1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <fcntl.h> 6 #include <errno.h> 7 #include <stdio.h> 8 #include <stdint.h> 9 #include <stdlib.h> 10 #include <stdarg.h> 11 #include <string.h> 12 #include <unistd.h> 13 #include <inttypes.h> 14 #include <sys/queue.h> 15 16 #include <rte_fbarray.h> 17 #include <rte_memory.h> 18 #include <rte_eal.h> 19 #include <rte_eal_memconfig.h> 20 #include <rte_eal_paging.h> 21 #include <rte_errno.h> 22 #include <rte_log.h> 23 #ifndef RTE_EXEC_ENV_WINDOWS 24 #include <rte_telemetry.h> 25 #endif 26 27 #include "eal_memalloc.h" 28 #include "eal_private.h" 29 #include "eal_internal_cfg.h" 30 #include "eal_memcfg.h" 31 #include "eal_options.h" 32 #include "malloc_heap.h" 33 34 /* 35 * Try to mmap *size bytes in /dev/zero. If it is successful, return the 36 * pointer to the mmap'd area and keep *size unmodified. Else, retry 37 * with a smaller zone: decrease *size by hugepage_sz until it reaches 38 * 0. In this case, return NULL. Note: this function returns an address 39 * which is a multiple of hugepage size. 40 */ 41 42 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i" 43 44 static void *next_baseaddr; 45 static uint64_t system_page_sz; 46 47 #define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5 48 void * 49 eal_get_virtual_area(void *requested_addr, size_t *size, 50 size_t page_sz, int flags, int reserve_flags) 51 { 52 bool addr_is_hint, allow_shrink, unmap, no_align; 53 uint64_t map_sz; 54 void *mapped_addr, *aligned_addr; 55 uint8_t try = 0; 56 struct internal_config *internal_conf = 57 eal_get_internal_configuration(); 58 59 if (system_page_sz == 0) 60 system_page_sz = rte_mem_page_size(); 61 62 RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size); 63 64 addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0; 65 allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0; 66 unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0; 67 68 if (next_baseaddr == NULL && internal_conf->base_virtaddr != 0 && 69 rte_eal_process_type() == RTE_PROC_PRIMARY) 70 next_baseaddr = (void *) internal_conf->base_virtaddr; 71 72 #ifdef RTE_ARCH_64 73 if (next_baseaddr == NULL && internal_conf->base_virtaddr == 0 && 74 rte_eal_process_type() == RTE_PROC_PRIMARY) 75 next_baseaddr = (void *) eal_get_baseaddr(); 76 #endif 77 if (requested_addr == NULL && next_baseaddr != NULL) { 78 requested_addr = next_baseaddr; 79 requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz); 80 addr_is_hint = true; 81 } 82 83 /* we don't need alignment of resulting pointer in the following cases: 84 * 85 * 1. page size is equal to system size 86 * 2. we have a requested address, and it is page-aligned, and we will 87 * be discarding the address if we get a different one. 88 * 89 * for all other cases, alignment is potentially necessary. 90 */ 91 no_align = (requested_addr != NULL && 92 requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) && 93 !addr_is_hint) || 94 page_sz == system_page_sz; 95 96 do { 97 map_sz = no_align ? *size : *size + page_sz; 98 if (map_sz > SIZE_MAX) { 99 RTE_LOG(ERR, EAL, "Map size too big\n"); 100 rte_errno = E2BIG; 101 return NULL; 102 } 103 104 mapped_addr = eal_mem_reserve( 105 requested_addr, (size_t)map_sz, reserve_flags); 106 if ((mapped_addr == NULL) && allow_shrink) 107 *size -= page_sz; 108 109 if ((mapped_addr != NULL) && addr_is_hint && 110 (mapped_addr != requested_addr)) { 111 try++; 112 next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz); 113 if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) { 114 /* hint was not used. Try with another offset */ 115 eal_mem_free(mapped_addr, map_sz); 116 mapped_addr = NULL; 117 requested_addr = next_baseaddr; 118 } 119 } 120 } while ((allow_shrink || addr_is_hint) && 121 (mapped_addr == NULL) && (*size > 0)); 122 123 /* align resulting address - if map failed, we will ignore the value 124 * anyway, so no need to add additional checks. 125 */ 126 aligned_addr = no_align ? mapped_addr : 127 RTE_PTR_ALIGN(mapped_addr, page_sz); 128 129 if (*size == 0) { 130 RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n", 131 rte_strerror(rte_errno)); 132 return NULL; 133 } else if (mapped_addr == NULL) { 134 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n", 135 rte_strerror(rte_errno)); 136 return NULL; 137 } else if (requested_addr != NULL && !addr_is_hint && 138 aligned_addr != requested_addr) { 139 RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n", 140 requested_addr, aligned_addr); 141 eal_mem_free(mapped_addr, map_sz); 142 rte_errno = EADDRNOTAVAIL; 143 return NULL; 144 } else if (requested_addr != NULL && addr_is_hint && 145 aligned_addr != requested_addr) { 146 /* 147 * demote this warning to debug if we did not explicitly request 148 * a base virtual address. 