1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <ctype.h> 6 #include <errno.h> 7 #include <stdio.h> 8 #include <stdint.h> 9 #include <stdlib.h> 10 #include <string.h> 11 #include <inttypes.h> 12 13 #include <rte_fbarray.h> 14 #include <rte_memory.h> 15 #include <rte_eal.h> 16 #include <rte_eal_memconfig.h> 17 #include <rte_eal_paging.h> 18 #include <rte_errno.h> 19 #include <rte_log.h> 20 #ifndef RTE_EXEC_ENV_WINDOWS 21 #include <rte_telemetry.h> 22 #endif 23 24 #include "eal_memalloc.h" 25 #include "eal_private.h" 26 #include "eal_internal_cfg.h" 27 #include "eal_memcfg.h" 28 #include "eal_options.h" 29 #include "malloc_elem.h" 30 #include "malloc_heap.h" 31 32 /* 33 * Try to mmap *size bytes in /dev/zero. If it is successful, return the 34 * pointer to the mmap'd area and keep *size unmodified. Else, retry 35 * with a smaller zone: decrease *size by hugepage_sz until it reaches 36 * 0. In this case, return NULL. Note: this function returns an address 37 * which is a multiple of hugepage size. 38 */ 39 40 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i" 41 42 static void *next_baseaddr; 43 static uint64_t system_page_sz; 44 45 #define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5 46 void * 47 eal_get_virtual_area(void *requested_addr, size_t *size, 48 size_t page_sz, int flags, int reserve_flags) 49 { 50 bool addr_is_hint, allow_shrink, unmap, no_align; 51 uint64_t map_sz; 52 void *mapped_addr, *aligned_addr; 53 uint8_t try = 0; 54 struct internal_config *internal_conf = 55 eal_get_internal_configuration(); 56 57 if (system_page_sz == 0) 58 system_page_sz = rte_mem_page_size(); 59 60 EAL_LOG(DEBUG, "Ask a virtual area of 0x%zx bytes", *size); 61 62 addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0; 63 allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0; 64 unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0; 65 66 if (next_baseaddr == NULL && internal_conf->base_virtaddr != 0 && 67 rte_eal_process_type() == RTE_PROC_PRIMARY) 68 next_baseaddr = (void *) internal_conf->base_virtaddr; 69 70 #ifdef RTE_ARCH_64 71 if (next_baseaddr == NULL && internal_conf->base_virtaddr == 0 && 72 rte_eal_process_type() == RTE_PROC_PRIMARY) 73 next_baseaddr = (void *) eal_get_baseaddr(); 74 #endif 75 if (requested_addr == NULL && next_baseaddr != NULL) { 76 requested_addr = next_baseaddr; 77 requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz); 78 addr_is_hint = true; 79 } 80 81 /* we don't need alignment of resulting pointer in the following cases: 82 * 83 * 1. page size is equal to system size 84 * 2. we have a requested address, and it is page-aligned, and we will 85 * be discarding the address if we get a different one. 86 * 87 * for all other cases, alignment is potentially necessary. 88 */ 89 no_align = (requested_addr != NULL && 90 requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) && 91 !addr_is_hint) || 92 page_sz == system_page_sz; 93 94 do { 95 map_sz = no_align ? *size : *size + page_sz; 96 if (map_sz > SIZE_MAX) { 97 EAL_LOG(ERR, "Map size too big"); 98 rte_errno = E2BIG; 99 return NULL; 100 } 101 102 mapped_addr = eal_mem_reserve( 103 requested_addr, (size_t)map_sz, reserve_flags); 104 if ((mapped_addr == NULL) && allow_shrink) 105 *size -= page_sz; 106 107 if ((mapped_addr != NULL) && addr_is_hint && 108 (mapped_addr != requested_addr)) { 109 try++; 110 next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz); 111 if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) { 112 /* hint was not used. Try with another offset */ 113 eal_mem_free(mapped_addr, map_sz); 114 mapped_addr = NULL; 115 requested_addr = next_baseaddr; 116 } 117 } 118 } while ((allow_shrink || addr_is_hint) && 119 (mapped_addr == NULL) && (*size > 0)); 120 121 /* align resulting address - if map failed, we will ignore the value 122 * anyway, so no need to add additional checks. 