msl is const */
1183 		found_idx = msl - mcfg->memsegs;
1184 		wa->msl = &mcfg->memsegs[found_idx];
1185 		return 1;
1186 	}
1187 	return 0;
1188 }
1189 
1190 struct rte_memseg_list *
1191 malloc_heap_find_external_seg(void *va_addr, size_t len)
1192 {
1193 	struct extseg_walk_arg wa;
1194 	int res;
1195 
1196 	wa.va_addr = va_addr;
1197 	wa.len = len;
1198 
1199 	res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa);
1200 
1201 	if (res != 1) {
1202 		/* 0 means nothing was found, -1 shouldn't happen */
1203 		if (res == 0)
1204 			rte_errno = ENOENT;
1205 		return NULL;
1206 	}
1207 	return wa.msl;
1208 }
1209 
1210 int
1211 malloc_heap_destroy_external_seg(struct rte_memseg_list *msl)
1212 {
1213 	/* destroy the fbarray backing this memory */
1214 	if (rte_fbarray_destroy(&msl->memseg_arr) < 0)
1215 		return -1;
1216 
1217 	/* reset the memseg list */
1218 	memset(msl, 0, sizeof(*msl));
1219 
1220 	return 0;
1221 }
1222 
1223 int
1224 malloc_heap_add_external_memory(struct malloc_heap *heap,
1225 		struct rte_memseg_list *msl)
1226 {
1227 	/* erase contents of new memory */
1228 	memset(msl->base_va, 0, msl->len);
1229 
1230 	/* now, add newly minted memory to the malloc heap */
1231 	malloc_heap_add_memory(heap, msl, msl->base_va, msl->len);
1232 
1233 	heap->total_size += msl->len;
1234 
1235 	/* all done! */
1236 	RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n",
1237 			heap->name, msl->base_va);
1238 
1239 	/* notify all subscribers that a new memory area has been added */
1240 	eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
1241 			msl->base_va, msl->len);
1242 
1243 	return 0;
1244 }
1245 
1246 int
1247 malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr,
1248 		size_t len)
1249 {
1250 	struct malloc_elem *elem = heap->first;
1251 
1252 	/* find element with specified va address */
1253 	while (elem != NULL && elem != va_addr) {
1254 		elem = elem->next;
1255 		/* stop if we've blown past our VA */
1256 		if (elem > (struct malloc_elem *)va_addr) {
1257 			rte_errno = ENOENT;
1258 			return -1;
1259 		}
1260 	}
1261 	/* check if element was found */
1262 	if (elem == NULL || elem->msl->len != len) {
1263 		rte_errno = ENOENT;
1264 		return -1;
1265 	}
1266 	/* if element's size is not equal to segment len, segment is busy */
1267 	if (elem->state == ELEM_BUSY || elem->size != len) {
1268 		rte_errno = EBUSY;
1269 		return -1;
1270 	}
1271 	return destroy_elem(elem, len);
1272 }
1273 
1274 int
1275 malloc_heap_create(struct malloc_heap *heap, const char *heap_name)
1276 {
1277 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1278 	uint32_t next_socket_id = mcfg->next_socket_id;
1279 
1280 	/* prevent overflow. did you really create 2 billion heaps??? */
1281 	if (next_socket_id > INT32_MAX) {
1282 		RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
1283 		rte_errno = ENOSPC;
1284 		return -1;
1285 	}
1286 
1287 	/* initialize empty heap */
1288 	heap->alloc_count = 0;
1289 	heap->first = NULL;
1290 	heap->last = NULL;
1291 	LIST_INIT(heap->free_head);
1292 	rte_spinlock_init(&heap->lock);
1293 	heap->total_size = 0;
1294 	heap->socket_id = next_socket_id;
1295 
1296 	/* we hold a global mem hotplug writelock, so it's safe to increment */
1297 	mcfg->next_socket_id++;
1298 
1299 	/* set up name */
1300 	strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
1301 	return 0;
1302 }
1303 
1304 int
1305 malloc_heap_destroy(struct malloc_heap *heap)
1306 {
1307 	if (heap->alloc_count != 0) {
1308 		RTE_LOG(ERR, EAL, "Heap is still in use\n");
1309 		rte_errno = EBUSY;
1310 		return -1;
1311 	}
1312 	if (heap->first != NULL || heap->last != NULL) {
1313 		RTE_LOG(ERR, EAL, "Heap still contains memory segments\n");
1314 		rte_errno = EBUSY;
1315 		return -1;
1316 	}
1317 	if (heap->total_size != 0)
1318 		RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n");
1319 
1320 	/* after this, the lock will be dropped */
1321 	memset(heap, 0, sizeof(*heap));
1322 
1323 	return 0;
1324 }
1325 
1326 int
1327 rte_eal_malloc_heap_init(void)
1328 {
1329 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1330 	unsigned int i;
1331 	const struct internal_config *internal_conf =
1332 		eal_get_internal_configuration();
1333 
1334 	if (internal_conf->match_allocations)
1335 		RTE_LOG(DEBUG, EAL, "Hugepages will be freed exactly as allocated.\n");
1336 
1337 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
1338 		/* assign min socket ID to external heaps */
1339 		mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID;
1340 
1341 		/* assign names to default DPDK heaps */
1342 		for (i = 0; i < rte_socket_count(); i++) {
1343 			struct malloc_heap *heap = &mcfg->malloc_heaps[i];
1344 			char heap_name[RTE_HEAP_NAME_MAX_LEN];
1345 			int socket_id = rte_socket_id_by_idx(i);
1346 
1347 			snprintf(heap_name, sizeof(heap_name),
1348 					"socket_%i", socket_id);
1349 			strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
1350 			heap->socket_id = socket_id;
1351 		}
1352 	}
1353 
1354 
1355 	if (register_mp_requests()) {
1356 		RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n");
1357 		rte_mcfg_mem_read_unlock();
1358 		return -1;
1359 	}
1360 
1361 	/* unlock mem hotplug here. it's safe for primary as no requests can
1362 	 * even come before primary itself is fully initialized, and secondaries
1363 	 * do not need to initialize the heap.
1364 	 */
1365 	rte_mcfg_mem_read_unlock();
1366 
1367 	/* secondary process does not need to initialize anything */
1368 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1369 		return 0;
1370 
1371 	/* add all IOVA-contiguous areas to the heap */
1372 	return rte_memseg_contig_walk(malloc_add_seg, NULL);
1373 }
1374