149 */ 150 if (internal_conf->base_virtaddr != 0) { 151 RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n", 152 requested_addr, aligned_addr); 153 RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n"); 154 } else { 155 RTE_LOG(DEBUG, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n", 156 requested_addr, aligned_addr); 157 RTE_LOG(DEBUG, EAL, " This may cause issues with mapping memory into secondary processes\n"); 158 } 159 } else if (next_baseaddr != NULL) { 160 next_baseaddr = RTE_PTR_ADD(aligned_addr, *size); 161 } 162 163 RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n", 164 aligned_addr, *size); 165 166 if (unmap) { 167 eal_mem_free(mapped_addr, map_sz); 168 } else if (!no_align) { 169 void *map_end, *aligned_end; 170 size_t before_len, after_len; 171 172 /* when we reserve space with alignment, we add alignment to 173 * mapping size. On 32-bit, if 1GB alignment was requested, this 174 * would waste 1GB of address space, which is a luxury we cannot 175 * afford. so, if alignment was performed, check if any unneeded 176 * address space can be unmapped back. 177 */ 178 179 map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz); 180 aligned_end = RTE_PTR_ADD(aligned_addr, *size); 181 182 /* unmap space before aligned mmap address */ 183 before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr); 184 if (before_len > 0) 185 eal_mem_free(mapped_addr, before_len); 186 187 /* unmap space after aligned end mmap address */ 188 after_len = RTE_PTR_DIFF(map_end, aligned_end); 189 if (after_len > 0) 190 eal_mem_free(aligned_end, after_len); 191 } 192 193 if (!unmap) { 194 /* Exclude these pages from a core dump. */ 195 eal_mem_set_dump(aligned_addr, *size, false); 196 } 197 198 return aligned_addr; 199 } 200 201 int 202 eal_memseg_list_init_named(struct rte_memseg_list *msl, const char *name, 203 uint64_t page_sz, int n_segs, int socket_id, bool heap) 204 { 205 if (rte_fbarray_init(&msl->memseg_arr, name, n_segs, 206 sizeof(struct rte_memseg))) { 207 RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n", 208 rte_strerror(rte_errno)); 209 return -1; 210 } 211 212 msl->page_sz = page_sz; 213 msl->socket_id = socket_id; 214 msl->base_va = NULL; 215 msl->heap = heap; 216 217 RTE_LOG(DEBUG, EAL, 218 "Memseg list allocated at socket %i, page size 0x%"PRIx64"kB\n", 219 socket_id, page_sz >> 10); 220 221 return 0; 222 } 223 224 int 225 eal_memseg_list_init(struct rte_memseg_list *msl, uint64_t page_sz, 226 int n_segs, int socket_id, int type_msl_idx, bool heap) 227 { 228 char name[RTE_FBARRAY_NAME_LEN]; 229 230 snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id, 231 type_msl_idx); 232 233 return eal_memseg_list_init_named( 234 msl, name, page_sz, n_segs, socket_id, heap); 235 } 236 237 int 238 eal_memseg_list_alloc(struct rte_memseg_list *msl, int reserve_flags) 239 { 240 size_t page_sz, mem_sz; 241 void *addr; 242 243 page_sz = msl->page_sz; 244 mem_sz = page_sz * msl->memseg_arr.len; 245 246 addr = eal_get_virtual_area( 247 msl->base_va, &mem_sz, page_sz, 0, reserve_flags); 248 if (addr == NULL) { 249 #ifndef RTE_EXEC_ENV_WINDOWS 250 /* The hint would be misleading on Windows, because address 251 * is by default system-selected (base VA = 0). 252 * However, this function is called from many places, 253 * including common code, so don't duplicate the message. 254 */ 255 if (rte_errno == EADDRNOTAVAIL) 256 RTE_LOG(ERR, EAL, "Cannot reserve %llu bytes at [%p] - " 257 "please use '--" OPT_BASE_VIRTADDR "' option\n", 258 (unsigned long long)mem_sz, msl->base_va); 259 #endif 260 return -1; 261 } 262 msl->base_va = addr; 263 msl->len = mem_sz; 264 265 RTE_LOG(DEBUG, EAL, "VA reserved for memseg list at %p, size %zx\n", 266 addr, mem_sz); 267 268 return 0; 269 } 270 271 void 272 eal_memseg_list_populate(struct rte_memseg_list *msl, void *addr, int n_segs) 273 { 274 size_t page_sz = msl->page_sz; 275 int i; 276 277 for (i = 0; i < n_segs; i++) { 278 struct rte_fbarray *arr = &msl->memseg_arr; 279 struct rte_memseg *ms = rte_fbarray_get(arr, i); 280 281 if (rte_eal_iova_mode() == RTE_IOVA_VA) 282 ms->iova = (uintptr_t)addr; 283 else 284 ms->iova = RTE_BAD_IOVA; 285 ms->addr = addr; 286 ms->hugepage_sz = page_sz; 287 ms->socket_id = 0; 