1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 #include <stdint.h> 5 #include <stddef.h> 6 #include <stdlib.h> 7 #include <stdio.h> 8 #include <stdarg.h> 9 #include <errno.h> 10 #include <sys/queue.h> 11 12 #include <rte_memory.h> 13 #include <rte_errno.h> 14 #include <rte_eal.h> 15 #include <rte_eal_memconfig.h> 16 #include <rte_launch.h> 17 #include <rte_per_lcore.h> 18 #include <rte_lcore.h> 19 #include <rte_common.h> 20 #include <rte_string_fns.h> 21 #include <rte_spinlock.h> 22 #include <rte_memcpy.h> 23 #include <rte_memzone.h> 24 #include <rte_atomic.h> 25 #include <rte_fbarray.h> 26 27 #include "eal_internal_cfg.h" 28 #include "eal_memalloc.h" 29 #include "eal_memcfg.h" 30 #include "eal_private.h" 31 #include "malloc_elem.h" 32 #include "malloc_heap.h" 33 #include "malloc_mp.h" 34 35 /* start external socket ID's at a very high number */ 36 #define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */ 37 #define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES)) 38 39 static unsigned 40 check_hugepage_sz(unsigned flags, uint64_t hugepage_sz) 41 { 42 unsigned check_flag = 0; 43 44 if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY)) 45 return 1; 46 47 switch (hugepage_sz) { 48 case RTE_PGSIZE_256K: 49 check_flag = RTE_MEMZONE_256KB; 50 break; 51 case RTE_PGSIZE_2M: 52 check_flag = RTE_MEMZONE_2MB; 53 break; 54 case RTE_PGSIZE_16M: 55 check_flag = RTE_MEMZONE_16MB; 56 break; 57 case RTE_PGSIZE_256M: 58 check_flag = RTE_MEMZONE_256MB; 59 break; 60 case RTE_PGSIZE_512M: 61 check_flag = RTE_MEMZONE_512MB; 62 break; 63 case RTE_PGSIZE_1G: 64 check_flag = RTE_MEMZONE_1GB; 65 break; 66 case RTE_PGSIZE_4G: 67 check_flag = RTE_MEMZONE_4GB; 68 break; 69 case RTE_PGSIZE_16G: 70 check_flag = RTE_MEMZONE_16GB; 71 } 72 73 return check_flag & flags; 74 } 75 76 int 77 malloc_socket_to_heap_id(unsigned int socket_id) 78 { 79 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 80 int i; 81 82 for (i = 0; i < RTE_MAX_HEAPS; i++) { 83 struct malloc_heap *heap = &mcfg->malloc_heaps[i]; 84 85 if (heap->socket_id == socket_id) 86 return i; 87 } 88 return -1; 89 } 90 91 /* 92 * Expand the heap with a memory area. 93 */ 94 static struct malloc_elem * 95 malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl, 96 void *start, size_t len) 97 { 98 struct malloc_elem *elem = start; 99 100 malloc_elem_init(elem, heap, msl, len, elem, len); 101 102 malloc_elem_insert(elem); 103 104 elem = malloc_elem_join_adjacent_free(elem); 105 106 malloc_elem_free_list_insert(elem); 107 108 return elem; 109 } 110 111 static int 112 malloc_add_seg(const struct rte_memseg_list *msl, 113 const struct rte_memseg *ms, size_t len, void *arg __rte_unused) 114 { 115 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 116 struct rte_memseg_list *found_msl; 117 struct malloc_heap *heap; 118 int msl_idx, heap_idx; 119 120 if (msl->external) 121 return 0; 122 123 heap_idx = malloc_socket_to_heap_id(msl->socket_id); 124 if (heap_idx < 0) { 125 RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n"); 126 return -1; 127 } 128 heap = &mcfg->malloc_heaps[heap_idx]; 129 130 /* msl is const, so find it */ 131 msl_idx = msl - mcfg->memsegs; 132 133 if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS) 134 return -1; 135 136 found_msl = &mcfg->memsegs[msl_idx]; 137 138 malloc_heap_add_memory(heap, found_msl, ms->addr, len); 139 140 heap->total_size += len; 141 142 RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20, 143 msl->socket_id); 144 return 0; 145 } 146 147 /* 148 * Iterates through the freelist for a heap to find a free element 149 * which can store data of the required size and with the requested alignment. 150 * If size is 0, find the biggest available elem. 151 * Returns null on failure, or pointer to element on success. 152 */ 153 static struct malloc_elem * 154 find_suitable_element(struct malloc_heap *heap, size_t size, 155 unsigned int flags, size_t align, size_t bound, bool contig) 156 { 157 size_t idx; 158 struct malloc_elem *elem, *alt_elem = NULL; 159 160 for (idx = malloc_elem_free_list_index(size); 161 idx < RTE_HEAP_NUM_FREELISTS; idx++) { 162 for (elem = LIST_FIRST(&heap->free_head[idx]); 163 !!elem; elem = LIST_NEXT(elem, free_list)) { 164 if (malloc_elem_can_hold(elem, size, align, bound, 165 contig)) { 166 if (check_hugepage_sz(flags, 167 elem->msl->page_sz)) 168 return elem; 169 if (alt_elem == NULL) 170 alt_elem = elem; 171 } 172 } 173 } 174 175 if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY)) 176 return alt_elem; 177 178 return NULL; 179 } 180 181 /* 182 * Iterates through the freelist for a heap to find a free element with the 183 * biggest size and requested alignment. Will also set size to whatever element 184 * size that was found. 185 * Returns null on failure, or pointer to element on success. 