xref: /dpdk/lib/eal/common/eal_common_memory.c (revision f4eac3a09c51a1a2dab1f2fd3a10fe0619286a0d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <fcntl.h>
6 #include <errno.h>
7 #include <stdio.h>
8 #include <stdint.h>
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <unistd.h>
13 #include <inttypes.h>
14 #include <sys/queue.h>
15 
16 #include <rte_fbarray.h>
17 #include <rte_memory.h>
18 #include <rte_eal.h>
19 #include <rte_eal_memconfig.h>
20 #include <rte_eal_paging.h>
21 #include <rte_errno.h>
22 #include <rte_log.h>
23 #ifndef RTE_EXEC_ENV_WINDOWS
24 #include <rte_telemetry.h>
25 #endif
26 
27 #include "eal_memalloc.h"
28 #include "eal_private.h"
29 #include "eal_internal_cfg.h"
30 #include "eal_memcfg.h"
31 #include "eal_options.h"
32 #include "malloc_heap.h"
33 
34 /*
35  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
36  * pointer to the mmap'd area and keep *size unmodified. Else, retry
37  * with a smaller zone: decrease *size by hugepage_sz until it reaches
38  * 0. In this case, return NULL. Note: this function returns an address
39  * which is a multiple of hugepage size.
40  */
41 
42 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
43 
44 static void *next_baseaddr;
45 static uint64_t system_page_sz;
46 
47 #define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5
48 void *
49 eal_get_virtual_area(void *requested_addr, size_t *size,
50 	size_t page_sz, int flags, int reserve_flags)
51 {
52 	bool addr_is_hint, allow_shrink, unmap, no_align;
53 	uint64_t map_sz;
54 	void *mapped_addr, *aligned_addr;
55 	uint8_t try = 0;
56 	struct internal_config *internal_conf =
57 		eal_get_internal_configuration();
58 
59 	if (system_page_sz == 0)
60 		system_page_sz = rte_mem_page_size();
61 
62 	RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
63 
64 	addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
65 	allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
66 	unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
67 
68 	if (next_baseaddr == NULL && internal_conf->base_virtaddr != 0 &&
69 			rte_eal_process_type() == RTE_PROC_PRIMARY)
70 		next_baseaddr = (void *) internal_conf->base_virtaddr;
71 
72 #ifdef RTE_ARCH_64
73 	if (next_baseaddr == NULL && internal_conf->base_virtaddr == 0 &&
74 			rte_eal_process_type() == RTE_PROC_PRIMARY)
75 		next_baseaddr = (void *) eal_get_baseaddr();
76 #endif
77 	if (requested_addr == NULL && next_baseaddr != NULL) {
78 		requested_addr = next_baseaddr;
79 		requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
80 		addr_is_hint = true;
81 	}
82 
83 	/* we don't need alignment of resulting pointer in the following cases:
84 	 *
85 	 * 1. page size is equal to system size
86 	 * 2. we have a requested address, and it is page-aligned, and we will
87 	 *    be discarding the address if we get a different one.
88 	 *
89 	 * for all other cases, alignment is potentially necessary.
90 	 */
91 	no_align = (requested_addr != NULL &&
92 		requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) &&
93 		!addr_is_hint) ||
94 		page_sz == system_page_sz;
95 
96 	do {
97 		map_sz = no_align ? *size : *size + page_sz;
98 		if (map_sz > SIZE_MAX) {
99 			RTE_LOG(ERR, EAL, "Map size too big\n");
100 			rte_errno = E2BIG;
101 			return NULL;
102 		}
103 
104 		mapped_addr = eal_mem_reserve(
105 			requested_addr, (size_t)map_sz, reserve_flags);
106 		if ((mapped_addr == NULL) && allow_shrink)
107 			*size -= page_sz;
108 
109 		if ((mapped_addr != NULL) && addr_is_hint &&
110 				(mapped_addr != requested_addr)) {
111 			try++;
112 			next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz);
113 			if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) {
114 				/* hint was not used. Try with another offset */
115 				eal_mem_free(mapped_addr, map_sz);
116 				mapped_addr = NULL;
117 				requested_addr = next_baseaddr;
118 			}
119 		}
120 	} while ((allow_shrink || addr_is_hint) &&
121 		(mapped_addr == NULL) && (*size > 0));
122 
123 	/* align resulting address - if map failed, we will ignore the value
124 	 * anyway, so no need to add additional checks.
125 	 */
126 	aligned_addr = no_align ? mapped_addr :
127 			RTE_PTR_ALIGN(mapped_addr, page_sz);
128 
129 	if (*size == 0) {
130 		RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
131 			rte_strerror(rte_errno));
132 		return NULL;
133 	} else if (mapped_addr == NULL) {
134 		RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
135 			rte_strerror(rte_errno));
136 		return NULL;
137 	} else if (requested_addr != NULL && !addr_is_hint &&
138 			aligned_addr != requested_addr) {
139 		RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
140 			requested_addr, aligned_addr);
141 		eal_mem_free(mapped_addr, map_sz);
142 		rte_errno = EADDRNOTAVAIL;
143 		return NULL;
144 	} else if (requested_addr != NULL && addr_is_hint &&
145 			aligned_addr != requested_addr) {
146 		/*
147 		 * demote this warning to debug if we did not explicitly request
148 		 * a base virtual address.