288 ms->len = page_sz; 289 290 rte_fbarray_set_used(arr, i); 291 292 addr = RTE_PTR_ADD(addr, page_sz); 293 } 294 } 295 296 static struct rte_memseg * 297 virt2memseg(const void *addr, const struct rte_memseg_list *msl) 298 { 299 const struct rte_fbarray *arr; 300 void *start, *end; 301 int ms_idx; 302 303 if (msl == NULL) 304 return NULL; 305 306 /* a memseg list was specified, check if it's the right one */ 307 start = msl->base_va; 308 end = RTE_PTR_ADD(start, msl->len); 309 310 if (addr < start || addr >= end) 311 return NULL; 312 313 /* now, calculate index */ 314 arr = &msl->memseg_arr; 315 ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz; 316 return rte_fbarray_get(arr, ms_idx); 317 } 318 319 static struct rte_memseg_list * 320 virt2memseg_list(const void *addr) 321 { 322 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 323 struct rte_memseg_list *msl; 324 int msl_idx; 325 326 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { 327 void *start, *end; 328 msl = &mcfg->memsegs[msl_idx]; 329 330 start = msl->base_va; 331 end = RTE_PTR_ADD(start, msl->len); 332 if (addr >= start && addr < end) 333 break; 334 } 335 /* if we didn't find our memseg list */ 336 if (msl_idx == RTE_MAX_MEMSEG_LISTS) 337 return NULL; 338 return msl; 339 } 340 341 struct rte_memseg_list * 342 rte_mem_virt2memseg_list(const void *addr) 343 { 344 return virt2memseg_list(addr); 345 } 346 347 struct virtiova { 348 rte_iova_t iova; 349 void *virt; 350 }; 351 static int 352 find_virt(const struct rte_memseg_list *msl __rte_unused, 353 const struct rte_memseg *ms, void *arg) 354 { 355 struct virtiova *vi = arg; 356 if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) { 357 size_t offset = vi->iova - ms->iova; 358 vi->virt = RTE_PTR_ADD(ms->addr, offset); 359 /* stop the walk */ 360 return 1; 361 } 362 return 0; 363 } 364 static int 365 find_virt_legacy(const struct rte_memseg_list *msl __rte_unused, 366 const struct rte_memseg *ms, size_t len, void *arg) 367 { 368 struct virtiova *vi = arg; 369 if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) { 370 size_t offset = vi->iova - ms->iova; 371 vi->virt = RTE_PTR_ADD(ms->addr, offset); 372 /* stop the walk */ 373 return 1; 374 } 375 return 0; 376 } 377 378 void * 379 rte_mem_iova2virt(rte_iova_t iova) 380 { 381 struct virtiova vi; 382 const struct internal_config *internal_conf = 383 eal_get_internal_configuration(); 384 385 memset(&vi, 0, sizeof(vi)); 386 387 vi.iova = iova; 388 /* for legacy mem, we can get away with scanning VA-contiguous segments, 389 * as we know they are PA-contiguous as well 390 */ 391 if (internal_conf->legacy_mem) 392 rte_memseg_contig_walk(find_virt_legacy, &vi); 393 else 394 rte_memseg_walk(find_virt, &vi); 395 396 return vi.virt; 397 } 398 399 struct rte_memseg * 400 rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl) 401 { 402 return virt2memseg(addr, msl != NULL ? msl : 403 rte_mem_virt2memseg_list(addr)); 404 } 405 406 static int 407 physmem_size(const struct rte_memseg_list *msl, void *arg) 408 { 409 uint64_t *total_len = arg; 410 411 if (msl->external) 412 return 0; 413 414 *total_len += msl->memseg_arr.count * msl->page_sz; 415 416 return 0; 417 } 418 419 /* get the total size of memory */ 420 uint64_t 421 rte_eal_get_physmem_size(void) 422 { 423 uint64_t total_len = 0; 424 425 rte_memseg_list_walk(physmem_size, &total_len); 426 427 return total_len; 428 } 429 430 static int 431 dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms, 432 void *arg) 433 { 434 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 435 int msl_idx, ms_idx, fd; 436 FILE *f = arg; 437 438 msl_idx = msl - mcfg->memsegs; 439 if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS) 440 return -1; 441 442 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 443 if (ms_idx < 0) 444 return -1; 445 446 fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx); 447 fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, " 448 "virt:%p, socket_id:%"PRId32", " 449 "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", " 450 "nrank:%"PRIx32" fd:%i\n", 451 msl_idx, ms_idx, 452 ms->iova, 453 ms->len, 454 ms->addr, 455 ms->socket_id, 456 ms->hugepage_sz, 457 ms->nchannel, 458 ms->nrank, 459 fd); 460 461 return 0; 462 } 463 464 /* 465 * Defining here because declared in rte_memory.h, but the actual implementation 466 * is in eal_common_memalloc.c, like all other memalloc internals. 