1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4 #include <stdint.h>
5 #include <stddef.h>
6 #include <stdlib.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <sys/queue.h>
10
11 #include <rte_memory.h>
12 #include <rte_errno.h>
13 #include <rte_eal.h>
14 #include <rte_eal_memconfig.h>
15 #include <rte_lcore.h>
16 #include <rte_common.h>
17 #include <rte_string_fns.h>
18 #include <rte_spinlock.h>
19 #include <rte_memzone.h>
20 #include <rte_fbarray.h>
21
22 #include "eal_internal_cfg.h"
23 #include "eal_memalloc.h"
24 #include "eal_memcfg.h"
25 #include "eal_private.h"
26 #include "malloc_elem.h"
27 #include "malloc_heap.h"
28 #include "malloc_mp.h"
29
30 /* start external socket ID's at a very high number */
31 #define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */
32 #define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES))
33
34 static unsigned
check_hugepage_sz(unsigned flags,uint64_t hugepage_sz)35 check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
36 {
37 unsigned check_flag = 0;
38
39 if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
40 return 1;
41
42 switch (hugepage_sz) {
43 case RTE_PGSIZE_256K:
44 check_flag = RTE_MEMZONE_256KB;
45 break;
46 case RTE_PGSIZE_2M:
47 check_flag = RTE_MEMZONE_2MB;
48 break;
49 case RTE_PGSIZE_16M:
50 check_flag = RTE_MEMZONE_16MB;
51 break;
52 case RTE_PGSIZE_256M:
53 check_flag = RTE_MEMZONE_256MB;
54 break;
55 case RTE_PGSIZE_512M:
56 check_flag = RTE_MEMZONE_512MB;
57 break;
58 case RTE_PGSIZE_1G:
59 check_flag = RTE_MEMZONE_1GB;
60 break;
61 case RTE_PGSIZE_4G:
62 check_flag = RTE_MEMZONE_4GB;
63 break;
64 case RTE_PGSIZE_16G:
65 check_flag = RTE_MEMZONE_16GB;
66 }
67
68 return check_flag & flags;
69 }
70
71 int
malloc_socket_to_heap_id(unsigned int socket_id)72 malloc_socket_to_heap_id(unsigned int socket_id)
73 {
74 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
75 int i;
76
77 for (i = 0; i < RTE_MAX_HEAPS; i++) {
78 struct malloc_heap *heap = &mcfg->malloc_heaps[i];
79
80 if (heap->socket_id == socket_id)
81 return i;
82 }
83 return -1;
84 }
85
86 /*
87 * Expand the heap with a memory area.
88 */
89 static struct malloc_elem *
malloc_heap_add_memory(struct malloc_heap * heap,struct rte_memseg_list * msl,void * start,size_t len,bool dirty)90 malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
91 void *start, size_t len, bool dirty)
92 {
93 struct malloc_elem *elem = start;
94
95 malloc_elem_init(elem, heap, msl, len, elem, len, dirty);
96
97 malloc_elem_insert(elem);
98
99 elem = malloc_elem_join_adjacent_free(elem);
100
101 malloc_elem_free_list_insert(elem);
102
103 return elem;
104 }
105
106 static int
malloc_add_seg(const struct rte_memseg_list * msl,const struct rte_memseg * ms,size_t len,void * arg __rte_unused)107 malloc_add_seg(const struct rte_memseg_list *msl,
108 const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
109 {
110 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
111 struct rte_memseg_list *found_msl;
112 struct malloc_heap *heap;
113 int msl_idx, heap_idx;
114
115 if (msl->external)
116 return 0;
117
118 heap_idx = malloc_socket_to_heap_id(msl->socket_id);
119 if (heap_idx < 0) {
120 EAL_LOG(ERR, "Memseg list has invalid socket id");
121 return -1;
122 }
123 heap = &mcfg->malloc_heaps[heap_idx];
124
125 /* msl is const, so find it */
126 msl_idx = msl - mcfg->memsegs;
127
128 if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
129 return -1;
130
131 found_msl = &mcfg->memsegs[msl_idx];
132
133 malloc_heap_add_memory(heap, found_msl, ms->addr, len,
134 ms->flags & RTE_MEMSEG_FLAG_DIRTY);
135
136 heap->total_size += len;
137
138 EAL_LOG(DEBUG, "Added %zuM to heap on socket %i", len >> 20,
139 msl->socket_id);
140 return 0;
141 }
142
143 /*
144 * Iterates through the freelist for a heap to find a free element
145 * which can store data of the required size and with the requested alignment.
146 * If size is 0, find the biggest available elem.
147 * Returns null on failure, or pointer to element on success.
148 */
149 static struct malloc_elem *
find_suitable_element(struct malloc_heap * heap,size_t size,unsigned int flags,size_t align,size_t bound,bool contig)150 find_suitable_element(struct malloc_heap *heap, size_t size,
151 unsigned int flags, size_t align, size_t bound, bool contig)
152 {
153 size_t idx;
154 struct malloc_elem *elem, *alt_elem = NULL;
155
156 for (idx = malloc_elem_free_list_index(size);
157 idx < RTE_HEAP_NUM_FREELISTS; idx++) {
158 for (elem = LIST_FIRST(&heap->free_head[idx]);
159 !!elem; elem = LIST_NEXT(elem, free_list)) {
160 if (malloc_elem_can_hold(elem, size, align, bound,
161 contig)) {
162 if (check_hugepage_sz(flags,
163 elem->msl->page_sz))
164 return elem;
165 if (alt_elem == NULL)
166 alt_elem = elem;
167 }
168 }
169 }
170
171 if (flags & RTE_MEMZONE_SIZE_HINT_ONLY)
172 return alt_elem;
173
174 return NULL;
175 }
176
177 /*
178 * Iterates through the freelist for a heap to find a free element with the
179 * biggest size and requested alignment. Will also set size to whatever element
180 * size that was found.
181 * Returns null on failure, or pointer to element on success.