149 		 */
150 		if (internal_conf->base_virtaddr != 0) {
151 			RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
152 				requested_addr, aligned_addr);
153 			RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory into secondary processes\n");
154 		} else {
155 			RTE_LOG(DEBUG, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
156 				requested_addr, aligned_addr);
157 			RTE_LOG(DEBUG, EAL, "   This may cause issues with mapping memory into secondary processes\n");
158 		}
159 	} else if (next_baseaddr != NULL) {
160 		next_baseaddr = RTE_PTR_ADD(aligned_addr, *size);
161 	}
162 
163 	RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
164 		aligned_addr, *size);
165 
166 	if (unmap) {
167 		eal_mem_free(mapped_addr, map_sz);
168 	} else if (!no_align) {
169 		void *map_end, *aligned_end;
170 		size_t before_len, after_len;
171 
172 		/* when we reserve space with alignment, we add alignment to
173 		 * mapping size. On 32-bit, if 1GB alignment was requested, this
174 		 * would waste 1GB of address space, which is a luxury we cannot
175 		 * afford. so, if alignment was performed, check if any unneeded
176 		 * address space can be unmapped back.
177 		 */
178 
179 		map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
180 		aligned_end = RTE_PTR_ADD(aligned_addr, *size);
181 
182 		/* unmap space before aligned mmap address */
183 		before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
184 		if (before_len > 0)
185 			eal_mem_free(mapped_addr, before_len);
186 
187 		/* unmap space after aligned end mmap address */
188 		after_len = RTE_PTR_DIFF(map_end, aligned_end);
189 		if (after_len > 0)
190 			eal_mem_free(aligned_end, after_len);
191 	}
192 
193 	if (!unmap) {
194 		/* Exclude these pages from a core dump. */
195 		eal_mem_set_dump(aligned_addr, *size, false);
196 	}
197 
198 	return aligned_addr;
199 }
200 
201 int
202 eal_memseg_list_init_named(struct rte_memseg_list *msl, const char *name,
203 		uint64_t page_sz, int n_segs, int socket_id, bool heap)
204 {
205 	if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
206 			sizeof(struct rte_memseg))) {
207 		RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
208 			rte_strerror(rte_errno));
209 		return -1;
210 	}
211 
212 	msl->page_sz = page_sz;
213 	msl->socket_id = socket_id;
214 	msl->base_va = NULL;
215 	msl->heap = heap;
216 
217 	RTE_LOG(DEBUG, EAL,
218 		"Memseg list allocated at socket %i, page size 0x%"PRIx64"kB\n",
219 		socket_id, page_sz >> 10);
220 
221 	return 0;
222 }
223 
224 int
225 eal_memseg_list_init(struct rte_memseg_list *msl, uint64_t page_sz,
226 		int n_segs, int socket_id, int type_msl_idx, bool heap)
227 {
228 	char name[RTE_FBARRAY_NAME_LEN];
229 
230 	snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
231 		 type_msl_idx);
232 
233 	return eal_memseg_list_init_named(
234 		msl, name, page_sz, n_segs, socket_id, heap);
235 }
236 
237 int
238 eal_memseg_list_alloc(struct rte_memseg_list *msl, int reserve_flags)
239 {
240 	size_t page_sz, mem_sz;
241 	void *addr;
242 
243 	page_sz = msl->page_sz;
244 	mem_sz = page_sz * msl->memseg_arr.len;
245 
246 	addr = eal_get_virtual_area(
247 		msl->base_va, &mem_sz, page_sz, 0, reserve_flags);
248 	if (addr == NULL) {
249 #ifndef RTE_EXEC_ENV_WINDOWS
250 		/* The hint would be misleading on Windows, because address
251 		 * is by default system-selected (base VA = 0).
252 		 * However, this function is called from many places,
253 		 * including common code, so don't duplicate the message.