123 */ 124 aligned_addr = no_align ? mapped_addr : 125 RTE_PTR_ALIGN(mapped_addr, page_sz); 126 127 if (*size == 0) { 128 EAL_LOG(ERR, "Cannot get a virtual area of any size: %s", 129 rte_strerror(rte_errno)); 130 return NULL; 131 } else if (mapped_addr == NULL) { 132 EAL_LOG(ERR, "Cannot get a virtual area: %s", 133 rte_strerror(rte_errno)); 134 return NULL; 135 } else if (requested_addr != NULL && !addr_is_hint && 136 aligned_addr != requested_addr) { 137 EAL_LOG(ERR, "Cannot get a virtual area at requested address: %p (got %p)", 138 requested_addr, aligned_addr); 139 eal_mem_free(mapped_addr, map_sz); 140 rte_errno = EADDRNOTAVAIL; 141 return NULL; 142 } else if (requested_addr != NULL && addr_is_hint && 143 aligned_addr != requested_addr) { 144 /* 145 * demote this warning to debug if we did not explicitly request 146 * a base virtual address. 147 */ 148 if (internal_conf->base_virtaddr != 0) { 149 EAL_LOG(WARNING, "WARNING! Base virtual address hint (%p != %p) not respected!", 150 requested_addr, aligned_addr); 151 EAL_LOG(WARNING, " This may cause issues with mapping memory into secondary processes"); 152 } else { 153 EAL_LOG(DEBUG, "WARNING! Base virtual address hint (%p != %p) not respected!", 154 requested_addr, aligned_addr); 155 EAL_LOG(DEBUG, " This may cause issues with mapping memory into secondary processes"); 156 } 157 } else if (next_baseaddr != NULL) { 158 next_baseaddr = RTE_PTR_ADD(aligned_addr, *size); 159 } 160 161 EAL_LOG(DEBUG, "Virtual area found at %p (size = 0x%zx)", 162 aligned_addr, *size); 163 164 if (unmap) { 165 eal_mem_free(mapped_addr, map_sz); 166 } else if (!no_align) { 167 void *map_end, *aligned_end; 168 size_t before_len, after_len; 169 170 /* when we reserve space with alignment, we add alignment to 171 * mapping size. On 32-bit, if 1GB alignment was requested, this 172 * would waste 1GB of address space, which is a luxury we cannot 173 * afford. so, if alignment was performed, check if any unneeded 174 * address space can be unmapped back. 175 */ 176 177 map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz); 178 aligned_end = RTE_PTR_ADD(aligned_addr, *size); 179 180 /* unmap space before aligned mmap address */ 181 before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr); 182 if (before_len > 0) 183 eal_mem_free(mapped_addr, before_len); 184 185 /* unmap space after aligned end mmap address */ 186 after_len = RTE_PTR_DIFF(map_end, aligned_end); 187 if (after_len > 0) 188 eal_mem_free(aligned_end, after_len); 189 } 190 191 if (!unmap) { 192 /* Exclude these pages from a core dump. */ 193 eal_mem_set_dump(aligned_addr, *size, false); 194 } 195 196 return aligned_addr; 197 } 198 199 int 200 eal_memseg_list_init_named(struct rte_memseg_list *msl, const char *name, 201 uint64_t page_sz, int n_segs, int socket_id, bool heap) 202 { 203 if (rte_fbarray_init(&msl->memseg_arr, name, n_segs, 204 sizeof(struct rte_memseg))) { 205 EAL_LOG(ERR, "Cannot allocate memseg list: %s", 206 rte_strerror(rte_errno)); 207 return -1; 208 } 209 210 msl->page_sz = page_sz; 211 msl->socket_id = socket_id; 212 msl->base_va = NULL; 213 msl->heap = heap; 214 215 EAL_LOG(DEBUG, 216 "Memseg list allocated at socket %i, page size 0x%"PRIx64"kB", 217 socket_id, page_sz >> 10); 218 219 return 0; 220 } 221 222 int 223 eal_memseg_list_init(struct rte_memseg_list *msl, uint64_t page_sz, 224 int