182 */
183 static struct malloc_elem *
find_biggest_element(struct malloc_heap * heap,size_t * size,unsigned int flags,size_t align,bool contig)184 find_biggest_element(struct malloc_heap *heap, size_t *size,
185 unsigned int flags, size_t align, bool contig)
186 {
187 struct malloc_elem *elem, *max_elem = NULL;
188 size_t idx, max_size = 0;
189
190 for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
191 for (elem = LIST_FIRST(&heap->free_head[idx]);
192 !!elem; elem = LIST_NEXT(elem, free_list)) {
193 size_t cur_size;
194 if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 &&
195 !check_hugepage_sz(flags,
196 elem->msl->page_sz))
197 continue;
198 if (contig) {
199 cur_size =
200 malloc_elem_find_max_iova_contig(elem,
201 align);
202 } else {
203 void *data_start = RTE_PTR_ADD(elem,
204 MALLOC_ELEM_HEADER_LEN);
205 void *data_end = RTE_PTR_ADD(elem, elem->size -
206 MALLOC_ELEM_TRAILER_LEN);
207 void *aligned = RTE_PTR_ALIGN_CEIL(data_start,
208 align);
209 /* check if aligned data start is beyond end */
210 if (aligned >= data_end)
211 continue;
212 cur_size = RTE_PTR_DIFF(data_end, aligned);
213 }
214 if (cur_size > max_size) {
215 max_size = cur_size;
216 max_elem = elem;
217 }
218 }
219 }
220
221 *size = max_size;
222 return max_elem;
223 }
224
225 /*
226 * Main function to allocate a block of memory from the heap.
227 * It locks the free list, scans it, and adds a new memseg if the
228 * scan fails. Once the new memseg is added, it re-scans and should return
229 * the new element after releasing the lock.
230 */
231 static void *
heap_alloc(struct malloc_heap * heap,size_t size,unsigned int flags,size_t align,size_t bound,bool contig)232 heap_alloc(struct malloc_heap *heap, size_t size, unsigned int flags,
233 size_t align, size_t bound, bool contig)
234 {
235 struct malloc_elem *elem;
236 size_t user_size = size;
237
238 size = RTE_CACHE_LINE_ROUNDUP(size);
239 align = RTE_CACHE_LINE_ROUNDUP(align);
240
241 /* roundup might cause an overflow */
242 if (size == 0)
243 return NULL;
244 elem = find_suitable_element(heap, size, flags, align, bound, contig);
245 if (elem != NULL) {
246 elem = malloc_elem_alloc(elem, size, align, bound, contig);
247
248 /* increase heap's count of allocated elements */
249 heap->alloc_count++;
250
251 asan_set_redzone(elem, user_size);
252 }
253
254 return elem == NULL ? NULL : (void *)(&elem[1]);
255 }
256
257 static void *
heap_alloc_biggest(struct malloc_heap * heap,unsigned int flags,size_t align,bool contig)258 heap_alloc_biggest(struct malloc_heap *heap, unsigned int flags, size_t align, bool contig)
259 {
260 struct malloc_elem *elem;
261 size_t size;
262
263 align = RTE_CACHE_LINE_ROUNDUP(align);
264
265 elem = find_biggest_element(heap, &size, flags, align, contig);
266 if (elem != NULL) {
267 elem = malloc_elem_alloc(elem, size, align, 0, contig);
268
269 /* increase heap's count of allocated elements */
270 heap->alloc_count++;
271
272 asan_set_redzone(elem, size);
273 }
274
275 return elem == NULL ? NULL : (void *)(&elem[1]);
276 }
277
278 /* this function is exposed in malloc_mp.h */
279 void
rollback_expand_heap(struct rte_memseg ** ms,int n_segs,struct malloc_elem * elem,void * map_addr,size_t map_len)280 rollback_expand_heap(struct rte_memseg **ms, int n_segs,
281 struct malloc_elem *elem, void *map_addr, size_t map_len)
282 {
283 if (elem != NULL) {
284 malloc_elem_free_list_remove(elem);
285 malloc_elem_hide_region(elem, map_addr, map_len);
286 }
287
288 eal_memalloc_free_seg_bulk(ms, n_segs);
289 }
290
291 /* this function is exposed in malloc_mp.h */
292 struct malloc_elem *
alloc_pages_on_heap(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig,struct rte_memseg ** ms,int n_segs)293 alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
294 int socket, unsigned int flags, size_t align, size_t bound,
295 bool contig, struct rte_memseg **ms, int n_segs)
296 {
297 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
298 struct rte_memseg_list *msl;
299 struct malloc_elem *elem = NULL;
300 size_t alloc_sz;
301 int allocd_pages, i;
302 bool dirty = false;
303 void *ret, *map_addr;
304
305 alloc_sz = (size_t)pg_sz * n_segs;
306
307 /* first, check if we're allowed to allocate this memory */
308 if (eal_memalloc_mem_alloc_validate(socket,
309 heap->total_size + alloc_sz) < 0) {
310 EAL_LOG(DEBUG, "User has disallowed allocation");
311 return NULL;
312 }
313
314 allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
315 socket, true);
316
317 /* make sure we've allocated our pages... */
318 if (allocd_pages < 0)
319 return NULL;
320
321 map_addr = ms[0]->addr;
322 msl = rte_mem_virt2memseg_list(map_addr);
323
324 /* check if we wanted contiguous memory but didn't get it */
325 if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
326 EAL_LOG(DEBUG, "%s(): couldn't allocate physically contiguous space",
327 __func__);
328 goto fail;
329 }
330
331 /*
332 * Once we have all the memseg lists configured, if there is a dma mask
333 * set, check iova addresses are not out of range. Otherwise the device
334 * setting the dma mask could have problems with the mapped memory.
335 *
336 * There are two situations when this can happen:
337 * 1) memory initialization
338 * 2) dynamic memory allocation
339 *
340 * For 1), an error when checking dma mask implies app can not be
341 * executed. For 2) implies the new memory can not be added.
342 */
343 if (mcfg->dma_maskbits &&
344 rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
345 /*
346 * Currently this can only happen if IOMMU is enabled
347 * and the address width supported by the IOMMU hw is
348 * not enough for using the memory mapped IOVAs.
349 *
350 * If IOVA is VA, advice to try with '--iova-mode pa'
351 * which could solve some situations when IOVA VA is not
352 * really needed.