254 		 */
255 		if (rte_errno == EADDRNOTAVAIL)
256 			RTE_LOG(ERR, EAL, "Cannot reserve %llu bytes at [%p] - "
257 				"please use '--" OPT_BASE_VIRTADDR "' option\n",
258 				(unsigned long long)mem_sz, msl->base_va);
259 #endif
260 		return -1;
261 	}
262 	msl->base_va = addr;
263 	msl->len = mem_sz;
264 
265 	RTE_LOG(DEBUG, EAL, "VA reserved for memseg list at %p, size %zx\n",
266 			addr, mem_sz);
267 
268 	return 0;
269 }
270 
271 void
272 eal_memseg_list_populate(struct rte_memseg_list *msl, void *addr, int n_segs)
273 {
274 	size_t page_sz = msl->page_sz;
275 	int i;
276 
277 	for (i = 0; i < n_segs; i++) {
278 		struct rte_fbarray *arr = &msl->memseg_arr;
279 		struct rte_memseg *ms = rte_fbarray_get(arr, i);
280 
281 		if (rte_eal_iova_mode() == RTE_IOVA_VA)
282 			ms->iova = (uintptr_t)addr;
283 		else
284 			ms->iova = RTE_BAD_IOVA;
285 		ms->addr = addr;
286 		ms->hugepage_sz = page_sz;
287 		ms->socket_id = 0;
288 		ms->len = page_sz;
289 
290 		rte_fbarray_set_used(arr, i);
291 
292 		addr = RTE_PTR_ADD(addr, page_sz);
293 	}
294 }
295 
296 static struct rte_memseg *
297 virt2memseg(const void *addr, const struct rte_memseg_list *msl)
298 {
299 	const struct rte_fbarray *arr;
300 	void *start, *end;
301 	int ms_idx;
302 
303 	if (msl == NULL)
304 		return NULL;
305 
306 	/* a memseg list was specified, check if it's the right one */
307 	start = msl->base_va;
308 	end = RTE_PTR_ADD(start, msl->len);
309 
310 	if (addr < start || addr >= end)
311 		return NULL;
312 
313 	/* now, calculate index */
314 	arr = &msl->memseg_arr;
315 	ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
316 	return rte_fbarray_get(arr, ms_idx);
317 }
318 
319 static struct rte_memseg_list *
320 virt2memseg_list(const void *addr)
321 {
322 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
323 	struct rte_memseg_list *msl;
324 	int msl_idx;
325 
326 	for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
327 		void *start, *end;
328 		msl = &mcfg->memsegs[msl_idx];
329 
330 		start = msl->base_va;
331 		end = RTE_PTR_ADD(start, msl->len);
332 		if (addr >= start && addr < end)
333 			break;
334 	}
335 	/* if we didn't find our memseg list */
336 	if (msl_idx == RTE_MAX_MEMSEG_LISTS)
337 		return NULL;
338 	return msl;
339 }
340 
341 struct rte_memseg_list *
342 rte_mem_virt2memseg_list(const void *addr)
343 {
344 	return virt2memseg_list(addr);
345 }
346 
347 struct virtiova {
348 	rte_iova_t iova;
349 	void *virt;
350 };
351 static int
352 find_virt(const struct rte_memseg_list *msl __rte_unused,
353 		const struct rte_memseg *ms, void *arg)
354 {
355 	struct virtiova *vi = arg;
356 	if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
357 		size_t offset = vi->iova - ms->iova;
358 		vi->virt = RTE_PTR_ADD(ms->addr, offset);
359 		/* stop the walk */
360 		return 1;
361 	}
362 	return 0;
363 }
364 static int
365 find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
366 		const struct rte_memseg *ms, size_t len, void *arg)
367 {
368 	struct virtiova *vi = arg;
369 	if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
370 		size_t offset = vi->iova - ms->iova;
371 		vi->virt = RTE_PTR_ADD(ms->addr, offset);
372 		/* stop the walk */
373 		return 1;
374 	}
375 	return 0;
376 }
377 
378 void *
379 rte_mem_iova2virt(rte_iova_t iova)
380 {
381 	struct virtiova vi;
382 	const struct internal_config *internal_conf =
383 		eal_get_internal_configuration();
384 
385 	memset(&vi, 0, sizeof(vi));
386 
387 	vi.iova = iova;
388 	/* for legacy mem, we can get away with scanning VA-contiguous segments,
389 	 * as we know they are PA-contiguous as well
390 	 */
391 	if (internal_conf->legacy_mem)
392 		rte_memseg_contig_walk(find_virt_legacy, &vi);
393 	else
394 		rte_memseg_walk(find_virt, &vi);
395 
396 	return vi.virt;
397 }
398 
399 struct rte_memseg *
400 rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
401 {
402 	return virt2memseg(addr, msl != NULL ? msl :
403 			rte_mem_virt2memseg_list(addr));
404 }
405 
406 static int
407 physmem_size(const struct rte_memseg_list *msl, void *arg)
408 {
409 	uint64_t *total_len = arg;
410 
411 	if (msl->external)
412 		return 0;
413 
414 	*total_len += msl->memseg_arr.count * msl->page_sz;
415 
416 	return 0;
417 }
418 
419 /* get the total size of memory */
420 uint64_t
421 rte_eal_get_physmem_size(void)
422 {
423 	uint64_t total_len = 0;
424 
425 	rte_memseg_list_walk(physmem_size, &total_len);
426 
427 	return total_len;
428 }
429 
430 static int
431 dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
432 		void *arg)
433 {
434 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
435 	int msl_idx, ms_idx, fd;
436 	FILE *f = arg;
437 
438 	msl_idx = msl - mcfg->memsegs;
439 	if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
440 		return -1;
441 
442 	ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
443 	if (ms_idx < 0)
444 		return -1;
445 
446 	fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx);
447 	fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
448 			"virt:%p, socket_id:%"PRId32", "
449 			"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
450 			"nrank:%"PRIx32" fd:%i\n",
451 			msl_idx, ms_idx,
452 			ms->iova,
453 			ms->len,
454 			ms->addr,
455 			ms->socket_id,
456 			ms->hugepage_sz,
457 			ms->nchannel,
458 			ms->nrank,
459 			fd);
460 
461 	return 0;
462 }
463 
464 /*
465  * Defining here because declared in rte_memory.h, but the actual implementation
466  * is in eal_common_memalloc.c, like all other memalloc internals.