467 */ 468 int 469 rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb, 470 void *arg) 471 { 472 const struct internal_config *internal_conf = 473 eal_get_internal_configuration(); 474 475 /* FreeBSD boots with legacy mem enabled by default */ 476 if (internal_conf->legacy_mem) { 477 RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n"); 478 rte_errno = ENOTSUP; 479 return -1; 480 } 481 return eal_memalloc_mem_event_callback_register(name, clb, arg); 482 } 483 484 int 485 rte_mem_event_callback_unregister(const char *name, void *arg) 486 { 487 const struct internal_config *internal_conf = 488 eal_get_internal_configuration(); 489 490 /* FreeBSD boots with legacy mem enabled by default */ 491 if (internal_conf->legacy_mem) { 492 RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n"); 493 rte_errno = ENOTSUP; 494 return -1; 495 } 496 return eal_memalloc_mem_event_callback_unregister(name, arg); 497 } 498 499 int 500 rte_mem_alloc_validator_register(const char *name, 501 rte_mem_alloc_validator_t clb, int socket_id, size_t limit) 502 { 503 const struct internal_config *internal_conf = 504 eal_get_internal_configuration(); 505 506 /* FreeBSD boots with legacy mem enabled by default */ 507 if (internal_conf->legacy_mem) { 508 RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n"); 509 rte_errno = ENOTSUP; 510 return -1; 511 } 512 return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id, 513 limit); 514 } 515 516 int 517 rte_mem_alloc_validator_unregister(const char *name, int socket_id) 518 { 519 const struct internal_config *internal_conf = 520 eal_get_internal_configuration(); 521 522 /* FreeBSD boots with legacy mem enabled by default */ 523 if (internal_conf->legacy_mem) { 524 RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n"); 525 rte_errno = ENOTSUP; 526 return -1; 527 } 528 return eal_memalloc_mem_alloc_validator_unregister(name, socket_id); 529 } 530 531 /* Dump the physical memory layout on console */ 532 void 533 rte_dump_physmem_layout(FILE *f) 534 { 535 rte_memseg_walk(dump_memseg, f); 536 } 537 538 static int 539 check_iova(const struct rte_memseg_list *msl __rte_unused, 540 const struct rte_memseg *ms, void *arg) 541 { 542 uint64_t *mask = arg; 543 rte_iova_t iova; 544 545 /* higher address within segment */ 546 iova = (ms->iova + ms->len) - 1; 547 if (!(iova & *mask)) 548 return 0; 549 550 RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n", 551 ms->iova, ms->len); 552 553 RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask); 554 return 1; 555 } 556 557 #define MAX_DMA_MASK_BITS 63 558 559 /* check memseg iovas are within the required range based on dma mask */ 560 static int 561 check_dma_mask(uint8_t maskbits, bool thread_unsafe) 562 { 563 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 564 uint64_t mask; 565 int ret; 566 567 /* Sanity check. We only check width can be managed with 64 bits 568 * variables. Indeed any higher value is likely wrong. */ 569 if (maskbits > MAX_DMA_MASK_BITS) { 570 RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n", 571 maskbits, MAX_DMA_MASK_BITS); 572 return -1; 573 } 574 575 /* create dma mask */ 576 mask = ~((1ULL << maskbits) - 1); 577 578 if (thread_unsafe) 579 ret = rte_memseg_walk_thread_unsafe(check_iova, &mask); 580 else 581 ret = rte_memseg_walk(check_iova, &mask); 582 583 if (ret) 584 /* 585 * Dma mask precludes hugepage usage. 586 * This device can not be used and we do not need to keep 587 * the dma mask. 588 */ 589 return 1; 590 591 /* 592 * we need to keep the more restricted maskbit for checking 593 * potential dynamic memory allocation in the future. 594 */ 595 mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : 596 RTE_MIN(mcfg->dma_maskbits, maskbits); 597 598 return 0; 599 } 600 601 int 602 rte_mem_check_dma_mask(uint8_t maskbits) 603 { 604 return check_dma_mask(maskbits, false); 605 } 606 607 int 608 rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits) 609 { 610 return check_dma_mask(maskbits, true); 611 } 612 613 /* 614 * Set dma mask to use when memory initialization is done. 615 * 616 * This function should ONLY be used by code executed before the memory 617 * initialization. PMDs should use rte_mem_check_dma_mask if addressing 618 * limitations by the device. 