353 */
354 EAL_LOG(ERR,
355 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask",
356 __func__);
357
358 /*
359 * If IOVA is VA and it is possible to run with IOVA PA,
360 * because user is root, give and advice for solving the
361 * problem.
362 */
363 if ((rte_eal_iova_mode() == RTE_IOVA_VA) &&
364 rte_eal_using_phys_addrs())
365 EAL_LOG(ERR,
366 "%s(): Please try initializing EAL with --iova-mode=pa parameter",
367 __func__);
368 goto fail;
369 }
370
371 /* Element is dirty if it contains at least one dirty page. */
372 for (i = 0; i < allocd_pages; i++)
373 dirty |= ms[i]->flags & RTE_MEMSEG_FLAG_DIRTY;
374
375 /* add newly minted memsegs to malloc heap */
376 elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz, dirty);
377
378 /* try once more, as now we have allocated new memory */
379 ret = find_suitable_element(heap, elt_size, flags, align, bound,
380 contig);
381
382 if (ret == NULL)
383 goto fail;
384
385 return elem;
386
387 fail:
388 rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
389 return NULL;
390 }
391
392 static int
try_expand_heap_primary(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)393 try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
394 size_t elt_size, int socket, unsigned int flags, size_t align,
395 size_t bound, bool contig)
396 {
397 struct malloc_elem *elem;
398 struct rte_memseg **ms;
399 void *map_addr;
400 size_t alloc_sz;
401 int n_segs;
402 bool callback_triggered = false;
403
404 alloc_sz = RTE_ALIGN_CEIL(RTE_ALIGN_CEIL(elt_size, align) +
405 MALLOC_ELEM_OVERHEAD, pg_sz);
406 n_segs = alloc_sz / pg_sz;
407
408 /* we can't know in advance how many pages we'll need, so we malloc */
409 ms = malloc(sizeof(*ms) * n_segs);
410 if (ms == NULL)
411 return -1;
412 memset(ms, 0, sizeof(*ms) * n_segs);
413
414 elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
415 bound, contig, ms, n_segs);
416
417 if (elem == NULL)
418 goto free_ms;
419
420 map_addr = ms[0]->addr;
421
422 /* notify user about changes in memory map */
423 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);
424
425 /* notify other processes that this has happened */
426 if (request_sync()) {
427 /* we couldn't ensure all processes have mapped memory,
428 * so free it back and notify everyone that it's been
429 * freed back.
430 *
431 * technically, we could've avoided adding memory addresses to
432 * the map, but that would've led to inconsistent behavior
433 * between primary and secondary processes, as those get
434 * callbacks during sync. therefore, force primary process to
435 * do alloc-and-rollback syncs as well.
436 */
437 callback_triggered = true;
438 goto free_elem;
439 }
440 heap->total_size += alloc_sz;
441
442 EAL_LOG(DEBUG, "Heap on socket %d was expanded by %zdMB",
443 socket, alloc_sz >> 20ULL);
444
445 free(ms);
446
447 return 0;
448
449 free_elem:
450 if (callback_triggered)
451 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
452 map_addr, alloc_sz);
453
454 rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
455
456 request_sync();
457 free_ms:
458 free(ms);
459
460 return -1;
461 }
462
463 static int
try_expand_heap_secondary(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)464 try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
465 size_t elt_size, int socket, unsigned int flags, size_t align,
466 size_t bound, bool contig)
467 {
468 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
469 struct malloc_mp_req req;
470 int req_result;
471
472 memset(&req, 0, sizeof(req));
473
474 req.t = REQ_TYPE_ALLOC;
475 req.alloc_req.align = align;
476 req.alloc_req.bound = bound;
477 req.alloc_req.contig = contig;
478 req.alloc_req.flags = flags;
479 req.alloc_req.elt_size = elt_size;
480 req.alloc_req.page_sz = pg_sz;
481 req.alloc_req.socket = socket;
482 req.alloc_req.malloc_heap_idx = heap - mcfg->malloc_heaps;
483
484 req_result = request_to_primary(&req);
485
486 if (req_result != 0)
487 return -1;
488
489 if (req.result != REQ_RESULT_SUCCESS)
490 return -1;
491
492 return 0;
493 }
494
495 static int
try_expand_heap(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)496 try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
497 int socket, unsigned int flags, size_t align, size_t bound,
498 bool contig)
499 {
500 int ret;
501
502 rte_mcfg_mem_write_lock();
503
504 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
505 ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
506 flags, align, bound, contig);
507 } else {
508 ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
509 flags, align, bound, contig);
510 }
511
512 rte_mcfg_mem_write_unlock();
513 return ret;
514 }
515
516 static int
compare_pagesz(const void * a,const void * b)517 compare_pagesz(const void *a, const void *b)
518 {
519 const struct rte_memseg_list * const*mpa = a;
520 const struct rte_memseg_list * const*mpb = b;
521 const struct rte_memseg_list *msla = *mpa;
522 const struct rte_memseg_list *mslb = *mpb;
523 uint64_t pg_sz_a = msla->page_sz;
524 uint64_t pg_sz_b = mslb->page_sz;
525
526 if (pg_sz_a < pg_sz_b)
527 return -1;
528 if (pg_sz_a > pg_sz_b)
529 return 1;
530 return 0;
531 }
532
533 static int
alloc_more_mem_on_socket(struct malloc_heap * heap,size_t size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)534 alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
535 unsigned int flags, size_t align, size_t bound, bool contig)
536 {
537 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
538 struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
539 struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
540 uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
541 uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
542 uint64_t prev_pg_sz;
543 int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
544 bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
545 unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
546 void *ret;
547
548 memset(requested_msls, 0, sizeof(requested_msls));
549 memset(other_msls, 0, sizeof(other_msls));
550 memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
551 memset(other_pg_sz, 0, sizeof(other_pg_sz));
552
553 /*
554 * go through memseg list and take note of all the page sizes available,
555 * and if any of them were specifically requested by the user.