467  */
468 int
469 rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
470 		void *arg)
471 {
472 	const struct internal_config *internal_conf =
473 		eal_get_internal_configuration();
474 
475 	/* FreeBSD boots with legacy mem enabled by default */
476 	if (internal_conf->legacy_mem) {
477 		RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
478 		rte_errno = ENOTSUP;
479 		return -1;
480 	}
481 	return eal_memalloc_mem_event_callback_register(name, clb, arg);
482 }
483 
484 int
485 rte_mem_event_callback_unregister(const char *name, void *arg)
486 {
487 	const struct internal_config *internal_conf =
488 		eal_get_internal_configuration();
489 
490 	/* FreeBSD boots with legacy mem enabled by default */
491 	if (internal_conf->legacy_mem) {
492 		RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
493 		rte_errno = ENOTSUP;
494 		return -1;
495 	}
496 	return eal_memalloc_mem_event_callback_unregister(name, arg);
497 }
498 
499 int
500 rte_mem_alloc_validator_register(const char *name,
501 		rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
502 {
503 	const struct internal_config *internal_conf =
504 		eal_get_internal_configuration();
505 
506 	/* FreeBSD boots with legacy mem enabled by default */
507 	if (internal_conf->legacy_mem) {
508 		RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
509 		rte_errno = ENOTSUP;
510 		return -1;
511 	}
512 	return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
513 			limit);
514 }
515 
516 int
517 rte_mem_alloc_validator_unregister(const char *name, int socket_id)
518 {
519 	const struct internal_config *internal_conf =
520 		eal_get_internal_configuration();
521 
522 	/* FreeBSD boots with legacy mem enabled by default */
523 	if (internal_conf->legacy_mem) {
524 		RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
525 		rte_errno = ENOTSUP;
526 		return -1;
527 	}
528 	return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
529 }
530 
531 /* Dump the physical memory layout on console */
532 void
533 rte_dump_physmem_layout(FILE *f)
534 {
535 	rte_memseg_walk(dump_memseg, f);
536 }
537 
538 static int
539 check_iova(const struct rte_memseg_list *msl __rte_unused,
540 		const struct rte_memseg *ms, void *arg)
541 {
542 	uint64_t *mask = arg;
543 	rte_iova_t iova;
544 
545 	/* higher address within segment */
546 	iova = (ms->iova + ms->len) - 1;
547 	if (!(iova & *mask))
548 		return 0;
549 
550 	RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n",
551 			    ms->iova, ms->len);
552 
553 	RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask);
554 	return 1;
555 }
556 
557 #define MAX_DMA_MASK_BITS 63
558 
559 /* check memseg iovas are within the required range based on dma mask */
560 static int
561 check_dma_mask(uint8_t maskbits, bool thread_unsafe)
562 {
563 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
564 	uint64_t mask;
565 	int ret;
566 
567 	/* Sanity check. We only check width can be managed with 64 bits
568 	 * variables. Indeed any higher value is likely wrong. */
569 	if (maskbits > MAX_DMA_MASK_BITS) {
570 		RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n",
571 				   maskbits, MAX_DMA_MASK_BITS);
572 		return -1;
573 	}
574 
575 	/* create dma mask */
576 	mask = ~((1ULL << maskbits) - 1);
577 
578 	if (thread_unsafe)
579 		ret = rte_memseg_walk_thread_unsafe(check_iova, &mask);
580 	else
581 		ret = rte_memseg_walk(check_iova, &mask);
582 
583 	if (ret)
584 		/*
585 		 * Dma mask precludes hugepage usage.
586 		 * This device can not be used and we do not need to keep
587 		 * the dma mask.
588 		 */
589 		return 1;
590 
591 	/*
592 	 * we need to keep the more restricted maskbit for checking
593 	 * potential dynamic memory allocation in the future.
594 	 */
595 	mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
596 			     RTE_MIN(mcfg->dma_maskbits, maskbits);
597 
598 	return 0;
599 }
600 
601 int
602 rte_mem_check_dma_mask(uint8_t maskbits)
603 {
604 	return check_dma_mask(maskbits, false);
605 }
606 
607 int
608 rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits)
609 {
610 	return check_dma_mask(maskbits, true);
611 }
612 
613 /*
614  * Set dma mask to use when memory initialization is done.
615  *
616  * This function should ONLY be used by code executed before the memory
617  * initialization. PMDs should use rte_mem_check_dma_mask if addressing
618  * limitations by the device.
619  */
620 void
621 rte_mem_set_dma_mask(uint8_t maskbits)
622 {
623 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
624 
625 	mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
626 			     RTE_MIN(mcfg->dma_maskbits, maskbits);
627 }
628 
629 /* return the number of memory channels */
630 unsigned rte_memory_get_nchannel(void)
631 {
632 	return rte_eal_get_configuration()->mem_config->nchannel;
633 }
634 
635 /* return the number of memory rank */
636 unsigned rte_memory_get_nrank(void)
637 {
638 	return rte_eal_get_configuration()->mem_config->nrank;
639 }
640 
641 static int
642 rte_eal_memdevice_init(void)
643 {
644 	struct rte_config *config;
645 	const struct internal_config *internal_conf;
646 
647 	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
648 		return 0;
649 
650 	internal_conf = eal_get_internal_configuration();
651 	config = rte_eal_get_configuration();
652 	config->mem_config->nchannel = internal_conf->force_nchannel;
653 	config->mem_config->nrank = internal_conf->force_nrank;
654 
655 	return 0;
656 }
657 
658 /* Lock page in physical memory and prevent from swapping. */
659 int
660 rte_mem_lock_page(const void *virt)
661 {
662 	uintptr_t virtual = (uintptr_t)virt;
663 	size_t page_size = rte_mem_page_size();
664 	uintptr_t aligned = RTE_PTR_ALIGN_FLOOR(virtual, page_size);
665 	return rte_mem_lock((void *)aligned, page_size);
666 }
667 
668 int
669 rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg)
670 {
671 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
672 	int i, ms_idx, ret = 0;
673 
674 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
675 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
676 		const struct rte_memseg *ms;
677 		struct rte_fbarray *arr;
678 
679 		if (msl->memseg_arr.count == 0)
680 			continue;
681 
682 		arr = &msl->memseg_arr;
683 
684 		ms_idx = rte_fbarray_find_next_used(arr, 0);
685 		while (ms_idx >= 0) {
686 			int n_segs;
687 			size_t len;
688 
689 			ms = rte_fbarray_get(arr, ms_idx);
690 
691 			/* find how many more segments there are, starting with
692 			 * this one.