619 */ 620 void 621 rte_mem_set_dma_mask(uint8_t maskbits) 622 { 623 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 624 625 mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : 626 RTE_MIN(mcfg->dma_maskbits, maskbits); 627 } 628 629 /* return the number of memory channels */ 630 unsigned rte_memory_get_nchannel(void) 631 { 632 return rte_eal_get_configuration()->mem_config->nchannel; 633 } 634 635 /* return the number of memory rank */ 636 unsigned rte_memory_get_nrank(void) 637 { 638 return rte_eal_get_configuration()->mem_config->nrank; 639 } 640 641 static int 642 rte_eal_memdevice_init(void) 643 { 644 struct rte_config *config; 645 const struct internal_config *internal_conf; 646 647 if (rte_eal_process_type() == RTE_PROC_SECONDARY) 648 return 0; 649 650 internal_conf = eal_get_internal_configuration(); 651 config = rte_eal_get_configuration(); 652 config->mem_config->nchannel = internal_conf->force_nchannel; 653 config->mem_config->nrank = internal_conf->force_nrank; 654 655 return 0; 656 } 657 658 /* Lock page in physical memory and prevent from swapping. */ 659 int 660 rte_mem_lock_page(const void *virt) 661 { 662 uintptr_t virtual = (uintptr_t)virt; 663 size_t page_size = rte_mem_page_size(); 664 uintptr_t aligned = RTE_PTR_ALIGN_FLOOR(virtual, page_size); 665 return rte_mem_lock((void *)aligned, page_size); 666 } 667 668 int 669 rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg) 670 { 671 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 672 int i, ms_idx, ret = 0; 673 674 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 675 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 676 const struct rte_memseg *ms; 677 struct rte_fbarray *arr; 678 679 if (msl->memseg_arr.count == 0) 680 continue; 681 682 arr = &msl->memseg_arr; 683 684 ms_idx = rte_fbarray_find_next_used(arr, 0); 685 while (ms_idx >= 0) { 686 int n_segs; 687 size_t len; 688 689 ms = rte_fbarray_get(arr, ms_idx); 690 691 /* find how many more segments there are, starting with 692 * this one. 693 */ 694 n_segs = rte_fbarray_find_contig_used(arr, ms_idx); 695 len = n_segs * msl->page_sz; 696 697 ret = func(msl, ms, len, arg); 698 if (ret) 699 return ret; 700 ms_idx = rte_fbarray_find_next_used(arr, 701 ms_idx + n_segs); 702 } 703 } 704 return 0; 705 } 706 707 int 708 rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg) 709 { 710 int ret = 0; 711 712 /* do not allow allocations/frees/init while we iterate */ 713 rte_mcfg_mem_read_lock(); 714 ret = rte_memseg_contig_walk_thread_unsafe(func, arg); 715 rte_mcfg_mem_read_unlock(); 716 717 return ret; 718 } 719 720 int 721 rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg) 722 { 723 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 724 int i, ms_idx, ret = 0; 725 726 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 727 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 728 const struct rte_memseg *ms; 729 struct rte_fbarray *arr; 730 731 if (msl->memseg_arr.count == 0) 732 continue; 733 734 arr = &msl->memseg_arr; 735 736 ms_idx = rte_fbarray_find_next_used(arr, 0); 737 while (ms_idx >= 0) { 738 ms = rte_fbarray_get(arr, ms_idx); 739 ret = func(msl, ms, arg); 740 if (ret) 741 return ret; 742 ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1); 743 } 744 } 745 return 0; 746 } 747 748 int 749 rte_memseg_walk(rte_memseg_walk_t func, void *arg) 750 { 751 int ret = 0; 752 753 /* do not allow allocations/frees/init while we iterate */ 754 rte_mcfg_mem_read_lock(); 755 ret = rte_memseg_walk_thread_unsafe(func, arg); 756 rte_mcfg_mem_read_unlock(); 757 758 return ret; 759 } 760 761 int 762 rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg) 763 { 764 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 765 int i, ret = 0; 766 767 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 768 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 769 770 if (msl->base_va == NULL) 771 continue; 772 773 ret = func(msl, arg); 774 if (ret) 775 return ret; 776 } 777 return 0; 778 } 779 780 int 781 rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg) 782 { 783 int ret = 0; 784 785 /* do not allow allocations/frees/init while we iterate */ 786 rte_mcfg_mem_read_lock(); 787 ret = rte_memseg_list_walk_thread_unsafe(func, arg); 788 rte_mcfg_mem_read_unlock(); 789 790 return ret; 791 } 792 793 int 794 rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms) 795 { 796 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 797 struct rte_memseg_list *msl; 798 struct rte_fbarray *arr; 799 int msl_idx, seg_idx, ret; 800 801 if (ms == NULL) { 802 rte_errno = EINVAL; 803 return -1; 804 } 805 806 msl = rte_mem_virt2memseg_list(ms->addr); 807 if (msl == NULL) { 808 rte_errno = EINVAL; 809 return -1; 810 } 811 arr = &msl->memseg_arr; 812 813 msl_idx = msl - mcfg->memsegs; 814 seg_idx = rte_fbarray_find_idx(arr, ms); 