186 */ 187 static struct malloc_elem * 188 find_biggest_element(struct malloc_heap *heap, size_t *size, 189 unsigned int flags, size_t align, bool contig) 190 { 191 struct malloc_elem *elem, *max_elem = NULL; 192 size_t idx, max_size = 0; 193 194 for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) { 195 for (elem = LIST_FIRST(&heap->free_head[idx]); 196 !!elem; elem = LIST_NEXT(elem, free_list)) { 197 size_t cur_size; 198 if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 && 199 !check_hugepage_sz(flags, 200 elem->msl->page_sz)) 201 continue; 202 if (contig) { 203 cur_size = 204 malloc_elem_find_max_iova_contig(elem, 205 align); 206 } else { 207 void *data_start = RTE_PTR_ADD(elem, 208 MALLOC_ELEM_HEADER_LEN); 209 void *data_end = RTE_PTR_ADD(elem, elem->size - 210 MALLOC_ELEM_TRAILER_LEN); 211 void *aligned = RTE_PTR_ALIGN_CEIL(data_start, 212 align); 213 /* check if aligned data start is beyond end */ 214 if (aligned >= data_end) 215 continue; 216 cur_size = RTE_PTR_DIFF(data_end, aligned); 217 } 218 if (cur_size > max_size) { 219 max_size = cur_size; 220 max_elem = elem; 221 } 222 } 223 } 224 225 *size = max_size; 226 return max_elem; 227 } 228 229 /* 230 * Main function to allocate a block of memory from the heap. 231 * It locks the free list, scans it, and adds a new memseg if the 232 * scan fails. Once the new memseg is added, it re-scans and should return 233 * the new element after releasing the lock. 234 */ 235 static void * 236 heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size, 237 unsigned int flags, size_t align, size_t bound, bool contig) 238 { 239 struct malloc_elem *elem; 240 size_t user_size = size; 241 242 size = RTE_CACHE_LINE_ROUNDUP(size); 243 align = RTE_CACHE_LINE_ROUNDUP(align); 244 245 /* roundup might cause an overflow */ 246 if (size == 0) 247 return NULL; 248 elem = find_suitable_element(heap, size, flags, align, bound, contig); 249 if (elem != NULL) { 250 elem = malloc_elem_alloc(elem, size, align, bound, contig); 251 252 /* increase heap's count of allocated elements */ 253 heap->alloc_count++; 254 255 asan_set_redzone(elem, user_size); 256 } 257 258 return elem == NULL ? NULL : (void *)(&elem[1]); 259 } 260 261 static void * 262 heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused, 263 unsigned int flags, size_t align, bool contig) 264 { 265 struct malloc_elem *elem; 266 size_t size; 267 268 align = RTE_CACHE_LINE_ROUNDUP(align); 269 270 elem = find_biggest_element(heap, &size, flags, align, contig); 271 if (elem != NULL) { 272 elem = malloc_elem_alloc(elem, size, align, 0, contig); 273 274 /* increase heap's count of allocated elements */ 275 heap->alloc_count++; 276 277 asan_set_redzone(elem, size); 278 } 279 280 return elem == NULL ? NULL : (void *)(&elem[1]); 281 } 282 283 /* this function is exposed in malloc_mp.h */ 284 void 285 rollback_expand_heap(struct rte_memseg **ms, int n_segs, 286 struct malloc_elem *elem, void *map_addr, size_t map_len) 287 { 288 if (elem != NULL) { 289 malloc_elem_free_list_remove(elem); 290 malloc_elem_hide_region(elem, map_addr, map_len); 291 } 292 293 eal_memalloc_free_seg_bulk(ms, n_segs); 294 } 295 296 /* this function is exposed in malloc_mp.h */ 297 struct malloc_elem * 298 alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size, 299 int socket, unsigned int flags, size_t align, size_t bound, 300 bool contig, struct rte_memseg **ms, int n_segs) 301 { 302 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 303 struct rte_memseg_list *msl; 304 struct malloc_elem *elem = NULL; 305 size_t alloc_sz; 306 int allocd_pages; 307 void *ret, *map_addr; 308 309 alloc_sz = (size_t)pg_sz * n_segs; 310 311 /* first, check if we're allowed to allocate this memory */ 312 if (eal_memalloc_mem_alloc_validate(socket, 313 heap->total_size + alloc_sz) < 0) { 314 RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n"); 315 return NULL; 316 } 317 318 allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz, 319 socket, true); 320 321 /* make sure we've allocated our pages... */ 322 if (allocd_pages < 0) 323 return NULL; 324 325 map_addr = ms[0]->addr; 326 msl = rte_mem_virt2memseg_list(map_addr); 327 328 /* check if we wanted contiguous memory but didn't get it */ 329 if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) { 330 RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n", 331 __func__); 332 goto fail; 333 } 334 335 /* 336 * Once we have all the memseg lists configured, if there is a dma mask 337 * set, check iova addresses are not out of range. Otherwise the device 338 * setting the dma mask could have problems with the mapped memory. 339 * 340 * There are two situations when this can happen: 341 * 1) memory initialization 342 * 2) dynamic memory allocation 343 * 344 * For 1), an error when checking dma mask implies app can not be 345 * executed. For 2) implies the new memory can not be added. 346 */ 347 if (mcfg->dma_maskbits && 348 rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) { 349 /* 350 * Currently this can only happen if IOMMU is enabled 351 * and the address width supported by the IOMMU hw is 352 * not enough for using the memory mapped IOVAs. 353 * 354 * If IOVA is VA, advice to try with '--iova-mode pa' 355 * which could solve some situations when IOVA VA is not 356 * really needed. 