693 			 */
694 			n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
695 			len = n_segs * msl->page_sz;
696 
697 			ret = func(msl, ms, len, arg);
698 			if (ret)
699 				return ret;
700 			ms_idx = rte_fbarray_find_next_used(arr,
701 					ms_idx + n_segs);
702 		}
703 	}
704 	return 0;
705 }
706 
707 int
708 rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
709 {
710 	int ret = 0;
711 
712 	/* do not allow allocations/frees/init while we iterate */
713 	rte_mcfg_mem_read_lock();
714 	ret = rte_memseg_contig_walk_thread_unsafe(func, arg);
715 	rte_mcfg_mem_read_unlock();
716 
717 	return ret;
718 }
719 
720 int
721 rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg)
722 {
723 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
724 	int i, ms_idx, ret = 0;
725 
726 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
727 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
728 		const struct rte_memseg *ms;
729 		struct rte_fbarray *arr;
730 
731 		if (msl->memseg_arr.count == 0)
732 			continue;
733 
734 		arr = &msl->memseg_arr;
735 
736 		ms_idx = rte_fbarray_find_next_used(arr, 0);
737 		while (ms_idx >= 0) {
738 			ms = rte_fbarray_get(arr, ms_idx);
739 			ret = func(msl, ms, arg);
740 			if (ret)
741 				return ret;
742 			ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
743 		}
744 	}
745 	return 0;
746 }
747 
748 int
749 rte_memseg_walk(rte_memseg_walk_t func, void *arg)
750 {
751 	int ret = 0;
752 
753 	/* do not allow allocations/frees/init while we iterate */
754 	rte_mcfg_mem_read_lock();
755 	ret = rte_memseg_walk_thread_unsafe(func, arg);
756 	rte_mcfg_mem_read_unlock();
757 
758 	return ret;
759 }
760 
761 int
762 rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg)
763 {
764 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
765 	int i, ret = 0;
766 
767 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
768 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
769 
770 		if (msl->base_va == NULL)
771 			continue;
772 
773 		ret = func(msl, arg);
774 		if (ret)
775 			return ret;
776 	}
777 	return 0;
778 }
779 
780 int
781 rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
782 {
783 	int ret = 0;
784 
785 	/* do not allow allocations/frees/init while we iterate */
786 	rte_mcfg_mem_read_lock();
787 	ret = rte_memseg_list_walk_thread_unsafe(func, arg);
788 	rte_mcfg_mem_read_unlock();
789 
790 	return ret;
791 }
792 
793 int
794 rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms)
795 {
796 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
797 	struct rte_memseg_list *msl;
798 	struct rte_fbarray *arr;
799 	int msl_idx, seg_idx, ret;
800 
801 	if (ms == NULL) {
802 		rte_errno = EINVAL;
803 		return -1;
804 	}
805 
806 	msl = rte_mem_virt2memseg_list(ms->addr);
807 	if (msl == NULL) {
808 		rte_errno = EINVAL;
809 		return -1;
810 	}
811 	arr = &msl->memseg_arr;
812 
813 	msl_idx = msl - mcfg->memsegs;
814 	seg_idx = rte_fbarray_find_idx(arr, ms);
815 
816 	if (!rte_fbarray_is_used(arr, seg_idx)) {
817 		rte_errno = ENOENT;
818 		return -1;
819 	}
820 
821 	/* segment fd API is not supported for external segments */
822 	if (msl->external) {
823 		rte_errno = ENOTSUP;
824 		return -1;
825 	}
826 
827 	ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx);
828 	if (ret < 0) {
829 		rte_errno = -ret;
830 		ret = -1;
831 	}
832 	return ret;
833 }
834 
835 int
836 rte_memseg_get_fd(const struct rte_memseg *ms)
837 {
838 	int ret;
839 
840 	rte_mcfg_mem_read_lock();
841 	ret = rte_memseg_get_fd_thread_unsafe(ms);
842 	rte_mcfg_mem_read_unlock();
843 
844 	return ret;
845 }
846 
847 int
848 rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms,
849 		size_t *offset)
850 {
851 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
852 	struct rte_memseg_list *msl;
853 	struct rte_fbarray *arr;
854 	int msl_idx, seg_idx, ret;
855 
856 	if (ms == NULL || offset == NULL) {
857 		rte_errno = EINVAL;
858 		return -1;
859 	}
860 
861 	msl = rte_mem_virt2memseg_list(ms->addr);
862 	if (msl == NULL) {
863 		rte_errno = EINVAL;
864 		return -1;
865 	}
866 	arr = &msl->memseg_arr;
867 
868 	msl_idx = msl - mcfg->memsegs;
869 	seg_idx = rte_fbarray_find_idx(arr, ms);
870 
871 	if (!rte_fbarray_is_used(arr, seg_idx)) {
872 		rte_errno = ENOENT;
873 		return -1;
874 	}
875 
876 	/* segment fd API is not supported for external segments */
877 	if (msl->external) {
878 		rte_errno = ENOTSUP;
879 		return -1;
880 	}