556 */
557 n_requested_msls = 0;
558 n_other_msls = 0;
559 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
560 struct rte_memseg_list *msl = &mcfg->memsegs[i];
561
562 if (msl->socket_id != socket)
563 continue;
564
565 if (msl->base_va == NULL)
566 continue;
567
568 /* if pages of specific size were requested */
569 if (size_flags != 0 && check_hugepage_sz(size_flags,
570 msl->page_sz))
571 requested_msls[n_requested_msls++] = msl;
572 else if (size_flags == 0 || size_hint)
573 other_msls[n_other_msls++] = msl;
574 }
575
576 /* sort the lists, smallest first */
577 qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
578 compare_pagesz);
579 qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
580 compare_pagesz);
581
582 /* now, extract page sizes we are supposed to try */
583 prev_pg_sz = 0;
584 n_requested_pg_sz = 0;
585 for (i = 0; i < n_requested_msls; i++) {
586 uint64_t pg_sz = requested_msls[i]->page_sz;
587
588 if (prev_pg_sz != pg_sz) {
589 requested_pg_sz[n_requested_pg_sz++] = pg_sz;
590 prev_pg_sz = pg_sz;
591 }
592 }
593 prev_pg_sz = 0;
594 n_other_pg_sz = 0;
595 for (i = 0; i < n_other_msls; i++) {
596 uint64_t pg_sz = other_msls[i]->page_sz;
597
598 if (prev_pg_sz != pg_sz) {
599 other_pg_sz[n_other_pg_sz++] = pg_sz;
600 prev_pg_sz = pg_sz;
601 }
602 }
603
604 /* finally, try allocating memory of specified page sizes, starting from
605 * the smallest sizes
606 */
607 for (i = 0; i < n_requested_pg_sz; i++) {
608 uint64_t pg_sz = requested_pg_sz[i];
609
610 /*
611 * do not pass the size hint here, as user expects other page
612 * sizes first, before resorting to best effort allocation.
613 */
614 if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
615 align, bound, contig))
616 return 0;
617 }
618 if (n_other_pg_sz == 0)
619 return -1;
620
621 /* now, check if we can reserve anything with size hint */
622 ret = find_suitable_element(heap, size, flags, align, bound, contig);
623 if (ret != NULL)
624 return 0;
625
626 /*
627 * we still couldn't reserve memory, so try expanding heap with other
628 * page sizes, if there are any
629 */
630 for (i = 0; i < n_other_pg_sz; i++) {
631 uint64_t pg_sz = other_pg_sz[i];
632
633 if (!try_expand_heap(heap, pg_sz, size, socket, flags,
634 align, bound, contig))
635 return 0;
636 }
637 return -1;
638 }
639
640 /* this will try lower page sizes first */
641 static void *
malloc_heap_alloc_on_heap_id(size_t size,unsigned int heap_id,unsigned int flags,size_t align,size_t bound,bool contig)642 malloc_heap_alloc_on_heap_id(size_t size, unsigned int heap_id, unsigned int flags, size_t align,
643 size_t bound, bool contig)
644 {
645 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
646 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
647 unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
648 int socket_id;
649 void *ret;
650 const struct internal_config *internal_conf =
651 eal_get_internal_configuration();
652
653 rte_spinlock_lock(&(heap->lock));
654
655 align = align == 0 ? 1 : align;
656
657 /* for legacy mode, try once and with all flags */
658 if (internal_conf->legacy_mem) {
659 ret = heap_alloc(heap, size, flags, align, bound, contig);
660 goto alloc_unlock;
661 }
662
663 /*
664 * we do not pass the size hint here, because even if allocation fails,
665 * we may still be able to allocate memory from appropriate page sizes,
666 * we just need to request more memory first.
667 */
668
669 socket_id = rte_socket_id_by_idx(heap_id);
670 /*
671 * if socket ID is negative, we cannot find a socket ID for this heap -
672 * which means it's an external heap. those can have unexpected page
673 * sizes, so if the user asked to allocate from there - assume user
674 * knows what they're doing, and allow allocating from there with any
675 * page size flags.
676 */
677 if (socket_id < 0)
678 size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY;
679
680 ret = heap_alloc(heap, size, size_flags, align, bound, contig);
681 if (ret != NULL)
682 goto alloc_unlock;
683
684 /* if socket ID is invalid, this is an external heap */
685 if (socket_id < 0)
686 goto alloc_unlock;
687
688 if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align,
689 bound, contig)) {
690 ret = heap_alloc(heap, size, flags, align, bound, contig);
691
692 /* this should have succeeded */
693 if (ret == NULL)
694 EAL_LOG(ERR, "Error allocating from heap");
695 }
696 alloc_unlock:
697 rte_spinlock_unlock(&(heap->lock));
698 return ret;
699 }
700
701 static unsigned int
malloc_get_numa_socket(void)702 malloc_get_numa_socket(void)
703 {
704 const struct internal_config *conf = eal_get_internal_configuration();
705 unsigned int socket_id = rte_socket_id();
706 unsigned int idx;
707
708 if (socket_id != (unsigned int)SOCKET_ID_ANY)
709 return socket_id;
710
711 /* for control threads, return first socket where memory is available */
712 for (idx = 0; idx < rte_socket_count(); idx++) {
713 socket_id = rte_socket_id_by_idx(idx);
714 if (conf->socket_mem[socket_id] != 0)
715 return socket_id;
716 }
717 /* We couldn't quickly find a NUMA node where memory was available,
718 * so fall back to using main lcore socket ID.
719 */
720 socket_id = rte_lcore_to_socket_id(rte_get_main_lcore());
721 /* Main lcore socket ID may be SOCKET_ID_ANY
722 * when main lcore thread is affinitized to multiple NUMA nodes.
723 */
724 if (socket_id != (unsigned int)SOCKET_ID_ANY)
725 return socket_id;
726 /* Failed to find meaningful socket ID, so use the first one available. */
727 return rte_socket_id_by_idx(0);
728 }
729
730 void *
malloc_heap_alloc(size_t size,int socket_arg,unsigned int flags,size_t align,size_t bound,bool contig)731 malloc_heap_alloc(size_t size, int socket_arg, unsigned int flags,
732 size_t align, size_t bound, bool contig)
733 {
734 int socket, heap_id, i;
735 void *ret;
736
737 /* return NULL if size is 0 or alignment is not power-of-2 */
738 if (size == 0 || (align && !rte_is_power_of_2(align)))
739 return NULL;
740
741 if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES)
742 socket_arg = SOCKET_ID_ANY;
743
744 if (socket_arg == SOCKET_ID_ANY)
745 socket = malloc_get_numa_socket();
746 else
747 socket = socket_arg;
748
749 /* turn socket ID into heap ID */
750 heap_id = malloc_socket_to_heap_id(socket);
751 /* if heap id is negative, socket ID was invalid */
752 if (heap_id < 0)
753 return NULL;
754
755 ret = malloc_heap_alloc_on_heap_id(size, heap_id, flags, align, bound, contig);
756 if (ret != NULL || socket_arg != SOCKET_ID_ANY)
757 return ret;
758
759 /* try other heaps. we are only iterating through native DPDK sockets,
760 * so external heaps won't be included.