357 */ 358 RTE_LOG(ERR, EAL, 359 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n", 360 __func__); 361 362 /* 363 * If IOVA is VA and it is possible to run with IOVA PA, 364 * because user is root, give and advice for solving the 365 * problem. 366 */ 367 if ((rte_eal_iova_mode() == RTE_IOVA_VA) && 368 rte_eal_using_phys_addrs()) 369 RTE_LOG(ERR, EAL, 370 "%s(): Please try initializing EAL with --iova-mode=pa parameter\n", 371 __func__); 372 goto fail; 373 } 374 375 /* add newly minted memsegs to malloc heap */ 376 elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz); 377 378 /* try once more, as now we have allocated new memory */ 379 ret = find_suitable_element(heap, elt_size, flags, align, bound, 380 contig); 381 382 if (ret == NULL) 383 goto fail; 384 385 return elem; 386 387 fail: 388 rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz); 389 return NULL; 390 } 391 392 static int 393 try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz, 394 size_t elt_size, int socket, unsigned int flags, size_t align, 395 size_t bound, bool contig) 396 { 397 struct malloc_elem *elem; 398 struct rte_memseg **ms; 399 void *map_addr; 400 size_t alloc_sz; 401 int n_segs; 402 bool callback_triggered = false; 403 404 alloc_sz = RTE_ALIGN_CEIL(align + elt_size + 405 MALLOC_ELEM_TRAILER_LEN, pg_sz); 406 n_segs = alloc_sz / pg_sz; 407 408 /* we can't know in advance how many pages we'll need, so we malloc */ 409 ms = malloc(sizeof(*ms) * n_segs); 410 if (ms == NULL) 411 return -1; 412 memset(ms, 0, sizeof(*ms) * n_segs); 413 414 elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align, 415 bound, contig, ms, n_segs); 416 417 if (elem == NULL) 418 goto free_ms; 419 420 map_addr = ms[0]->addr; 421 422 /* notify user about changes in memory map */ 423 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz); 424 425 /* notify other processes that this has happened */ 426 if (request_sync()) { 427 /* we couldn't ensure all processes have mapped memory, 428 * so free it back and notify everyone that it's been 429 * freed back. 430 * 431 * technically, we could've avoided adding memory addresses to 432 * the map, but that would've led to inconsistent behavior 433 * between primary and secondary processes, as those get 434 * callbacks during sync. therefore, force primary process to 435 * do alloc-and-rollback syncs as well. 436 */ 437 callback_triggered = true; 438 goto free_elem; 439 } 440 heap->total_size += alloc_sz; 441 442 RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n", 443 socket, alloc_sz >> 20ULL); 444 445 free(ms); 446 447 return 0; 448 449 free_elem: 450 if (callback_triggered) 451 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, 452 map_addr, alloc_sz); 453 454 rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz); 455 456 request_sync(); 457 free_ms: 458 free(ms); 459 460 return -1; 461 } 462 463 static int 464 try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz, 465 size_t elt_size, int socket, unsigned int flags, size_t align, 466 size_t bound, bool contig) 467 { 468 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 469 struct malloc_mp_req req; 470 int req_result; 471 472 memset(&req, 0, sizeof(req)); 473 474 req.t = REQ_TYPE_ALLOC; 475 req.alloc_req.align = align; 476 req.alloc_req.bound = bound; 477 req.alloc_req.contig = contig; 478 req.alloc_req.flags = flags; 479 req.alloc_req.elt_size = elt_size; 480 req.alloc_req.page_sz = pg_sz; 481 req.alloc_req.socket = socket; 482 req.alloc_req.malloc_heap_idx = heap - mcfg->malloc_heaps; 483 484 req_result = request_to_primary(&req); 485 486 if (req_result != 0) 487 return -1; 488 489 if (req.result != REQ_RESULT_SUCCESS) 490 return -1; 491 492 return 0; 493 } 494 495 static int 496 try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size, 497 int socket, unsigned int flags, size_t align, size_t bound, 498 bool contig) 499 { 500 int ret; 501 502 rte_mcfg_mem_write_lock(); 503 504 if (rte_eal_process_type() == RTE_PROC_PRIMARY) { 505 ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket, 506 flags, align, bound, contig); 507 } else { 508 ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket, 509 flags, align, bound, contig); 510 } 511 512 rte_mcfg_mem_write_unlock(); 513 return ret; 514 } 515 516 static int 517 compare_pagesz(const void *a, const void *b) 518 { 519 const struct rte_memseg_list * const*mpa = a; 520 const struct rte_memseg_list * const*mpb = b; 521 const struct rte_memseg_list *msla = *mpa; 522 const struct rte_memseg_list *mslb = *mpb; 523 uint64_t pg_sz_a = msla->page_sz; 524 uint64_t pg_sz_b = mslb->page_sz; 525 526 if (pg_sz_a < pg_sz_b) 527 return -1; 528 if (pg_sz_a > pg_sz_b) 529 return 1; 530 return 0; 531 } 532 533 static int 534 alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket, 535 unsigned int flags, size_t align, size_t bound, bool contig) 536 { 537 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 538 struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS]; 539 struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS]; 540 uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS]; 541 uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS]; 542 uint64_t prev_pg_sz; 543 int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz; 544 bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0; 545 unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY; 546 void *ret; 547 548 memset(requested_msls, 0, sizeof(requested_msls)); 549 memset(other_msls, 0, sizeof(other_msls)); 550 memset(requested_pg_sz, 0, sizeof(requested_pg_sz)); 551 memset(other_pg_sz, 0, sizeof(other_pg_sz)); 552 553 /* 554 * go through memseg list and take note of all the page sizes available, 555 * and if any of them were specifically requested by the user. 556 */ 557 n_requested_msls = 0; 558 n_other_msls = 0; 559 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 560 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 561 562 if (msl->socket_id != socket) 563 continue; 564 565 if (msl->base_va == NULL) 566 continue; 567 568 /* if pages of specific size were requested */ 569 if (size_flags != 0 && check_hugepage_sz(size_flags, 570 msl->page_sz)) 571 requested_msls[n_requested_msls++] = msl; 572 else if (size_flags == 0 || size_hint) 573 other_msls[n_other_msls++] = msl; 574 } 575 576 /* sort the lists, smallest first */ 577 qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]), 578 compare_pagesz); 579 qsort(other_msls, n_other_msls, sizeof(other_msls[0]), 580 compare_pagesz); 581 582 /* now, extract page sizes we are supposed to try */ 583 prev_pg_sz = 0; 584 n_requested_pg_sz = 0; 585 for (i = 0; i < n_requested_msls; i++) { 586 uint64_t pg_sz = requested_msls[i]->page_sz; 587 588 if (prev_pg_sz != pg_sz) { 589 requested_pg_sz[n_requested_pg_sz++] = pg_sz; 590 prev_pg_sz = pg_sz; 591 } 592 } 593 prev_pg_sz = 0; 594 n_other_pg_sz = 0; 595 for (i = 0; i < n_other_msls; i++) { 596 uint64_t pg_sz = other_msls[i]->page_sz; 597 598 if (prev_pg_sz != pg_sz) { 599 other_pg_sz[n_other_pg_sz++] = pg_sz; 600 prev_pg_sz = pg_sz; 601 } 602 } 603 604 /* finally, try allocating memory of specified page sizes, starting from 605 * the smallest sizes 606 */ 607 for (i = 0; i < n_requested_pg_sz; i++) { 608 uint64_t pg_sz = requested_pg_sz[i]; 609 610 /* 611 * do not pass the size hint here, as user expects other page 612 * sizes first, before resorting to best effort allocation. 613 */ 614 if (!try_expand_heap(heap, pg_sz, size, socket, size_flags, 615 align, bound, contig)) 616 return 0; 617 } 618 if (n_other_pg_sz == 0) 619 return -1; 620 621 /* now, check if we can reserve anything with size hint */ 622 ret = find_suitable_element(heap, size, flags, align, bound, contig); 623 if (ret != NULL) 624 return 0; 625 626 /* 627 * we still couldn't reserve memory, so try expanding heap with other 628 * page sizes, if there are any 629 */ 630 for (i = 0; i < n_other_pg_sz; i++) { 631 uint64_t pg_sz = other_pg_sz[i]; 632 633 if (!try_expand_heap(heap, pg_sz, size, socket, flags, 634 align, bound, contig)) 635 return 0; 636 } 637 return -1; 638 } 639 640 /* this will try lower page sizes first */ 641 static void * 642 malloc_heap_alloc_on_heap_id(const char *type, size_t size, 643 unsigned int heap_id, unsigned int flags, size_t align, 644 size_t bound, bool contig) 645 { 646 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 647 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; 648 unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY; 649 int socket_id; 650 void *ret; 651 const struct internal_config *internal_conf = 652 eal_get_internal_configuration(); 653 654 rte_spinlock_lock(&(heap->lock)); 655 656 align = align == 0 ? 1 : align; 657 658 /* for legacy mode, try once and with all flags */ 659 if (internal_conf->legacy_mem) { 660 ret = heap_alloc(heap, type, size, flags, align, bound, contig); 661 goto alloc_unlock; 662 } 663 664 /* 665 * we do not pass the size hint here, because even if allocation fails, 666 * we may still be able to allocate memory from appropriate page sizes, 667 * we just need to request more memory first. 668 */ 669 670 socket_id = rte_socket_id_by_idx(heap_id); 671 /* 672 * if socket ID is negative, we cannot find a socket ID for this heap - 673 * which means it's an external heap. those can have unexpected page 674 * sizes, so if the user asked to allocate from there - assume user 675 * knows what they're doing, and allow allocating from there with any 676 * page size flags. 