881 
882 	ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset);
883 	if (ret < 0) {
884 		rte_errno = -ret;
885 		ret = -1;
886 	}
887 	return ret;
888 }
889 
890 int
891 rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset)
892 {
893 	int ret;
894 
895 	rte_mcfg_mem_read_lock();
896 	ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset);
897 	rte_mcfg_mem_read_unlock();
898 
899 	return ret;
900 }
901 
902 int
903 rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[],
904 		unsigned int n_pages, size_t page_sz)
905 {
906 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
907 	unsigned int socket_id, n;
908 	int ret = 0;
909 
910 	if (va_addr == NULL || page_sz == 0 || len == 0 ||
911 			!rte_is_power_of_2(page_sz) ||
912 			RTE_ALIGN(len, page_sz) != len ||
913 			((len / page_sz) != n_pages && iova_addrs != NULL) ||
914 			!rte_is_aligned(va_addr, page_sz)) {
915 		rte_errno = EINVAL;
916 		return -1;
917 	}
918 	rte_mcfg_mem_write_lock();
919 
920 	/* make sure the segment doesn't already exist */
921 	if (malloc_heap_find_external_seg(va_addr, len) != NULL) {
922 		rte_errno = EEXIST;
923 		ret = -1;
924 		goto unlock;
925 	}
926 
927 	/* get next available socket ID */
928 	socket_id = mcfg->next_socket_id;
929 	if (socket_id > INT32_MAX) {
930 		RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
931 		rte_errno = ENOSPC;
932 		ret = -1;
933 		goto unlock;
934 	}
935 
936 	/* we can create a new memseg */
937 	n = len / page_sz;
938 	if (malloc_heap_create_external_seg(va_addr, iova_addrs, n,
939 			page_sz, "extmem", socket_id) == NULL) {
940 		ret = -1;
941 		goto unlock;
942 	}
943 
944 	/* memseg list successfully created - increment next socket ID */
945 	mcfg->next_socket_id++;
946 unlock:
947 	rte_mcfg_mem_write_unlock();
948 	return ret;
949 }
950 
951 int
952 rte_extmem_unregister(void *va_addr, size_t len)
953 {
954 	struct rte_memseg_list *msl;
955 	int ret = 0;
956 
957 	if (va_addr == NULL || len == 0) {
958 		rte_errno = EINVAL;
959 		return -1;
960 	}
961 	rte_mcfg_mem_write_lock();
962 
963 	/* find our segment */
964 	msl = malloc_heap_find_external_seg(va_addr, len);
965 	if (msl == NULL) {
966 		rte_errno = ENOENT;
967 		ret = -1;
968 		goto unlock;
969 	}
970 
971 	ret = malloc_heap_destroy_external_seg(msl);
972 unlock:
973 	rte_mcfg_mem_write_unlock();
974 	return ret;
975 }
976 
977 static int
978 sync_memory(void *va_addr, size_t len, bool attach)
979 {
980 	struct rte_memseg_list *msl;
981 	int ret = 0;
982 
983 	if (va_addr == NULL || len == 0) {
984 		rte_errno = EINVAL;
985 		return -1;
986 	}
987 	rte_mcfg_mem_write_lock();
988 
989 	/* find our segment */
990 	msl = malloc_heap_find_external_seg(va_addr, len);
991 	if (msl == NULL) {
992 		rte_errno = ENOENT;
993 		ret = -1;
994 		goto unlock;
995 	}
996 	if (attach)
997 		ret = rte_fbarray_attach(&msl->memseg_arr);
998 	else
999 		ret = rte_fbarray_detach(&msl->memseg_arr);
1000 
1001 unlock:
1002 	rte_mcfg_mem_write_unlock();
1003 	return ret;
1004 }
1005 
1006 int
1007 rte_extmem_attach(void *va_addr, size_t len)
1008 {
1009 	return sync_memory(va_addr, len, true);
1010 }
1011 
1012 int
1013 rte_extmem_detach(void *va_addr, size_t len)
1014 {
1015 	return sync_memory(va_addr, len, false);
1016 }
1017 
1018 /* detach all EAL memory */
1019 int
1020 rte_eal_memory_detach(void)
1021 {
1022 	const struct internal_config *internal_conf =
1023 		eal_get_internal_configuration();
1024 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1025 	size_t page_sz = rte_mem_page_size();
1026 	unsigned int i;
1027 
1028 	if (internal_conf->in_memory == 1)
1029 		return 0;
1030 
1031 	rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
1032 
1033 	/* detach internal memory subsystem data first */
1034 	if (eal_memalloc_cleanup())
1035 		RTE_LOG(ERR, EAL, "Could not release memory subsystem data\n");
1036 
1037 	for (i = 0; i < RTE_DIM(mcfg->memsegs); i++) {
1038 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
1039 
1040 		/* skip uninitialized segments */
1041 		if (msl->base_va == NULL)
1042 			continue;
1043 		/*
1044 		 * external segments are supposed to be detached at this point,
1045 		 * but if they aren't, we can't really do anything about it,
1046 		 * because if we skip them here, they'll become invalid after
1047 		 * we unmap the memconfig anyway. however, if this is externally
1048 		 * referenced memory, we have no business unmapping it.