815 816 if (!rte_fbarray_is_used(arr, seg_idx)) { 817 rte_errno = ENOENT; 818 return -1; 819 } 820 821 /* segment fd API is not supported for external segments */ 822 if (msl->external) { 823 rte_errno = ENOTSUP; 824 return -1; 825 } 826 827 ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx); 828 if (ret < 0) { 829 rte_errno = -ret; 830 ret = -1; 831 } 832 return ret; 833 } 834 835 int 836 rte_memseg_get_fd(const struct rte_memseg *ms) 837 { 838 int ret; 839 840 rte_mcfg_mem_read_lock(); 841 ret = rte_memseg_get_fd_thread_unsafe(ms); 842 rte_mcfg_mem_read_unlock(); 843 844 return ret; 845 } 846 847 int 848 rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms, 849 size_t *offset) 850 { 851 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 852 struct rte_memseg_list *msl; 853 struct rte_fbarray *arr; 854 int msl_idx, seg_idx, ret; 855 856 if (ms == NULL || offset == NULL) { 857 rte_errno = EINVAL; 858 return -1; 859 } 860 861 msl = rte_mem_virt2memseg_list(ms->addr); 862 if (msl == NULL) { 863 rte_errno = EINVAL; 864 return -1; 865 } 866 arr = &msl->memseg_arr; 867 868 msl_idx = msl - mcfg->memsegs; 869 seg_idx = rte_fbarray_find_idx(arr, ms); 870 871 if (!rte_fbarray_is_used(arr, seg_idx)) { 872 rte_errno = ENOENT; 873 return -1; 874 } 875 876 /* segment fd API is not supported for external segments */ 877 if (msl->external) { 878 rte_errno = ENOTSUP; 879 return -1; 880 } 881 882 ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset); 883 if (ret < 0) { 884 rte_errno = -ret; 885 ret = -1; 886 } 887 return ret; 888 } 889 890 int 891 rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset) 892 { 893 int ret; 894 895 rte_mcfg_mem_read_lock(); 896 ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset); 897 rte_mcfg_mem_read_unlock(); 898 899 return ret; 900 } 901 902 int 903 rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[], 904 unsigned int n_pages, size_t page_sz) 905 { 906 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 907 unsigned int socket_id, n; 908 int ret = 0; 909 910 if (va_addr == NULL || page_sz == 0 || len == 0 || 911 !rte_is_power_of_2(page_sz) || 912 RTE_ALIGN(len, page_sz) != len || 913 ((len / page_sz) != n_pages && iova_addrs != NULL) || 914 !rte_is_aligned(va_addr, page_sz)) { 915 rte_errno = EINVAL; 916 return -1; 917 } 918 rte_mcfg_mem_write_lock(); 919 920 /* make sure the segment doesn't already exist */ 921 if (malloc_heap_find_external_seg(va_addr, len) != NULL) { 922 rte_errno = EEXIST; 923 ret = -1; 924 goto unlock; 925 } 926 927 /* get next available socket ID */ 928 socket_id = mcfg->next_socket_id; 929 if (socket_id > INT32_MAX) { 930 RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n"); 931 rte_errno = ENOSPC; 932 ret = -1; 933 goto unlock; 934 } 935 936 /* we can create a new memseg */ 937 n = len / page_sz; 938 if (malloc_heap_create_external_seg(va_addr, iova_addrs, n, 939 page_sz, "extmem", socket_id) == NULL) { 940 ret = -1; 941 goto unlock; 942 } 943 944 /* memseg list successfully created - increment next socket ID */ 945 mcfg->next_socket_id++; 946 unlock: 947 rte_mcfg_mem_write_unlock(); 948 return ret; 949 } 950 951 int 952 rte_extmem_unregister(void *va_addr, size_t len) 953 { 954 struct rte_memseg_list *msl; 955 int ret = 0; 956 957 if (va_addr == NULL || len == 0) { 958 rte_errno = EINVAL; 959 return -1; 960 } 961 rte_mcfg_mem_write_lock(); 962 963 /* find our segment */ 964 msl = malloc_heap_find_external_seg(va_addr, len); 965 if (msl == NULL) { 966 rte_errno = ENOENT; 967 ret = -1; 968 goto unlock; 969 } 970 971 ret = malloc_heap_destroy_external_seg(msl); 972 unlock: 973 rte_mcfg_mem_write_unlock(); 974 return ret; 975 } 976 977 static int 978 sync_memory(void *va_addr, size_t len, bool attach) 979 { 980 struct rte_memseg_list *msl; 981 int ret = 0; 982 983 if (va_addr == NULL || len == 0) { 984 rte_errno = EINVAL; 985 return -1; 986 } 987 rte_mcfg_mem_write_lock(); 988 989 /* find our segment */ 990 msl = malloc_heap_find_external_seg(va_addr, len); 991 if (msl == NULL) { 992 rte_errno = ENOENT; 993 ret = -1; 994 goto unlock; 995 } 996 if (attach) 997 ret = rte_fbarray_attach(&msl->memseg_arr); 998 else 999 ret = rte_fbarray_detach(&msl->memseg_arr); 1000 1001 unlock: 1002 rte_mcfg_mem_write_unlock(); 1003 return ret; 1004 } 1005 1006 int 1007 rte_extmem_attach(void *va_addr, size_t len) 1008 { 1009 return sync_memory(va_addr, len, true); 1010 } 1011 1012 int 1013 rte_extmem_detach(void *va_addr, size_t len) 1014 { 1015 return