761 */
762 for (i = 0; i < (int) rte_socket_count(); i++) {
763 if (i == heap_id)
764 continue;
765 ret = malloc_heap_alloc_on_heap_id(size, i, flags, align, bound, contig);
766 if (ret != NULL)
767 return ret;
768 }
769 return NULL;
770 }
771
772 static void *
heap_alloc_biggest_on_heap_id(unsigned int heap_id,unsigned int flags,size_t align,bool contig)773 heap_alloc_biggest_on_heap_id(unsigned int heap_id,
774 unsigned int flags, size_t align, bool contig)
775 {
776 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
777 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
778 void *ret;
779
780 rte_spinlock_lock(&(heap->lock));
781
782 align = align == 0 ? 1 : align;
783
784 ret = heap_alloc_biggest(heap, flags, align, contig);
785
786 rte_spinlock_unlock(&(heap->lock));
787
788 return ret;
789 }
790
791 void *
malloc_heap_alloc_biggest(int socket_arg,unsigned int flags,size_t align,bool contig)792 malloc_heap_alloc_biggest(int socket_arg, unsigned int flags, size_t align, bool contig)
793 {
794 int socket, i, cur_socket, heap_id;
795 void *ret;
796
797 /* return NULL if align is not power-of-2 */
798 if ((align && !rte_is_power_of_2(align)))
799 return NULL;
800
801 if (!rte_eal_has_hugepages())
802 socket_arg = SOCKET_ID_ANY;
803
804 if (socket_arg == SOCKET_ID_ANY)
805 socket = malloc_get_numa_socket();
806 else
807 socket = socket_arg;
808
809 /* turn socket ID into heap ID */
810 heap_id = malloc_socket_to_heap_id(socket);
811 /* if heap id is negative, socket ID was invalid */
812 if (heap_id < 0)
813 return NULL;
814
815 ret = heap_alloc_biggest_on_heap_id(heap_id, flags, align, contig);
816 if (ret != NULL || socket_arg != SOCKET_ID_ANY)
817 return ret;
818
819 /* try other heaps */
820 for (i = 0; i < (int) rte_socket_count(); i++) {
821 cur_socket = rte_socket_id_by_idx(i);
822 if (cur_socket == socket)
823 continue;
824 ret = heap_alloc_biggest_on_heap_id(i, flags, align, contig);
825 if (ret != NULL)
826 return ret;
827 }
828 return NULL;
829 }
830
831 /* this function is exposed in malloc_mp.h */
832 int
malloc_heap_free_pages(void * aligned_start,size_t aligned_len)833 malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
834 {
835 int n_segs, seg_idx, max_seg_idx;
836 struct rte_memseg_list *msl;
837 size_t page_sz;
838
839 msl = rte_mem_virt2memseg_list(aligned_start);
840 if (msl == NULL)
841 return -1;
842
843 page_sz = (size_t)msl->page_sz;
844 n_segs = aligned_len / page_sz;
845 seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
846 max_seg_idx = seg_idx + n_segs;
847
848 for (; seg_idx < max_seg_idx; seg_idx++) {
849 struct rte_memseg *ms;
850
851 ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
852 eal_memalloc_free_seg(ms);
853 }
854 return 0;
855 }
856
857 int
malloc_heap_free(struct malloc_elem * elem)858 malloc_heap_free(struct malloc_elem *elem)
859 {
860 struct malloc_heap *heap;
861 void *start, *aligned_start, *end, *aligned_end;
862 size_t len, aligned_len, page_sz;
863 struct rte_memseg_list *msl;
864 unsigned int i, n_segs, before_space, after_space;
865 int ret;
866 bool unmapped = false;
867 const struct internal_config *internal_conf =
868 eal_get_internal_configuration();
869
870 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
871 return -1;
872
873 asan_clear_redzone(elem);
874
875 /* elem may be merged with previous element, so keep heap address */
876 heap = elem->heap;
877 msl = elem->msl;
878 page_sz = (size_t)msl->page_sz;
879
880 rte_spinlock_lock(&(heap->lock));
881
882 void *asan_ptr = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN + elem->pad);
883 size_t asan_data_len = elem->size - MALLOC_ELEM_OVERHEAD - elem->pad;
884
885 /* mark element as free */
886 elem->state = ELEM_FREE;
887
888 elem = malloc_elem_free(elem);
889
890 /* anything after this is a bonus */
891 ret = 0;
892
893 /* ...of which we can't avail if we are in legacy mode, or if this is an
894 * externally allocated segment.
895 */
896 if (internal_conf->legacy_mem || (msl->external > 0))
897 goto free_unlock;
898
899 /* check if we can free any memory back to the system */
900 if (elem->size < page_sz)
901 goto free_unlock;
902
903 /* if user requested to match allocations, the sizes must match - if not,
904 * we will defer freeing these hugepages until the entire original allocation
905 * can be freed
906 */
907 if (internal_conf->match_allocations && elem->size != elem->orig_size)
908 goto free_unlock;
909
910 /* probably, but let's make sure, as we may not be using up full page */
911 start = elem;
912 len = elem->size;
913 aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
914 end = RTE_PTR_ADD(elem, len);
915 aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);
916
917 aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
918
919 /* can't free anything */
920 if (aligned_len < page_sz)
921 goto free_unlock;
922
923 /* we can free something. however, some of these pages may be marked as
924 * unfreeable, so also check that as well
925 */
926 n_segs = aligned_len / page_sz;
927 for (i = 0; i < n_segs; i++) {
928 const struct rte_memseg *tmp =
929 rte_mem_virt2memseg(aligned_start, msl);
930
931 if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
932 /* this is an unfreeable segment, so move start */
933 aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
934 }
935 }
936
937 /* recalculate length and number of segments */
938 aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
939 n_segs = aligned_len / page_sz;
940
941 /* check if we can still free some pages */
942 if (n_segs == 0)
943 goto free_unlock;
944
945 /* We're not done yet. We also have to check if by freeing space we will
946 * be leaving free elements that are too small to store new elements.