1049 		 */
1050 		if (!msl->external)
1051 			if (rte_mem_unmap(msl->base_va, msl->len) != 0)
1052 				RTE_LOG(ERR, EAL, "Could not unmap memory: %s\n",
1053 						rte_strerror(rte_errno));
1054 
1055 		/*
1056 		 * we are detaching the fbarray rather than destroying because
1057 		 * other processes might still reference this fbarray, and we
1058 		 * have no way of knowing if they still do.
1059 		 */
1060 		if (rte_fbarray_detach(&msl->memseg_arr))
1061 			RTE_LOG(ERR, EAL, "Could not detach fbarray: %s\n",
1062 					rte_strerror(rte_errno));
1063 	}
1064 	rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
1065 
1066 	/*
1067 	 * we've detached the memseg lists, so we can unmap the shared mem
1068 	 * config - we can't zero it out because it might still be referenced
1069 	 * by other processes.
1070 	 */
1071 	if (internal_conf->no_shconf == 0 && mcfg->mem_cfg_addr != 0) {
1072 		if (rte_mem_unmap(mcfg, RTE_ALIGN(sizeof(*mcfg), page_sz)) != 0)
1073 			RTE_LOG(ERR, EAL, "Could not unmap shared memory config: %s\n",
1074 					rte_strerror(rte_errno));
1075 	}
1076 	rte_eal_get_configuration()->mem_config = NULL;
1077 
1078 	return 0;
1079 }
1080 
1081 /* init memory subsystem */
1082 int
1083 rte_eal_memory_init(void)
1084 {
1085 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1086 	const struct internal_config *internal_conf =
1087 		eal_get_internal_configuration();
1088 
1089 	int retval;
1090 	RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
1091 
1092 	if (!mcfg)
1093 		return -1;
1094 
1095 	/* lock mem hotplug here, to prevent races while we init */
1096 	rte_mcfg_mem_read_lock();
1097 
1098 	if (rte_eal_memseg_init() < 0)
1099 		goto fail;
1100 
1101 	if (eal_memalloc_init() < 0)
1102 		goto fail;
1103 
1104 	retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
1105 			rte_eal_hugepage_init() :
1106 			rte_eal_hugepage_attach();
1107 	if (retval < 0)
1108 		goto fail;
1109 
1110 	if (internal_conf->no_shconf == 0 && rte_eal_memdevice_init() < 0)
1111 		goto fail;
1112 
1113 	return 0;
1114 fail:
1115 	rte_mcfg_mem_read_unlock();
1116 	return -1;
1117 }
1118 
1119 #ifndef RTE_EXEC_ENV_WINDOWS
1120 #define EAL_MEMZONE_LIST_REQ	"/eal/memzone_list"
1121 #define EAL_MEMZONE_INFO_REQ	"/eal/memzone_info"
1122 #define EAL_HEAP_LIST_REQ	"/eal/heap_list"
1123 #define EAL_HEAP_INFO_REQ	"/eal/heap_info"
1124 #define ADDR_STR		15
1125 
1126 /* Telemetry callback handler to return heap stats for requested heap id. */
1127 static int
1128 handle_eal_heap_info_request(const char *cmd __rte_unused, const char *params,
1129 			     struct rte_tel_data *d)
1130 {
1131 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1132 	struct rte_malloc_socket_stats sock_stats;
1133 	struct malloc_heap *heap;
1134 	unsigned int heap_id;
1135 
1136 	if (params == NULL || strlen(params) == 0)
1137 		return -1;
1138 
1139 	heap_id = (unsigned int)strtoul(params, NULL, 10);
1140 
1141 	/* Get the heap stats of user provided heap id */
1142 	heap = &mcfg->malloc_heaps[heap_id];
1143 	malloc_heap_get_stats(heap, &sock_stats);
1144 
1145 	rte_tel_data_start_dict(d);
1146 	rte_tel_data_add_dict_int(d, "Head id", heap_id);
1147 	rte_tel_data_add_dict_string(d, "Name", heap->name);
1148 	rte_tel_data_add_dict_u64(d, "Heap_size",
1149 				  sock_stats.heap_totalsz_bytes);
1150 	rte_tel_data_add_dict_u64(d, "Free_size", sock_stats.heap_freesz_bytes);
1151 	rte_tel_data_add_dict_u64(d, "Alloc_size",
1152 				  sock_stats.heap_allocsz_bytes);
1153 	rte_tel_data_add_dict_u64(d, "Greatest_free_size",
1154 				  sock_stats.greatest_free_size);
1155 	rte_tel_data_add_dict_u64(d, "Alloc_count", sock_stats.alloc_count);
1156 	rte_tel_data_add_dict_u64(d, "Free_count", sock_stats.free_count);
1157 
1158 	return 0;
1159 }
1160 
1161 /* Telemetry callback handler to list the heap ids setup. */
1162 static int
1163 handle_eal_heap_list_request(const char *cmd __rte_unused,
1164 				const char *params __rte_unused,
1165 				struct rte_tel_data *d)
1166 {
1167 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1168 	struct rte_malloc_socket_stats sock_stats;