n_segs, int socket_id, int type_msl_idx, bool heap) 225 { 226 char name[RTE_FBARRAY_NAME_LEN]; 227 228 snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id, 229 type_msl_idx); 230 231 return eal_memseg_list_init_named( 232 msl, name, page_sz, n_segs, socket_id, heap); 233 } 234 235 int 236 eal_memseg_list_alloc(struct rte_memseg_list *msl, int reserve_flags) 237 { 238 size_t page_sz, mem_sz; 239 void *addr; 240 241 page_sz = msl->page_sz; 242 mem_sz = page_sz * msl->memseg_arr.len; 243 244 addr = eal_get_virtual_area( 245 msl->base_va, &mem_sz, page_sz, 0, reserve_flags); 246 if (addr == NULL) { 247 #ifndef RTE_EXEC_ENV_WINDOWS 248 /* The hint would be misleading on Windows, because address 249 * is by default system-selected (base VA = 0). 250 * However, this function is called from many places, 251 * including common code, so don't duplicate the message. 252 */ 253 if (rte_errno == EADDRNOTAVAIL) 254 EAL_LOG(ERR, "Cannot reserve %llu bytes at [%p] - " 255 "please use '--" OPT_BASE_VIRTADDR "' option", 256 (unsigned long long)mem_sz, msl->base_va); 257 #endif 258 return -1; 259 } 260 msl->base_va = addr; 261 msl->len = mem_sz; 262 263 EAL_LOG(DEBUG, "VA reserved for memseg list at %p, size %zx", 264 addr, mem_sz); 265 266 return 0; 267 } 268 269 void 270 eal_memseg_list_populate(struct rte_memseg_list *msl, void *addr, int n_segs) 271 { 272 size_t page_sz = msl->page_sz; 273 int i; 274 275 for (i = 0; i < n_segs; i++) { 276 struct rte_fbarray *arr = &msl->memseg_arr; 277 struct rte_memseg *ms = rte_fbarray_get(arr, i); 278 279 if (rte_eal_iova_mode() == RTE_IOVA_VA) 280 ms->iova = (uintptr_t)addr; 281 else 282 ms->iova = RTE_BAD_IOVA; 283 ms->addr = addr; 284 ms->hugepage_sz = page_sz; 285 ms->socket_id = 0; 286 ms->len = page_sz; 287 288 rte_fbarray_set_used(arr, i); 289 290 addr = RTE_PTR_ADD(addr, page_sz); 291 } 292 } 293 294 static struct rte_memseg * 295 virt2memseg(const void *addr, const struct rte_memseg_list *msl) 296 { 297 const struct rte_fbarray *arr; 298 void *start, *end; 299 int ms_idx; 300 301 if (msl == NULL) 302 return NULL; 303 304 /* a memseg list was specified, check if it's the right one */ 305 start = msl->base_va; 306 end = RTE_PTR_ADD(start, msl->len); 307 308 if (addr < start || addr >= end) 309 return NULL; 310 311 /* now, calculate index */ 312 arr = &msl->memseg_arr; 313 ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz; 314 return rte_fbarray_get(arr, ms_idx); 315 } 316 317 static struct rte_memseg_list * 318 virt2memseg_list(const void *addr) 319 { 320 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 321 struct rte_memseg_list *msl; 322 int msl_idx; 323 324 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { 325 void *start, *end; 326 msl = &mcfg->memsegs[msl_idx]; 327 328 start = msl->base_va; 329 end = RTE_PTR_ADD(start, msl->len); 330 if (addr >= start && addr < end) 331 break; 332 } 333 /* if we didn't find our memseg list */ 334 if (msl_idx == RTE_MAX_MEMSEG_LISTS) 335 return NULL; 336 return msl; 337 } 338 339 struct rte_memseg_list * 340 rte_mem_virt2memseg_list(const void *addr) 341 { 342 return virt2memseg_list(addr); 343 } 344 345 struct virtiova { 346 rte_iova_t iova; 347 void *virt; 348 }; 349 static int 350 find_virt(const struct rte_memseg_list *msl __rte_unused, 351 const struct rte_memseg *ms, void *arg) 352 { 353 struct virtiova *vi = arg; 354 if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) { 355 size_t offset = vi->iova - ms->iova; 356 vi->virt = RTE_PTR_ADD(ms->addr, offset); 357 /* stop the walk */ 358 return 1; 359 } 360 return 0; 361 } 362 static int 363 find_virt_legacy(const