677 */ 678 if (socket_id < 0) 679 size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY; 680 681 ret = heap_alloc(heap, type, size, size_flags, align, bound, contig); 682 if (ret != NULL) 683 goto alloc_unlock; 684 685 /* if socket ID is invalid, this is an external heap */ 686 if (socket_id < 0) 687 goto alloc_unlock; 688 689 if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align, 690 bound, contig)) { 691 ret = heap_alloc(heap, type, size, flags, align, bound, contig); 692 693 /* this should have succeeded */ 694 if (ret == NULL) 695 RTE_LOG(ERR, EAL, "Error allocating from heap\n"); 696 } 697 alloc_unlock: 698 rte_spinlock_unlock(&(heap->lock)); 699 return ret; 700 } 701 702 void * 703 malloc_heap_alloc(const char *type, size_t size, int socket_arg, 704 unsigned int flags, size_t align, size_t bound, bool contig) 705 { 706 int socket, heap_id, i; 707 void *ret; 708 709 /* return NULL if size is 0 or alignment is not power-of-2 */ 710 if (size == 0 || (align && !rte_is_power_of_2(align))) 711 return NULL; 712 713 if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES) 714 socket_arg = SOCKET_ID_ANY; 715 716 if (socket_arg == SOCKET_ID_ANY) 717 socket = malloc_get_numa_socket(); 718 else 719 socket = socket_arg; 720 721 /* turn socket ID into heap ID */ 722 heap_id = malloc_socket_to_heap_id(socket); 723 /* if heap id is negative, socket ID was invalid */ 724 if (heap_id < 0) 725 return NULL; 726 727 ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align, 728 bound, contig); 729 if (ret != NULL || socket_arg != SOCKET_ID_ANY) 730 return ret; 731 732 /* try other heaps. we are only iterating through native DPDK sockets, 733 * so external heaps won't be included. 734 */ 735 for (i = 0; i < (int) rte_socket_count(); i++) { 736 if (i == heap_id) 737 continue; 738 ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align, 739 bound, contig); 740 if (ret != NULL) 741 return ret; 742 } 743 return NULL; 744 } 745 746 static void * 747 heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id, 748 unsigned int flags, size_t align, bool contig) 749 { 750 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 751 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; 752 void *ret; 753 754 rte_spinlock_lock(&(heap->lock)); 755 756 align = align == 0 ? 1 : align; 757 758 ret = heap_alloc_biggest(heap, type, flags, align, contig); 759 760 rte_spinlock_unlock(&(heap->lock)); 761 762 return ret; 763 } 764 765 void * 766 malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags, 767 size_t align, bool contig) 768 { 769 int socket, i, cur_socket, heap_id; 770 void *ret; 771 772 /* return NULL if align is not power-of-2 */ 773 if ((align && !rte_is_power_of_2(align))) 774 return NULL; 775 776 if (!rte_eal_has_hugepages()) 777 socket_arg = SOCKET_ID_ANY; 778 779 if (socket_arg == SOCKET_ID_ANY) 780 socket = malloc_get_numa_socket(); 781 else 782 socket = socket_arg; 783 784 /* turn socket ID into heap ID */ 785 heap_id = malloc_socket_to_heap_id(socket); 786 /* if heap id is negative, socket ID was invalid */ 787 if (heap_id < 0) 788 return NULL; 789 790 ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align, 791 contig); 792 if (ret != NULL || socket_arg != SOCKET_ID_ANY) 793 return ret; 794 795 /* try other heaps */ 796 for (i = 0; i < (int) rte_socket_count(); i++) { 797 cur_socket = rte_socket_id_by_idx(i); 798 if (cur_socket == socket) 799 continue; 800 ret = heap_alloc_biggest_on_heap_id(type, i, flags, align, 801 contig); 802 if (ret != NULL) 803 return ret; 804 } 805 return NULL; 806 } 807 808 /* this function is exposed in malloc_mp.h */ 809 int 810 malloc_heap_free_pages(void *aligned_start, size_t aligned_len) 811 { 812 int n_segs, seg_idx, max_seg_idx; 813 struct rte_memseg_list *msl; 814 size_t page_sz; 815 816 msl = rte_mem_virt2memseg_list(aligned_start); 817 if (msl == NULL) 818 return -1; 819 820 page_sz = (size_t)msl->page_sz; 821 n_segs = aligned_len / page_sz; 822 seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz; 823 max_seg_idx = seg_idx + n_segs; 824 825 for (; seg_idx < max_seg_idx; seg_idx++) { 826 struct rte_memseg *ms; 827 828 ms = rte_fbarray_get(&msl->memseg_arr, seg_idx); 829 eal_memalloc_free_seg(ms); 830 } 831 return 0; 832 } 833 834 int 835 malloc_heap_free(struct malloc_elem *elem) 836 { 837 struct malloc_heap *heap; 838 void *start, *aligned_start, *end, *aligned_end; 839 size_t len, aligned_len, page_sz; 840 struct rte_memseg_list *msl; 841 unsigned int i, n_segs, before_space, after_space; 842 int ret; 843 const struct internal_config *internal_conf = 844 eal_get_internal_configuration(); 845 846 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY) 847 return -1; 848 849 asan_clear_redzone(elem); 850 851 /* elem may be merged with previous element, so keep heap address */ 852 heap = elem->heap; 853 msl = elem->msl; 854 page_sz = (size_t)msl->page_sz; 855 856 rte_spinlock_lock(&(heap->lock)); 857 858 void *asan_ptr = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN + elem->pad); 859 size_t asan_data_len = elem->size - MALLOC_ELEM_OVERHEAD - elem->pad; 860 861 /* mark element as free */ 862 elem->state = ELEM_FREE; 863 864 elem = malloc_elem_free(elem); 865 866 /* anything after this is a bonus */ 867 ret = 0; 868 869 /* ...of which we can't avail if we are in legacy mode, or if this is an 870 * externally allocated segment. 