sync_memory(va_addr, len, false); 1016 } 1017 1018 /* detach all EAL memory */ 1019 int 1020 rte_eal_memory_detach(void) 1021 { 1022 const struct internal_config *internal_conf = 1023 eal_get_internal_configuration(); 1024 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1025 size_t page_sz = rte_mem_page_size(); 1026 unsigned int i; 1027 1028 if (internal_conf->in_memory == 1) 1029 return 0; 1030 1031 rte_rwlock_write_lock(&mcfg->memory_hotplug_lock); 1032 1033 /* detach internal memory subsystem data first */ 1034 if (eal_memalloc_cleanup()) 1035 RTE_LOG(ERR, EAL, "Could not release memory subsystem data\n"); 1036 1037 for (i = 0; i < RTE_DIM(mcfg->memsegs); i++) { 1038 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 1039 1040 /* skip uninitialized segments */ 1041 if (msl->base_va == NULL) 1042 continue; 1043 /* 1044 * external segments are supposed to be detached at this point, 1045 * but if they aren't, we can't really do anything about it, 1046 * because if we skip them here, they'll become invalid after 1047 * we unmap the memconfig anyway. however, if this is externally 1048 * referenced memory, we have no business unmapping it. 1049 */ 1050 if (!msl->external) 1051 if (rte_mem_unmap(msl->base_va, msl->len) != 0) 1052 RTE_LOG(ERR, EAL, "Could not unmap memory: %s\n", 1053 rte_strerror(rte_errno)); 1054 1055 /* 1056 * we are detaching the fbarray rather than destroying because 1057 * other processes might still reference this fbarray, and we 1058 * have no way of knowing if they still do. 1059 */ 1060 if (rte_fbarray_detach(&msl->memseg_arr)) 1061 RTE_LOG(ERR, EAL, "Could not detach fbarray: %s\n", 1062 rte_strerror(rte_errno)); 1063 } 1064 rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock); 1065 1066 /* 1067 * we've detached the memseg lists, so we can unmap the shared mem 1068 * config - we can't zero it out because it might still be referenced 1069 * by other processes. 1070 */ 1071 if (internal_conf->no_shconf == 0 && mcfg->mem_cfg_addr != 0) { 1072 if (rte_mem_unmap(mcfg, RTE_ALIGN(sizeof(*mcfg), page_sz)) != 0) 1073 RTE_LOG(ERR, EAL, "Could not unmap shared memory config: %s\n", 1074 rte_strerror(rte_errno)); 1075 } 1076 rte_eal_get_configuration()->mem_config = NULL; 1077 1078 return 0; 1079 } 1080 1081 /* init memory subsystem */ 1082 int 1083 rte_eal_memory_init(void) 1084 { 1085 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1086 const struct internal_config *internal_conf = 1087 eal_get_internal_configuration(); 1088 1089 int retval; 1090 RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n"); 1091 1092 if (!mcfg) 1093 return -1; 1094 1095 /* lock mem hotplug here, to prevent races while we init */ 1096 rte_mcfg_mem_read_lock(); 1097 1098 if (rte_eal_memseg_init() < 0) 1099 goto fail; 1100 1101 if (eal_memalloc_init() < 0) 1102 goto fail; 1103 1104 retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? 1105 rte_eal_hugepage_init() : 1106 rte_eal_hugepage_attach(); 1107 if (retval < 0) 1108 goto fail; 1109 1110 if (internal_conf->no_shconf == 0 && rte_eal_memdevice_init() < 0) 1111 goto fail; 1112 1113 return 0; 1114 fail: 1115 rte_mcfg_mem_read_unlock(); 1116 return -1; 1117 } 1118 1119 #ifndef RTE_EXEC_ENV_WINDOWS 1120 #define EAL_MEMZONE_LIST_REQ "/eal/memzone_list" 1121 #define EAL_MEMZONE_INFO_REQ "/eal/memzone_info" 1122 #define EAL_HEAP_LIST_REQ "/eal/heap_list" 1123 #define EAL_HEAP_INFO_REQ "/eal/heap_info" 1124 #define ADDR_STR 15 1125 1126 /* Telemetry callback handler to return heap stats for requested heap id. */ 1127 static int 1128 handle_eal_heap_info_request(const char *cmd __rte_unused, const char *params, 1129 struct rte_tel_data *d) 1130 { 1131 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1132 struct rte_malloc_socket_stats sock_stats; 1133 struct malloc_heap *heap; 1134 unsigned int heap_id; 1135 1136 if (params == NULL || strlen(params) == 0) 1137 return -1; 1138 1139 heap_id = (unsigned int)strtoul(params, NULL, 10); 1140 1141 /* Get the heap stats of user provided heap id */ 1142 heap = &mcfg->malloc_heaps[heap_id]; 1143 malloc_heap_get_stats(heap, &sock_stats); 1144 1145 rte_tel_data_start_dict(d); 1146 rte_tel_data_add_dict_int(d, "Head id", heap_id); 1147 rte_tel_data_add_dict_string(d, "Name", heap->name); 1148 rte_tel_data_add_dict_u64(d, "Heap_size", 1149 sock_stats.heap_totalsz_bytes); 1150 rte_tel_data_add_dict_u64(d, "Free_size", sock_stats.heap_freesz_bytes); 1151 rte_tel_data_add_dict_u64(d, "Alloc_size", 1152 sock_stats.heap_allocsz_bytes); 