struct rte_memseg_list *msl __rte_unused, 364 const struct rte_memseg *ms, size_t len, void *arg) 365 { 366 struct virtiova *vi = arg; 367 if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) { 368 size_t offset = vi->iova - ms->iova; 369 vi->virt = RTE_PTR_ADD(ms->addr, offset); 370 /* stop the walk */ 371 return 1; 372 } 373 return 0; 374 } 375 376 void * 377 rte_mem_iova2virt(rte_iova_t iova) 378 { 379 struct virtiova vi; 380 const struct internal_config *internal_conf = 381 eal_get_internal_configuration(); 382 383 memset(&vi, 0, sizeof(vi)); 384 385 vi.iova = iova; 386 /* for legacy mem, we can get away with scanning VA-contiguous segments, 387 * as we know they are PA-contiguous as well 388 */ 389 if (internal_conf->legacy_mem) 390 rte_memseg_contig_walk(find_virt_legacy, &vi); 391 else 392 rte_memseg_walk(find_virt, &vi); 393 394 return vi.virt; 395 } 396 397 struct rte_memseg * 398 rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl) 399 { 400 return virt2memseg(addr, msl != NULL ? msl : 401 rte_mem_virt2memseg_list(addr)); 402 } 403 404 static int 405 physmem_size(const struct rte_memseg_list *msl, void *arg) 406 { 407 uint64_t *total_len = arg; 408 409 if (msl->external) 410 return 0; 411 412 *total_len += msl->memseg_arr.count * msl->page_sz; 413 414 return 0; 415 } 416 417 /* get the total size of memory */ 418 uint64_t 419 rte_eal_get_physmem_size(void) 420 { 421 uint64_t total_len = 0; 422 423 rte_memseg_list_walk(physmem_size, &total_len); 424 425 return total_len; 426 } 427 428 static int 429 dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms, 430 void *arg) 431 { 432 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 433 int msl_idx, ms_idx, fd; 434 FILE *f = arg; 435 436 msl_idx = msl - mcfg->memsegs; 437 if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS) 438 return -1; 439 440 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 441 if (ms_idx < 0) 442 return -1; 443 444 fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx); 445 fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, " 446 "virt:%p, socket_id:%"PRId32", " 447 "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", " 448 "nrank:%"PRIx32" fd:%i\n", 449 msl_idx, ms_idx, 450 ms->iova, 451 ms->len, 452 ms->addr, 453 ms->socket_id, 454 ms->hugepage_sz, 455 ms->nchannel, 456 ms->nrank, 457 fd); 458 459 return 0; 460 } 461 462 /* 463 * Defining here because declared in rte_memory.h, but the actual implementation 464 * is in eal_common_memalloc.c, like all other memalloc internals. 465 */ 466 int 467 rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb, 468 void *arg) 469 { 470 const struct internal_config *internal_conf = 471 eal_get_internal_configuration(); 472 473 /* FreeBSD boots with legacy mem enabled by default */ 474 if (internal_conf->legacy_mem) { 475 EAL_LOG(DEBUG, "Registering mem event callbacks not supported"); 476 rte_errno = ENOTSUP; 477 return -1; 478 } 479 return eal_memalloc_mem_event_callback_register(name, clb, arg); 480 } 481 482 int 483 rte_mem_event_callback_unregister(const char *name, void *arg) 484 { 485 const struct internal_config *internal_conf = 486 eal_get_internal_configuration(); 487 488 /* FreeBSD boots with legacy mem enabled by default */ 489 if (internal_conf->legacy_mem) { 490 EAL_LOG(DEBUG, "Registering mem event callbacks not supported"); 491 rte_errno = ENOTSUP; 492 return -1; 493 } 494 return eal_memalloc_mem_event_callback_unregister(name, arg); 495 } 496 497 int 498 rte_mem_alloc_validator_register(const char *name, 499 rte_mem_alloc_validator_t clb, int socket_id, size_t limit) 500 { 501 const