947 * Check if we have enough space in the beginning and at the end, or if
948 * start/end are exactly page aligned.
949 */
950 before_space = RTE_PTR_DIFF(aligned_start, elem);
951 after_space = RTE_PTR_DIFF(end, aligned_end);
952 if (before_space != 0 &&
953 before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
954 /* There is not enough space before start, but we may be able to
955 * move the start forward by one page.
956 */
957 if (n_segs == 1)
958 goto free_unlock;
959
960 /* move start */
961 aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
962 aligned_len -= page_sz;
963 n_segs--;
964 }
965 if (after_space != 0 && after_space <
966 MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
967 /* There is not enough space after end, but we may be able to
968 * move the end backwards by one page.
969 */
970 if (n_segs == 1)
971 goto free_unlock;
972
973 /* move end */
974 aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
975 aligned_len -= page_sz;
976 n_segs--;
977 }
978
979 /* now we can finally free us some pages */
980
981 rte_mcfg_mem_write_lock();
982
983 /*
984 * we allow secondary processes to clear the heap of this allocated
985 * memory because it is safe to do so, as even if notifications about
986 * unmapped pages don't make it to other processes, heap is shared
987 * across all processes, and will become empty of this memory anyway,
988 * and nothing can allocate it back unless primary process will be able
989 * to deliver allocation message to every single running process.
990 */
991
992 malloc_elem_free_list_remove(elem);
993
994 malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);
995
996 heap->total_size -= aligned_len;
997
998 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
999 /* notify user about changes in memory map */
1000 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
1001 aligned_start, aligned_len);
1002
1003 /* don't care if any of this fails */
1004 malloc_heap_free_pages(aligned_start, aligned_len);
1005
1006 request_sync();
1007 } else {
1008 struct malloc_mp_req req;
1009
1010 memset(&req, 0, sizeof(req));
1011
1012 req.t = REQ_TYPE_FREE;
1013 req.free_req.addr = aligned_start;
1014 req.free_req.len = aligned_len;
1015
1016 /*
1017 * we request primary to deallocate pages, but we don't do it
1018 * in this thread. instead, we notify primary that we would like
1019 * to deallocate pages, and this process will receive another
1020 * request (in parallel) that will do it for us on another
1021 * thread.
1022 *
1023 * we also don't really care if this succeeds - the data is
1024 * already removed from the heap, so it is, for all intents and
1025 * purposes, hidden from the rest of DPDK even if some other
1026 * process (including this one) may have these pages mapped.
1027 *
1028 * notifications about deallocated memory happen during sync.
1029 */
1030 request_to_primary(&req);
1031 }
1032
1033 /* we didn't exit early, meaning we have unmapped some pages */
1034 unmapped = true;
1035
1036 EAL_LOG(DEBUG, "Heap on socket %d was shrunk by %zdMB",
1037 msl->socket_id, aligned_len >> 20ULL);
1038
1039 rte_mcfg_mem_write_unlock();
1040 free_unlock:
1041 asan_set_freezone(asan_ptr, asan_data_len);
1042
1043 /* if we unmapped some memory, we need to do additional work for ASan */
1044 if (unmapped) {
1045 void *asan_end = RTE_PTR_ADD(asan_ptr, asan_data_len);
1046 void *aligned_end = RTE_PTR_ADD(aligned_start, aligned_len);
1047 void *aligned_trailer = RTE_PTR_SUB(aligned_start,
1048 MALLOC_ELEM_TRAILER_LEN);
1049
1050 /*
1051 * There was a memory area that was unmapped. This memory area
1052 * will have to be marked as available for ASan, because we will
1053 * want to use it next time it gets mapped again. The OS memory
1054 * protection should trigger a fault on access to these areas
1055 * anyway, so we are not giving up any protection.
1056 */
1057 asan_set_zone(aligned_start, aligned_len, 0x00);
1058
1059 /*
1060 * ...however, when we unmap pages, we create new free elements
1061 * which might have been marked as "freed" with an earlier
1062 * `asan_set_freezone` call. So, if there is an area past the
1063 * unmapped space that was marked as freezone for ASan, we need
1064 * to mark the malloc header as available.