1169 	unsigned int heap_id;
1170 
1171 	rte_tel_data_start_array(d, RTE_TEL_INT_VAL);
1172 	/* Iterate through all initialised heaps */
1173 	for (heap_id = 0; heap_id < RTE_MAX_HEAPS; heap_id++) {
1174 		struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
1175 
1176 		malloc_heap_get_stats(heap, &sock_stats);
1177 		if (sock_stats.heap_totalsz_bytes != 0)
1178 			rte_tel_data_add_array_int(d, heap_id);
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /* Telemetry callback handler to return memzone info for requested index. */
1185 static int
1186 handle_eal_memzone_info_request(const char *cmd __rte_unused,
1187 				const char *params, struct rte_tel_data *d)
1188 {
1189 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1190 	struct rte_memseg_list *msl = NULL;
1191 	int ms_idx, ms_count = 0;
1192 	void *cur_addr, *mz_end;
1193 	struct rte_memzone *mz;
1194 	struct rte_memseg *ms;
1195 	char addr[ADDR_STR];
1196 	unsigned int mz_idx;
1197 	size_t page_sz;
1198 
1199 	if (params == NULL || strlen(params) == 0)
1200 		return -1;
1201 
1202 	mz_idx = strtoul(params, NULL, 10);
1203 
1204 	/* Get the memzone handle using index */
1205 	mz = rte_fbarray_get(&mcfg->memzones, mz_idx);
1206 
1207 	rte_tel_data_start_dict(d);
1208 	rte_tel_data_add_dict_int(d, "Zone", mz_idx);
1209 	rte_tel_data_add_dict_string(d, "Name", mz->name);
1210 	rte_tel_data_add_dict_int(d, "Length", mz->len);
1211 	snprintf(addr, ADDR_STR, "%p", mz->addr);
1212 	rte_tel_data_add_dict_string(d, "Address", addr);
1213 	rte_tel_data_add_dict_int(d, "Socket", mz->socket_id);
1214 	rte_tel_data_add_dict_int(d, "Flags", mz->flags);
1215 
1216 	/* go through each page occupied by this memzone */
1217 	msl = rte_mem_virt2memseg_list(mz->addr);
1218 	if (!msl) {
1219 		RTE_LOG(DEBUG, EAL, "Skipping bad memzone\n");
1220 		return -1;
1221 	}
1222 	page_sz = (size_t)mz->hugepage_sz;
1223 	cur_addr = RTE_PTR_ALIGN_FLOOR(mz->addr, page_sz);
1224 	mz_end = RTE_PTR_ADD(cur_addr, mz->len);
1225 
1226 	ms_idx = RTE_PTR_DIFF(mz->addr, msl->base_va) / page_sz;
1227 	ms = rte_fbarray_get(&msl->memseg_arr, ms_idx);
1228 
1229 	rte_tel_data_add_dict_int(d, "Hugepage_size", page_sz);
1230 	snprintf(addr, ADDR_STR, "%p", ms->addr);
1231 	rte_tel_data_add_dict_string(d, "Hugepage_base", addr);
1232 
1233 	do {
1234 		/* advance VA to next page */
1235 		cur_addr = RTE_PTR_ADD(cur_addr, page_sz);
1236 
1237 		/* memzones occupy contiguous segments */
1238 		++ms;
1239 		ms_count++;
1240 	} while (cur_addr < mz_end);
1241 
1242 	rte_tel_data_add_dict_int(d, "Hugepage_used", ms_count);
1243 
1244 	return 0;
1245 }
1246 
1247 static void
1248 memzone_list_cb(const struct rte_memzone *mz __rte_unused,
1249 		 void *arg __rte_unused)
1250 {
1251 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1252 	struct rte_tel_data *d = arg;
1253 	int mz_idx;
1254 
1255 	mz_idx = rte_fbarray_find_idx(&mcfg->memzones, mz);
1256 	rte_tel_data_add_array_int(d, mz_idx);
1257 }
1258 
1259 
1260 /* Telemetry callback handler to list the memzones reserved. */
1261 static int
1262 handle_eal_memzone_list_request(const char *cmd __rte_unused,
1263 				const char *params __rte_unused,
1264 				struct rte_tel_data *d)
1265 {
1266 	rte_tel_data_start_array(d, RTE_TEL_INT_VAL);
1267 	rte_memzone_walk(memzone_list_cb, d);
1268 
1269 	return 0;
1270 }
1271 
1272 RTE_INIT(memory_telemetry)
1273 {
1274 	rte_telemetry_register_cmd(
1275 			EAL_MEMZONE_LIST_REQ, handle_eal_memzone_list_request,
1276 			"List of memzone index reserved. Takes no parameters");
1277 	rte_telemetry_register_cmd(
1278 			EAL_MEMZONE_INFO_REQ, handle_eal_memzone_info_request,
1279 			"Returns memzone info. Parameters: int mz_id");
1280 	rte_telemetry_register_cmd(
1281 			EAL_HEAP_LIST_REQ, handle_eal_heap_list_request,
1282 			"List of heap index setup. Takes no parameters");
1283 	rte_telemetry_register_cmd(
1284 			EAL_HEAP_INFO_REQ, handle_eal_heap_info_request,
1285 			"Returns malloc heap stats. Parameters: int heap_id");
1286 }
1287 #endif
1288