struct internal_config *internal_conf = 502 eal_get_internal_configuration(); 503 504 /* FreeBSD boots with legacy mem enabled by default */ 505 if (internal_conf->legacy_mem) { 506 EAL_LOG(DEBUG, "Registering mem alloc validators not supported"); 507 rte_errno = ENOTSUP; 508 return -1; 509 } 510 return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id, 511 limit); 512 } 513 514 int 515 rte_mem_alloc_validator_unregister(const char *name, int socket_id) 516 { 517 const struct internal_config *internal_conf = 518 eal_get_internal_configuration(); 519 520 /* FreeBSD boots with legacy mem enabled by default */ 521 if (internal_conf->legacy_mem) { 522 EAL_LOG(DEBUG, "Registering mem alloc validators not supported"); 523 rte_errno = ENOTSUP; 524 return -1; 525 } 526 return eal_memalloc_mem_alloc_validator_unregister(name, socket_id); 527 } 528 529 /* Dump the physical memory layout on console */ 530 void 531 rte_dump_physmem_layout(FILE *f) 532 { 533 rte_memseg_walk(dump_memseg, f); 534 fprintf(f, "Total Memory Segments size = %"PRIu64"M\n", 535 rte_eal_get_physmem_size() / (1024 * 1024)); 536 } 537 538 static int 539 check_iova(const struct rte_memseg_list *msl __rte_unused, 540 const struct rte_memseg *ms, void *arg) 541 { 542 uint64_t *mask = arg; 543 rte_iova_t iova; 544 545 /* higher address within segment */ 546 iova = (ms->iova + ms->len) - 1; 547 if (!(iova & *mask)) 548 return 0; 549 550 EAL_LOG(DEBUG, "memseg iova %"PRIx64", len %zx, out of range", 551 ms->iova, ms->len); 552 553 EAL_LOG(DEBUG, "\tusing dma mask %"PRIx64, *mask); 554 return 1; 555 } 556 557 #define MAX_DMA_MASK_BITS 63 558 559 /* check memseg iovas are within the required range based on dma mask */ 560 static int 561 check_dma_mask(uint8_t maskbits, bool thread_unsafe) 562 { 563 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 564 uint64_t mask; 565 int ret; 566 567 /* Sanity check. We only check width can be managed with 64 bits 568 * variables. Indeed any higher value is likely wrong. */ 569 if (maskbits > MAX_DMA_MASK_BITS) { 570 EAL_LOG(ERR, "wrong dma mask size %u (Max: %u)", 571 maskbits, MAX_DMA_MASK_BITS); 572 return -1; 573 } 574 575 /* create dma mask */ 576 mask = ~((1ULL << maskbits) - 1); 577 578 if (thread_unsafe) 579 ret = rte_memseg_walk_thread_unsafe(check_iova, &mask); 580 else 581 ret = rte_memseg_walk(check_iova, &mask); 582 583 if (ret) 584 /* 585 * Dma mask precludes hugepage usage. 586 * This device can not be used and we do not need to keep 587 * the dma mask. 588 */ 589 return 1; 590 591 /* 592 * we need to keep the more restricted maskbit for checking 593 * potential dynamic memory allocation in the future. 594 */ 595 mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : 596 RTE_MIN(mcfg->dma_maskbits, maskbits); 597 598 return 0; 599 } 600 601 int 602 rte_mem_check_dma_mask(uint8_t maskbits) 603 { 604 return check_dma_mask(maskbits, false); 605 } 606 607 int 608 rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits) 609 { 610 return check_dma_mask(maskbits, true); 611 } 612 613 /* 614 * Set dma mask to use when memory initialization is done. 615 * 616 * This function should ONLY be used by code executed before the memory 617 * initialization. PMDs should use rte_mem_check_dma_mask if addressing 618 * limitations by the device. 