1065 */
1066 if (asan_end > aligned_end)
1067 asan_set_zone(aligned_end, MALLOC_ELEM_HEADER_LEN, 0x00);
1068
1069 /* if there's space before unmapped memory, mark as available */
1070 if (asan_ptr < aligned_start)
1071 asan_set_zone(aligned_trailer, MALLOC_ELEM_TRAILER_LEN, 0x00);
1072 }
1073
1074 rte_spinlock_unlock(&(heap->lock));
1075 return ret;
1076 }
1077
1078 int
malloc_heap_resize(struct malloc_elem * elem,size_t size)1079 malloc_heap_resize(struct malloc_elem *elem, size_t size)
1080 {
1081 int ret;
1082
1083 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
1084 return -1;
1085
1086 rte_spinlock_lock(&(elem->heap->lock));
1087
1088 ret = malloc_elem_resize(elem, size);
1089
1090 rte_spinlock_unlock(&(elem->heap->lock));
1091
1092 return ret;
1093 }
1094
1095 /*
1096 * Function to retrieve data for a given heap
1097 */
1098 int
malloc_heap_get_stats(struct malloc_heap * heap,struct rte_malloc_socket_stats * socket_stats)1099 malloc_heap_get_stats(struct malloc_heap *heap,
1100 struct rte_malloc_socket_stats *socket_stats)
1101 {
1102 size_t idx;
1103 struct malloc_elem *elem;
1104
1105 rte_spinlock_lock(&heap->lock);
1106
1107 /* Initialise variables for heap */
1108 socket_stats->free_count = 0;
1109 socket_stats->heap_freesz_bytes = 0;
1110 socket_stats->greatest_free_size = 0;
1111
1112 /* Iterate through free list */
1113 for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
1114 for (elem = LIST_FIRST(&heap->free_head[idx]);
1115 !!elem; elem = LIST_NEXT(elem, free_list))
1116 {
1117 socket_stats->free_count++;
1118 socket_stats->heap_freesz_bytes += elem->size;
1119 if (elem->size > socket_stats->greatest_free_size)
1120 socket_stats->greatest_free_size = elem->size;
1121 }
1122 }
1123 /* Get stats on overall heap and allocated memory on this heap */
1124 socket_stats->heap_totalsz_bytes = heap->total_size;
1125 socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
1126 socket_stats->heap_freesz_bytes);
1127 socket_stats->alloc_count = heap->alloc_count;
1128
1129 rte_spinlock_unlock(&heap->lock);
1130 return 0;
1131 }
1132
1133 /*
1134 * Function to retrieve data for a given heap
1135 */
1136 void
malloc_heap_dump(struct malloc_heap * heap,FILE * f)1137 malloc_heap_dump(struct malloc_heap *heap, FILE *f)
1138 {
1139 struct malloc_elem *elem;
1140
1141 rte_spinlock_lock(&heap->lock);
1142
1143 fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
1144 fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);
1145
1146 elem = heap->first;
1147 while (elem) {
1148 malloc_elem_dump(elem, f);
1149 elem = elem->next;
1150 }
1151
1152 rte_spinlock_unlock(&heap->lock);
1153 }
1154
1155 static int
destroy_elem(struct malloc_elem * elem,size_t len)1156 destroy_elem(struct malloc_elem *elem, size_t len)
1157 {
1158 struct malloc_heap *heap = elem->heap;
1159
1160 /* notify all subscribers that a memory area is going to be removed */
1161 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len);
1162
1163 /* this element can be removed */
1164 malloc_elem_free_list_remove(elem);
1165 malloc_elem_hide_region(elem, elem, len);
1166
1167 heap->total_size -= len;
1168
1169 memset(elem, 0, sizeof(*elem));
1170
1171 return 0;
1172 }
1173
1174 struct rte_memseg_list *
malloc_heap_create_external_seg(void * va_addr,rte_iova_t iova_addrs[],unsigned int n_pages,size_t page_sz,const char * seg_name,unsigned int socket_id)1175 malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[],
1176 unsigned int n_pages, size_t page_sz, const char *seg_name,
1177 unsigned int socket_id)
1178 {
1179 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1180 char fbarray_name[RTE_FBARRAY_NAME_LEN];
1181 struct rte_memseg_list *msl = NULL;
1182 struct rte_fbarray *arr;
1183 size_t seg_len = n_pages * page_sz;
1184 unsigned int i;
1185
1186 /* first, find a free memseg list */
1187 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1188 struct rte_memseg_list *tmp = &mcfg->memsegs[i];
1189 if (tmp->base_va == NULL) {
1190 msl = tmp;
1191 break;
1192 }
1193 }
1194 if (msl == NULL) {
1195 EAL_LOG(ERR, "Couldn't find empty memseg list");
1196 rte_errno = ENOSPC;
1197 return NULL;
1198 }
1199
1200 snprintf(fbarray_name, sizeof(fbarray_name), "%s_%p",
1201 seg_name, va_addr);
1202
1203 /* create the backing fbarray */
1204 if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages,
1205 sizeof(struct rte_memseg)) < 0) {
1206 EAL_LOG(ERR, "Couldn't create fbarray backing the memseg list");
1207 return NULL;
1208 }
1209 arr = &msl->memseg_arr;
1210
1211 /* fbarray created, fill it up */
1212 for (i = 0; i < n_pages; i++) {
1213 struct rte_memseg *ms;
1214
1215 rte_fbarray_set_used(arr, i);
1216 ms = rte_fbarray_get(arr, i);
1217 ms->addr = RTE_PTR_ADD(va_addr, i * page_sz);
1218 ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i];
1219 ms->hugepage_sz = page_sz;
1220 ms->len = page_sz;
1221 ms->nchannel = rte_memory_get_nchannel();
1222 ms->nrank = rte_memory_get_nrank();
1223 ms->socket_id = socket_id;
1224 }
1225
1226 /* set up the memseg list */
1227 msl->base_va = va_addr;
1228 msl->page_sz = page_sz;
1229 msl->socket_id = socket_id;
1230 msl->len = seg_len;
1231 msl->version = 0;
1232 msl->external = 1;
1233
1234 return msl;
1235 }
1236
1237 struct extseg_walk_arg {
1238 void *va_addr;
1239 size_t len;
1240 struct rte_memseg_list *msl;
1241 };
1242
1243 static int
extseg_walk(const struct rte_memseg_list * msl,void * arg)1244 extseg_walk(const struct rte_memseg_list *msl, void *arg)
1245 {
1246 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1247 struct extseg_walk_arg *wa = arg;
1248
1249 if (msl->base_va == wa->va_addr && msl->len == wa->len) {
1250 unsigned int found_idx;
1251
1252 /* msl is const */
1253 found_idx = msl - mcfg->memsegs;
1254 wa->msl = &mcfg->memsegs[found_idx];
1255 return 1;
1256 }
1257 return 0;
1258 }
1259
1260 struct rte_memseg_list *
malloc_heap_find_external_seg(void * va_addr,size_t len)1261 malloc_heap_find_external_seg(void *va_addr, size_t len)