871 */ 872 if (internal_conf->legacy_mem || (msl->external > 0)) 873 goto free_unlock; 874 875 /* check if we can free any memory back to the system */ 876 if (elem->size < page_sz) 877 goto free_unlock; 878 879 /* if user requested to match allocations, the sizes must match - if not, 880 * we will defer freeing these hugepages until the entire original allocation 881 * can be freed 882 */ 883 if (internal_conf->match_allocations && elem->size != elem->orig_size) 884 goto free_unlock; 885 886 /* probably, but let's make sure, as we may not be using up full page */ 887 start = elem; 888 len = elem->size; 889 aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz); 890 end = RTE_PTR_ADD(elem, len); 891 aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz); 892 893 aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start); 894 895 /* can't free anything */ 896 if (aligned_len < page_sz) 897 goto free_unlock; 898 899 /* we can free something. however, some of these pages may be marked as 900 * unfreeable, so also check that as well 901 */ 902 n_segs = aligned_len / page_sz; 903 for (i = 0; i < n_segs; i++) { 904 const struct rte_memseg *tmp = 905 rte_mem_virt2memseg(aligned_start, msl); 906 907 if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) { 908 /* this is an unfreeable segment, so move start */ 909 aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len); 910 } 911 } 912 913 /* recalculate length and number of segments */ 914 aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start); 915 n_segs = aligned_len / page_sz; 916 917 /* check if we can still free some pages */ 918 if (n_segs == 0) 919 goto free_unlock; 920 921 /* We're not done yet. We also have to check if by freeing space we will 922 * be leaving free elements that are too small to store new elements. 923 * Check if we have enough space in the beginning and at the end, or if 924 * start/end are exactly page aligned. 925 */ 926 before_space = RTE_PTR_DIFF(aligned_start, elem); 927 after_space = RTE_PTR_DIFF(end, aligned_end); 928 if (before_space != 0 && 929 before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { 930 /* There is not enough space before start, but we may be able to 931 * move the start forward by one page. 932 */ 933 if (n_segs == 1) 934 goto free_unlock; 935 936 /* move start */ 937 aligned_start = RTE_PTR_ADD(aligned_start, page_sz); 938 aligned_len -= page_sz; 939 n_segs--; 940 } 941 if (after_space != 0 && after_space < 942 MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { 943 /* There is not enough space after end, but we may be able to 944 * move the end backwards by one page. 945 */ 946 if (n_segs == 1) 947 goto free_unlock; 948 949 /* move end */ 950 aligned_end = RTE_PTR_SUB(aligned_end, page_sz); 951 aligned_len -= page_sz; 952 n_segs--; 953 } 954 955 /* now we can finally free us some pages */ 956 957 rte_mcfg_mem_write_lock(); 958 959 /* 960 * we allow secondary processes to clear the heap of this allocated 961 * memory because it is safe to do so, as even if notifications about 962 * unmapped pages don't make it to other processes, heap is shared 963 * across all processes, and will become empty of this memory anyway, 964 * and nothing can allocate it back unless primary process will be able 965 * to deliver allocation message to every single running process. 966 */ 967 968 malloc_elem_free_list_remove(elem); 969 970 malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len); 971 972 heap->total_size -= aligned_len; 973 974 if (rte_eal_process_type() == RTE_PROC_PRIMARY) { 975 /* notify user about changes in memory map */ 976 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, 977 aligned_start, aligned_len); 978 979 /* don't care if any of this fails */ 980 malloc_heap_free_pages(aligned_start, aligned_len); 981 982 request_sync(); 983 } else { 984 struct malloc_mp_req req; 985 986 memset(&req, 0, sizeof(req)); 987 988 req.t = REQ_TYPE_FREE; 989 req.free_req.addr = aligned_start; 990 req.free_req.len = aligned_len; 991 992 /* 993 * we request primary to deallocate pages, but we don't do it 994 * in this thread. instead, we notify primary that we would like 995 * to deallocate pages, and this process will receive another 996 * request (in parallel) that will do it for us on another 997 * thread. 998 * 999 * we also don't really care if this succeeds - the data is 1000 * already removed from the heap, so it is, for all intents and 1001 * purposes, hidden from the rest of DPDK even if some other 1002 * process (including this one) may have these pages mapped. 