619 */ 620 void 621 rte_mem_set_dma_mask(uint8_t maskbits) 622 { 623 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 624 625 mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : 626 RTE_MIN(mcfg->dma_maskbits, maskbits); 627 } 628 629 /* return the number of memory channels */ 630 unsigned rte_memory_get_nchannel(void) 631 { 632 return rte_eal_get_configuration()->mem_config->nchannel; 633 } 634 635 /* return the number of memory rank */ 636 unsigned rte_memory_get_nrank(void) 637 { 638 return rte_eal_get_configuration()->mem_config->nrank; 639 } 640 641 static int 642 rte_eal_memdevice_init(void) 643 { 644 struct rte_config *config; 645 const struct internal_config *internal_conf; 646 647 if (rte_eal_process_type() == RTE_PROC_SECONDARY) 648 return 0; 649 650 internal_conf = eal_get_internal_configuration(); 651 config = rte_eal_get_configuration(); 652 config->mem_config->nchannel = internal_conf->force_nchannel; 653 config->mem_config->nrank = internal_conf->force_nrank; 654 655 return 0; 656 } 657 658 /* Lock page in physical memory and prevent from swapping. */ 659 int 660 rte_mem_lock_page(const void *virt) 661 { 662 uintptr_t virtual = (uintptr_t)virt; 663 size_t page_size = rte_mem_page_size(); 664 uintptr_t aligned = RTE_PTR_ALIGN_FLOOR(virtual, page_size); 665 return rte_mem_lock((void *)aligned, page_size); 666 } 667 668 int 669 rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg) 670 { 671 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 672 int i, ms_idx, ret = 0; 673 674 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 675 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 676 const struct rte_memseg *ms; 677 struct rte_fbarray *arr; 678 679 if (msl->memseg_arr.count == 0) 680 continue; 681 682 arr = &msl->memseg_arr; 683 684 ms_idx = rte_fbarray_find_next_used(arr, 0); 685 while (ms_idx >= 0) { 686 int n_segs; 687 size_t len; 688 689 ms = rte_fbarray_get(arr, ms_idx); 690 691 /* find how many more segments there are, starting with 692 * this one. 693 */ 694 n_segs = rte_fbarray_find_contig_used(arr, ms_idx); 695 len = n_segs * msl->page_sz; 696 697 ret = func(msl, ms, len, arg); 698 if (ret) 699 return ret; 700 ms_idx = rte_fbarray_find_next_used(arr, 701 ms_idx + n_segs); 702 } 703 } 704 return 0; 705 } 706 707 int 708 rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg) 709 { 710 int ret = 0; 711 712 /* do not allow allocations/frees/init while we iterate */ 713 rte_mcfg_mem_read_lock(); 714 ret = rte_memseg_contig_walk_thread_unsafe(func, arg); 715 rte_mcfg_mem_read_unlock(); 716 717 return ret; 718 } 719 720 int 721 rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg) 722 { 723 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 724 int i, ms_idx, ret = 0; 725 726 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 727 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 728 const struct rte_memseg *ms; 729 struct rte_fbarray *arr; 730 731 if (msl->memseg_arr.count == 0) 732 continue; 733 734 arr = &msl->memseg_arr; 735 736 ms_idx = rte_fbarray_find_next_used(arr, 0); 737 while (ms_idx >= 0) { 738 ms = rte_fbarray_get(arr, ms_idx); 739 ret = func(msl, ms, arg); 740 if (ret) 741 return ret; 742 ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1); 743 } 744 } 745 return 0; 746 } 747 748 int 749 rte_memseg_walk(rte_memseg_walk_t func, void *arg) 750 { 751 int ret = 0; 752 753 /* do not allow allocations/frees/init while we iterate */ 754 rte_mcfg_mem_read_lock(); 755 ret = rte_memseg_walk_thread_unsafe(func, arg); 756 rte_mcfg_mem_read_unlock(); 757 758 return ret; 759 } 760 761 int 762 rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg) 763 { 764 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 765 int i, ret = 0; 766 767 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 768 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 769 770 if (msl->base_va == NULL) 771 continue; 772 773 ret = func(msl, arg); 