1262 {
1263 struct extseg_walk_arg wa;
1264 int res;
1265
1266 wa.va_addr = va_addr;
1267 wa.len = len;
1268
1269 res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa);
1270
1271 if (res != 1) {
1272 /* 0 means nothing was found, -1 shouldn't happen */
1273 if (res == 0)
1274 rte_errno = ENOENT;
1275 return NULL;
1276 }
1277 return wa.msl;
1278 }
1279
1280 int
malloc_heap_destroy_external_seg(struct rte_memseg_list * msl)1281 malloc_heap_destroy_external_seg(struct rte_memseg_list *msl)
1282 {
1283 /* destroy the fbarray backing this memory */
1284 if (rte_fbarray_destroy(&msl->memseg_arr) < 0)
1285 return -1;
1286
1287 /* reset the memseg list */
1288 memset(msl, 0, sizeof(*msl));
1289
1290 return 0;
1291 }
1292
1293 int
malloc_heap_add_external_memory(struct malloc_heap * heap,struct rte_memseg_list * msl)1294 malloc_heap_add_external_memory(struct malloc_heap *heap,
1295 struct rte_memseg_list *msl)
1296 {
1297 /* erase contents of new memory */
1298 memset(msl->base_va, 0, msl->len);
1299
1300 /* now, add newly minted memory to the malloc heap */
1301 malloc_heap_add_memory(heap, msl, msl->base_va, msl->len, false);
1302
1303 heap->total_size += msl->len;
1304
1305 /* all done! */
1306 EAL_LOG(DEBUG, "Added segment for heap %s starting at %p",
1307 heap->name, msl->base_va);
1308
1309 /* notify all subscribers that a new memory area has been added */
1310 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
1311 msl->base_va, msl->len);
1312
1313 return 0;
1314 }
1315
1316 int
malloc_heap_remove_external_memory(struct malloc_heap * heap,void * va_addr,size_t len)1317 malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr,
1318 size_t len)
1319 {
1320 struct malloc_elem *elem = heap->first;
1321
1322 /* find element with specified va address */
1323 while (elem != NULL && elem != va_addr) {
1324 elem = elem->next;
1325 /* stop if we've blown past our VA */
1326 if (elem > (struct malloc_elem *)va_addr) {
1327 rte_errno = ENOENT;
1328 return -1;
1329 }
1330 }
1331 /* check if element was found */
1332 if (elem == NULL || elem->msl->len != len) {
1333 rte_errno = ENOENT;
1334 return -1;
1335 }
1336 /* if element's size is not equal to segment len, segment is busy */
1337 if (elem->state == ELEM_BUSY || elem->size != len) {
1338 rte_errno = EBUSY;
1339 return -1;
1340 }
1341 return destroy_elem(elem, len);
1342 }
1343
1344 int
malloc_heap_create(struct malloc_heap * heap,const char * heap_name)1345 malloc_heap_create(struct malloc_heap *heap, const char *heap_name)
1346 {
1347 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1348 uint32_t next_socket_id = mcfg->next_socket_id;
1349
1350 /* prevent overflow. did you really create 2 billion heaps??? */
1351 if (next_socket_id > INT32_MAX) {
1352 EAL_LOG(ERR, "Cannot assign new socket ID's");
1353 rte_errno = ENOSPC;
1354 return -1;
1355 }
1356
1357 /* initialize empty heap */
1358 heap->alloc_count = 0;
1359 heap->first = NULL;
1360 heap->last = NULL;
1361 LIST_INIT(heap->free_head);
1362 rte_spinlock_init(&heap->lock);
1363 heap->total_size = 0;
1364 heap->socket_id = next_socket_id;
1365
1366 /* we hold a global mem hotplug writelock, so it's safe to increment */
1367 mcfg->next_socket_id++;
1368
1369 /* set up name */
1370 strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
1371 return 0;
1372 }
1373
1374 int
malloc_heap_destroy(struct malloc_heap * heap)1375 malloc_heap_destroy(struct malloc_heap *heap)
1376 {
1377 if (heap->alloc_count != 0) {
1378 EAL_LOG(ERR, "Heap is still in use");
1379 rte_errno = EBUSY;
1380 return -1;
1381 }
1382 if (heap->first != NULL || heap->last != NULL) {
1383 EAL_LOG(ERR, "Heap still contains memory segments");
1384 rte_errno = EBUSY;
1385 return -1;
1386 }
1387 if (heap->total_size != 0)
1388 EAL_LOG(ERR, "Total size not zero, heap is likely corrupt");
1389
1390 /* Reset all of the heap but the (hold) lock so caller can release it. */
1391 RTE_BUILD_BUG_ON(offsetof(struct malloc_heap, lock) != 0);
1392 memset(RTE_PTR_ADD(heap, sizeof(heap->lock)), 0,
1393 sizeof(*heap) - sizeof(heap->lock));
1394
1395 return 0;
1396 }
1397
1398 int
rte_eal_malloc_heap_init(void)1399 rte_eal_malloc_heap_init(void)
1400 {
1401 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1402 unsigned int i;
1403 const struct internal_config *internal_conf =
1404 eal_get_internal_configuration();
1405
1406 if (internal_conf->match_allocations)
1407 EAL_LOG(DEBUG, "Hugepages will be freed exactly as allocated.");
1408
1409 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
1410 /* assign min socket ID to external heaps */
1411 mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID;
1412
1413 /* assign names to default DPDK heaps */
1414 for (i = 0; i < rte_socket_count(); i++) {
1415 struct malloc_heap *heap = &mcfg->malloc_heaps[i];
1416 char heap_name[RTE_HEAP_NAME_MAX_LEN];
1417 int socket_id = rte_socket_id_by_idx(i);
1418
1419 snprintf(heap_name, sizeof(heap_name),
1420 "socket_%i", socket_id);
1421 strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
1422 heap->socket_id = socket_id;
1423 }
1424 }
1425
1426 if (register_mp_requests()) {
1427 EAL_LOG(ERR, "Couldn't register malloc multiprocess actions");
1428 return -1;
1429 }
1430
1431 return 0;
1432 }
1433
rte_eal_malloc_heap_populate(void)1434 int rte_eal_malloc_heap_populate(void)
1435 {
1436 /* mem hotplug is unlocked here. it's safe for primary as no requests can
1437 * even come before primary itself is fully initialized, and secondaries
1438 * do not need to initialize the heap.
1439 */
1440
1441 /* secondary process does not need to initialize anything */
1442 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1443 return 0;
1444
1445 /* add all IOVA-contiguous areas to the heap */
1446 return rte_memseg_contig_walk(malloc_add_seg, NULL);
1447 }
1448
1449 void
rte_eal_malloc_heap_cleanup(void)1450 rte_eal_malloc_heap_cleanup(void)
1451 {
1452 unregister_mp_requests();
1453 }
1454