1003 * 1004 * notifications about deallocated memory happen during sync. 1005 */ 1006 request_to_primary(&req); 1007 } 1008 1009 RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n", 1010 msl->socket_id, aligned_len >> 20ULL); 1011 1012 rte_mcfg_mem_write_unlock(); 1013 free_unlock: 1014 asan_set_freezone(asan_ptr, asan_data_len); 1015 1016 rte_spinlock_unlock(&(heap->lock)); 1017 return ret; 1018 } 1019 1020 int 1021 malloc_heap_resize(struct malloc_elem *elem, size_t size) 1022 { 1023 int ret; 1024 1025 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY) 1026 return -1; 1027 1028 rte_spinlock_lock(&(elem->heap->lock)); 1029 1030 ret = malloc_elem_resize(elem, size); 1031 1032 rte_spinlock_unlock(&(elem->heap->lock)); 1033 1034 return ret; 1035 } 1036 1037 /* 1038 * Function to retrieve data for a given heap 1039 */ 1040 int 1041 malloc_heap_get_stats(struct malloc_heap *heap, 1042 struct rte_malloc_socket_stats *socket_stats) 1043 { 1044 size_t idx; 1045 struct malloc_elem *elem; 1046 1047 rte_spinlock_lock(&heap->lock); 1048 1049 /* Initialise variables for heap */ 1050 socket_stats->free_count = 0; 1051 socket_stats->heap_freesz_bytes = 0; 1052 socket_stats->greatest_free_size = 0; 1053 1054 /* Iterate through free list */ 1055 for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) { 1056 for (elem = LIST_FIRST(&heap->free_head[idx]); 1057 !!elem; elem = LIST_NEXT(elem, free_list)) 1058 { 1059 socket_stats->free_count++; 1060 socket_stats->heap_freesz_bytes += elem->size; 1061 if (elem->size > socket_stats->greatest_free_size) 1062 socket_stats->greatest_free_size = elem->size; 1063 } 1064 } 1065 /* Get stats on overall heap and allocated memory on this heap */ 1066 socket_stats->heap_totalsz_bytes = heap->total_size; 1067 socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes - 1068 socket_stats->heap_freesz_bytes); 1069 socket_stats->alloc_count = heap->alloc_count; 1070 1071 rte_spinlock_unlock(&heap->lock); 1072 return 0; 1073 } 1074 1075 /* 1076 * Function to retrieve data for a given heap 1077 */ 1078 void 1079 malloc_heap_dump(struct malloc_heap *heap, FILE *f) 1080 { 1081 struct malloc_elem *elem; 1082 1083 rte_spinlock_lock(&heap->lock); 1084 1085 fprintf(f, "Heap size: 0x%zx\n", heap->total_size); 1086 fprintf(f, "Heap alloc count: %u\n", heap->alloc_count); 1087 1088 elem = heap->first; 1089 while (elem) { 1090 malloc_elem_dump(elem, f); 1091 elem = elem->next; 1092 } 1093 1094 rte_spinlock_unlock(&heap->lock); 1095 } 1096 1097 static int 1098 destroy_elem(struct malloc_elem *elem, size_t len) 1099 { 1100 struct malloc_heap *heap = elem->heap; 1101 1102 /* notify all subscribers that a memory area is going to be removed */ 1103 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len); 1104 1105 /* this element can be removed */ 1106 malloc_elem_free_list_remove(elem); 1107 malloc_elem_hide_region(elem, elem, len); 1108 1109 heap->total_size -= len; 1110 1111 memset(elem, 0, sizeof(*elem)); 1112 1113 return 0; 1114 } 1115 1116 struct rte_memseg_list * 1117 malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[], 1118 unsigned int n_pages, size_t page_sz, const char *seg_name, 1119 unsigned int socket_id) 1120 { 1121 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1122 char fbarray_name[RTE_FBARRAY_NAME_LEN]; 1123 struct rte_memseg_list *msl = NULL; 1124 struct rte_fbarray *arr; 1125 size_t seg_len = n_pages * page_sz; 1126 unsigned int i; 1127 1128 /* first, find a free memseg list */ 1129 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 1130 struct rte_memseg_list *tmp = &mcfg->memsegs[i]; 1131 if (tmp->base_va == NULL) { 1132 msl = tmp; 1133 break; 1134 } 1135 } 1136 if (msl == NULL) { 1137 RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n"); 1138 rte_errno = ENOSPC; 1139 return NULL; 1140 } 1141 1142 snprintf(fbarray_name, sizeof(fbarray_name), "%s_%p", 1143 seg_name, va_addr); 1144 1145 /* create the backing fbarray */ 1146 if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages, 1147 sizeof(struct rte_memseg)) < 0) { 1148 RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n"); 1149 return NULL; 1150 } 1151 arr = &msl->memseg_arr; 1152 1153 /* fbarray created, fill it up */ 1154 for (i = 0; i < n_pages; i++) { 1155 struct rte_memseg *ms; 1156 1157 rte_fbarray_set_used(arr, i); 1158 ms = rte_fbarray_get(arr, i); 1159 ms->addr = RTE_PTR_ADD(va_addr, i * page_sz); 1160 ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i]; 1161 ms->hugepage_sz = page_sz; 1162 ms->len = page_sz; 1163 ms->nchannel = rte_memory_get_nchannel(); 1164 ms->nrank = rte_memory_get_nrank(); 1165 ms->socket_id = socket_id; 1166 } 1167 1168 /* set up the memseg list */ 1169 msl->base_va = va_addr; 1170 msl->page_sz = page_sz; 1171 msl->socket_id = socket_id; 1172 msl->len = seg_len; 1173 msl->version = 0; 1174 msl->external = 1; 1175 1176 return msl; 1177 } 1178 1179 struct extseg_walk_arg { 1180 void *va_addr; 1181 size_t len; 1182 struct rte_memseg_list *msl; 1183 }; 1184 1185 static int 1186 extseg_walk(const struct rte_memseg_list *msl, void *arg) 1187 { 1188 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1189 struct extseg_walk_arg *wa = arg; 1190 1191 if (msl->base_va == wa->va_addr && msl->len == wa->len) { 1192 unsigned int found_idx; 1193 1194 /* msl is const */ 1195 found_idx = msl - mcfg->memsegs; 1196 wa->msl = &mcfg->memsegs[found_idx]; 1197 return 1; 1198 } 1199 return 0; 1200 } 1201 1202 struct rte_memseg_list * 1203 malloc_heap_find_external_seg(void *va_addr, size_t len) 1204 { 1205 struct extseg_walk_arg wa; 1206 int res; 1207 1208 wa.va_addr = va_addr; 1209 wa.len = len; 1210 1211 res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa); 1212 1213 if (res != 1) { 1214 /* 0 