774 if (ret) 775 return ret; 776 } 777 return 0; 778 } 779 780 int 781 rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg) 782 { 783 int ret = 0; 784 785 /* do not allow allocations/frees/init while we iterate */ 786 rte_mcfg_mem_read_lock(); 787 ret = rte_memseg_list_walk_thread_unsafe(func, arg); 788 rte_mcfg_mem_read_unlock(); 789 790 return ret; 791 } 792 793 int 794 rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms) 795 { 796 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 797 struct rte_memseg_list *msl; 798 struct rte_fbarray *arr; 799 int msl_idx, seg_idx, ret; 800 801 if (ms == NULL) { 802 rte_errno = EINVAL; 803 return -1; 804 } 805 806 msl = rte_mem_virt2memseg_list(ms->addr); 807 if (msl == NULL) { 808 rte_errno = EINVAL; 809 return -1; 810 } 811 arr = &msl->memseg_arr; 812 813 msl_idx = msl - mcfg->memsegs; 814 seg_idx = rte_fbarray_find_idx(arr, ms); 815 816 if (!rte_fbarray_is_used(arr, seg_idx)) { 817 rte_errno = ENOENT; 818 return -1; 819 } 820 821 /* segment fd API is not supported for external segments */ 822 if (msl->external) { 823 rte_errno = ENOTSUP; 824 return -1; 825 } 826 827 ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx); 828 if (ret < 0) { 829 rte_errno = -ret; 830 ret = -1; 831 } 832 return ret; 833 } 834 835 int 836 rte_memseg_get_fd(const struct rte_memseg *ms) 837 { 838 int ret; 839 840 rte_mcfg_mem_read_lock(); 841 ret = rte_memseg_get_fd_thread_unsafe(ms); 842 rte_mcfg_mem_read_unlock(); 843 844 return ret; 845 } 846 847 int 848 rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms, 849 size_t *offset) 850 { 851 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 852 struct rte_memseg_list *msl; 853 struct rte_fbarray *arr; 854 int msl_idx, seg_idx, ret; 855 856 if (ms == NULL || offset == NULL) { 857 rte_errno = EINVAL; 858 return -1; 859 } 860 861 msl = rte_mem_virt2memseg_list(ms->addr); 862 if (msl == NULL) { 863 rte_errno = EINVAL; 864 return -1; 865 } 866 arr = &msl->memseg_arr; 867 868 msl_idx = msl - mcfg->memsegs; 869 seg_idx = rte_fbarray_find_idx(arr, ms); 870 871 if (!rte_fbarray_is_used(arr, seg_idx)) { 872 rte_errno = ENOENT; 873 return -1; 874 } 875 876 /* segment fd API is not supported for external segments */ 877 if (msl->external) { 878 rte_errno = ENOTSUP; 879 return -1; 880 } 881 882 ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset); 883 if (ret < 0) { 884 rte_errno = -ret; 885 ret = -1; 886 } 887 return ret; 888 } 889 890 int 891 rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset) 892 { 893 int ret; 894 895 rte_mcfg_mem_read_lock(); 896 ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset); 897 rte_mcfg_mem_read_unlock(); 898 899 return ret; 900 } 901 902 int 903 rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[], 904 unsigned int n_pages, size_t page_sz) 905 { 906 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 907 unsigned int socket_id, n; 908 int ret = 0; 909 910 if (va_addr == NULL || page_sz == 0 || len == 0 || 911 !rte_is_power_of_2(page_sz) || 912 RTE_ALIGN(len, page_sz) != len || 913 ((len / page_sz) != n_pages && iova_addrs != NULL) || 914 !rte_is_aligned(va_addr, page_sz)) { 915 rte_errno = EINVAL; 916 return -1; 917 } 918 rte_mcfg_mem_write_lock(); 919 920 /* make sure the segment doesn't already exist */ 921 if (malloc_heap_find_external_seg(va_addr, len) != NULL) { 922 rte_errno = EEXIST; 923 ret = -1; 924 goto unlock; 925 } 926 927 /* get next available socket ID */ 928 socket_id = mcfg->next_socket_id; 929 if (socket_id > INT32_MAX) { 930 EAL_LOG(ERR, "Cannot assign new socket ID's"); 931 rte_errno = ENOSPC; 932 