1153 rte_tel_data_add_dict_u64(d, "Greatest_free_size", 1154 sock_stats.greatest_free_size); 1155 rte_tel_data_add_dict_u64(d, "Alloc_count", sock_stats.alloc_count); 1156 rte_tel_data_add_dict_u64(d, "Free_count", sock_stats.free_count); 1157 1158 return 0; 1159 } 1160 1161 /* Telemetry callback handler to list the heap ids setup. */ 1162 static int 1163 handle_eal_heap_list_request(const char *cmd __rte_unused, 1164 const char *params __rte_unused, 1165 struct rte_tel_data *d) 1166 { 1167 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1168 struct rte_malloc_socket_stats sock_stats; 1169 unsigned int heap_id; 1170 1171 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1172 /* Iterate through all initialised heaps */ 1173 for (heap_id = 0; heap_id < RTE_MAX_HEAPS; heap_id++) { 1174 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; 1175 1176 malloc_heap_get_stats(heap, &sock_stats); 1177 if (sock_stats.heap_totalsz_bytes != 0) 1178 rte_tel_data_add_array_int(d, heap_id); 1179 } 1180 1181 return 0; 1182 } 1183 1184 /* Telemetry callback handler to return memzone info for requested index. */ 1185 static int 1186 handle_eal_memzone_info_request(const char *cmd __rte_unused, 1187 const char *params, struct rte_tel_data *d) 1188 { 1189 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1190 struct rte_memseg_list *msl = NULL; 1191 int ms_idx, ms_count = 0; 1192 void *cur_addr, *mz_end; 1193 struct rte_memzone *mz; 1194 struct rte_memseg *ms; 1195 char addr[ADDR_STR]; 1196 unsigned int mz_idx; 1197 size_t page_sz; 1198 1199 if (params == NULL || strlen(params) == 0) 1200 return -1; 1201 1202 mz_idx = strtoul(params, NULL, 10); 1203 1204 /* Get the memzone handle using index */ 1205 mz = rte_fbarray_get(&mcfg->memzones, mz_idx); 1206 1207 rte_tel_data_start_dict(d); 1208 rte_tel_data_add_dict_int(d, "Zone", mz_idx); 1209 rte_tel_data_add_dict_string(d, "Name", mz->name); 1210 rte_tel_data_add_dict_int(d, "Length", mz->len); 1211 snprintf(addr, ADDR_STR, "%p", mz->addr); 1212 rte_tel_data_add_dict_string(d, "Address", addr); 1213 rte_tel_data_add_dict_int(d, "Socket", mz->socket_id); 1214 rte_tel_data_add_dict_int(d, "Flags", mz->flags); 1215 1216 /* go through each page occupied by this memzone */ 1217 msl = rte_mem_virt2memseg_list(mz->addr); 1218 if (!msl) { 1219 RTE_LOG(DEBUG, EAL, "Skipping bad memzone\n"); 1220 return -1; 1221 } 1222 page_sz = (size_t)mz->hugepage_sz; 1223 cur_addr = RTE_PTR_ALIGN_FLOOR(mz->addr, page_sz); 1224 mz_end = RTE_PTR_ADD(cur_addr, mz->len); 1225 1226 ms_idx = RTE_PTR_DIFF(mz->addr, msl->base_va) / page_sz; 1227 ms = rte_fbarray_get(&msl->memseg_arr, ms_idx); 1228 1229 rte_tel_data_add_dict_int(d, "Hugepage_size", page_sz); 1230 snprintf(addr, ADDR_STR, "%p", ms->addr); 1231 rte_tel_data_add_dict_string(d, "Hugepage_base", addr); 1232 1233 do { 1234 /* advance VA to next page */ 1235 cur_addr = RTE_PTR_ADD(cur_addr, page_sz); 1236 1237 /* memzones occupy contiguous segments */ 1238 ++ms; 1239 ms_count++; 1240 } while (cur_addr < mz_end); 1241 1242 rte_tel_data_add_dict_int(d, "Hugepage_used", ms_count); 1243 1244 return 0; 1245 } 1246 1247 static void 1248 memzone_list_cb(const struct rte_memzone *mz __rte_unused, 1249 void *arg __rte_unused) 1250 { 1251 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1252 struct rte_tel_data *d = arg; 1253 int mz_idx; 1254 1255 mz_idx = rte_fbarray_find_idx(&mcfg->memzones, mz); 1256 rte_tel_data_add_array_int(d, mz_idx); 1257 } 1258 1259 1260 /* Telemetry callback handler to list the memzones reserved. */ 1261 static int 1262 handle_eal_memzone_list_request(const char *cmd __rte_unused, 1263 const char *params __rte_unused, 1264 struct rte_tel_data *d) 1265 { 1266 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1267 rte_memzone_walk(memzone_list_cb, d); 1268 1269 return 0; 1270 } 1271 1272 RTE_INIT(memory_telemetry) 1273 { 1274 rte_telemetry_register_cmd( 1275 EAL_MEMZONE_LIST_REQ, handle_eal_memzone_list_request, 1276 "List of memzone index reserved. Takes no parameters"); 1277 rte_telemetry_register_cmd( 1278 EAL_MEMZONE_INFO_REQ, handle_eal_memzone_info_request, 1279 "Returns memzone info. Parameters: int mz_id"); 1280 rte_telemetry_register_cmd( 1281 EAL_HEAP_LIST_REQ, handle_eal_heap_list_request, 1282 "List of heap index setup. Takes no parameters"); 1283 rte_telemetry_register_cmd( 1284 EAL_HEAP_INFO_REQ, handle_eal_heap_info_request, 1285 "Returns malloc heap stats. Parameters: int heap_id"); 1286 } 1287 #endif 1288