means nothing was found, -1 shouldn't happen */ 1215 if (res == 0) 1216 rte_errno = ENOENT; 1217 return NULL; 1218 } 1219 return wa.msl; 1220 } 1221 1222 int 1223 malloc_heap_destroy_external_seg(struct rte_memseg_list *msl) 1224 { 1225 /* destroy the fbarray backing this memory */ 1226 if (rte_fbarray_destroy(&msl->memseg_arr) < 0) 1227 return -1; 1228 1229 /* reset the memseg list */ 1230 memset(msl, 0, sizeof(*msl)); 1231 1232 return 0; 1233 } 1234 1235 int 1236 malloc_heap_add_external_memory(struct malloc_heap *heap, 1237 struct rte_memseg_list *msl) 1238 { 1239 /* erase contents of new memory */ 1240 memset(msl->base_va, 0, msl->len); 1241 1242 /* now, add newly minted memory to the malloc heap */ 1243 malloc_heap_add_memory(heap, msl, msl->base_va, msl->len); 1244 1245 heap->total_size += msl->len; 1246 1247 /* all done! */ 1248 RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n", 1249 heap->name, msl->base_va); 1250 1251 /* notify all subscribers that a new memory area has been added */ 1252 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, 1253 msl->base_va, msl->len); 1254 1255 return 0; 1256 } 1257 1258 int 1259 malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr, 1260 size_t len) 1261 { 1262 struct malloc_elem *elem = heap->first; 1263 1264 /* find element with specified va address */ 1265 while (elem != NULL && elem != va_addr) { 1266 elem = elem->next; 1267 /* stop if we've blown past our VA */ 1268 if (elem > (struct malloc_elem *)va_addr) { 1269 rte_errno = ENOENT; 1270 return -1; 1271 } 1272 } 1273 /* check if element was found */ 1274 if (elem == NULL || elem->msl->len != len) { 1275 rte_errno = ENOENT; 1276 return -1; 1277 } 1278 /* if element's size is not equal to segment len, segment is busy */ 1279 if (elem->state == ELEM_BUSY || elem->size != len) { 1280 rte_errno = EBUSY; 1281 return -1; 1282 } 1283 return destroy_elem(elem, len); 1284 } 1285 1286 int 1287 malloc_heap_create(struct malloc_heap *heap, const char *heap_name) 1288 { 1289 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1290 uint32_t next_socket_id = mcfg->next_socket_id; 1291 1292 /* prevent overflow. did you really create 2 billion heaps??? */ 1293 if (next_socket_id > INT32_MAX) { 1294 RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n"); 1295 rte_errno = ENOSPC; 1296 return -1; 1297 } 1298 1299 /* initialize empty heap */ 1300 heap->alloc_count = 0; 1301 heap->first = NULL; 1302 heap->last = NULL; 1303 LIST_INIT(heap->free_head); 1304 rte_spinlock_init(&heap->lock); 1305 heap->total_size = 0; 1306 heap->socket_id = next_socket_id; 1307 1308 /* we hold a global mem hotplug writelock, so it's safe to increment */ 1309 mcfg->next_socket_id++; 1310 1311 /* set up name */ 1312 strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN); 1313 return 0; 1314 } 1315 1316 int 1317 malloc_heap_destroy(struct malloc_heap *heap) 1318 { 1319 if (heap->alloc_count != 0) { 1320 RTE_LOG(ERR, EAL, "Heap is still in use\n"); 1321 rte_errno = EBUSY; 1322 return -1; 1323 } 1324 if (heap->first != NULL || heap->last != NULL) { 1325 RTE_LOG(ERR, EAL, "Heap still contains memory segments\n"); 1326 rte_errno = EBUSY; 1327 return -1; 1328 } 1329 if (heap->total_size != 0) 1330 RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n"); 1331 1332 /* after this, the lock will be dropped */ 1333 memset(heap, 0, sizeof(*heap)); 1334 1335 return 0; 1336 } 1337 1338 int 1339 rte_eal_malloc_heap_init(void) 1340 { 1341 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1342 unsigned int i; 1343 const struct internal_config *internal_conf = 1344 eal_get_internal_configuration(); 1345 1346 if (internal_conf->match_allocations) 1347 RTE_LOG(DEBUG, EAL, "Hugepages will be freed exactly as allocated.\n"); 1348 1349 if (rte_eal_process_type() == RTE_PROC_PRIMARY) { 1350 /* assign min socket ID to external heaps */ 1351 mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID; 1352 1353 /* assign names to default DPDK heaps */ 1354 for (i = 0; i < rte_socket_count(); i++) { 1355 struct malloc_heap *heap = &mcfg->malloc_heaps[i]; 1356 char heap_name[RTE_HEAP_NAME_MAX_LEN]; 1357 int socket_id = rte_socket_id_by_idx(i); 1358 1359 snprintf(heap_name, sizeof(heap_name), 1360 "socket_%i", socket_id); 1361 strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN); 1362 heap->socket_id = socket_id; 1363 } 1364 } 1365 1366 1367 if (register_mp_requests()) { 1368 RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n"); 1369 rte_mcfg_mem_read_unlock(); 1370 return -1; 1371 } 1372 1373 /* unlock mem hotplug here. it's safe for primary as no requests can 1374 * even come before primary itself is fully initialized, and secondaries 1375 * do not need to initialize the heap. 1376 */ 1377 rte_mcfg_mem_read_unlock(); 1378 1379 /* secondary process does not need to initialize anything */ 1380 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1381 return 0; 1382 1383 /* add all IOVA-contiguous areas to the heap */ 1384 return rte_memseg_contig_walk(malloc_add_seg, NULL); 1385 } 1386