ret = -1; 933 goto unlock; 934 } 935 936 /* we can create a new memseg */ 937 n = len / page_sz; 938 if (malloc_heap_create_external_seg(va_addr, iova_addrs, n, 939 page_sz, "extmem", socket_id) == NULL) { 940 ret = -1; 941 goto unlock; 942 } 943 944 /* memseg list successfully created - increment next socket ID */ 945 mcfg->next_socket_id++; 946 unlock: 947 rte_mcfg_mem_write_unlock(); 948 return ret; 949 } 950 951 int 952 rte_extmem_unregister(void *va_addr, size_t len) 953 { 954 struct rte_memseg_list *msl; 955 int ret = 0; 956 957 if (va_addr == NULL || len == 0) { 958 rte_errno = EINVAL; 959 return -1; 960 } 961 rte_mcfg_mem_write_lock(); 962 963 /* find our segment */ 964 msl = malloc_heap_find_external_seg(va_addr, len); 965 if (msl == NULL) { 966 rte_errno = ENOENT; 967 ret = -1; 968 goto unlock; 969 } 970 971 ret = malloc_heap_destroy_external_seg(msl); 972 unlock: 973 rte_mcfg_mem_write_unlock(); 974 return ret; 975 } 976 977 static int 978 sync_memory(void *va_addr, size_t len, bool attach) 979 { 980 struct rte_memseg_list *msl; 981 int ret = 0; 982 983 if (va_addr == NULL || len == 0) { 984 rte_errno = EINVAL; 985 return -1; 986 } 987 rte_mcfg_mem_write_lock(); 988 989 /* find our segment */ 990 msl = malloc_heap_find_external_seg(va_addr, len); 991 if (msl == NULL) { 992 rte_errno = ENOENT; 993 ret = -1; 994 goto unlock; 995 } 996 if (attach) 997 ret = rte_fbarray_attach(&msl->memseg_arr); 998 else 999 ret = rte_fbarray_detach(&msl->memseg_arr); 1000 1001 unlock: 1002 rte_mcfg_mem_write_unlock(); 1003 return ret; 1004 } 1005 1006 int 1007 rte_extmem_attach(void *va_addr, size_t len) 1008 { 1009 return sync_memory(va_addr, len, true); 1010 } 1011 1012 int 1013 rte_extmem_detach(void *va_addr, size_t len) 1014 { 1015 return sync_memory(va_addr, len, false); 1016 } 1017 1018 /* detach all EAL memory */ 1019 int 1020 rte_eal_memory_detach(void) 1021 { 1022 const struct internal_config *internal_conf = 1023 eal_get_internal_configuration(); 1024 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1025 size_t page_sz = rte_mem_page_size(); 1026 unsigned int i; 1027 1028 if (internal_conf->in_memory == 1) 1029 return 0; 1030 1031 rte_rwlock_write_lock(&mcfg->memory_hotplug_lock); 1032 1033 /* detach internal memory subsystem data first */ 1034 if (eal_memalloc_cleanup()) 1035 EAL_LOG(ERR, "Could not release memory subsystem data"); 1036 1037 for (i = 0; i < RTE_DIM(mcfg->memsegs); i++) { 1038 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 1039 1040 /* skip uninitialized segments */ 1041 if (msl->base_va == NULL) 1042 continue; 1043 /* 1044 * external segments are supposed to be detached at this point, 1045 * but if they aren't, we can't really do anything about it, 1046 * because if we skip them here, they'll become invalid after 1047 * we unmap the memconfig anyway. however, if this is externally 1048 * referenced memory, we have no business unmapping it. 1049 */ 1050 if (!msl->external) 1051 if (rte_mem_unmap(msl->base_va, msl->len) != 0) 1052 EAL_LOG(ERR, "Could not unmap memory: %s", 1053 rte_strerror(rte_errno)); 1054 1055 /* 1056 * we are detaching the fbarray rather than destroying because 1057 * other processes might still reference this fbarray, and we 1058 * have no way of knowing if they still do. 1059 */ 1060 if (rte_fbarray_detach(&msl->memseg_arr)) 1061 EAL_LOG(ERR, "Could not detach fbarray: %s", 1062 rte_strerror(rte_errno)); 1063 } 1064 rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock); 1065 1066 /* 1067 * we've detached the memseg lists, so we can unmap the shared mem 1068 * config - we can't zero it out because it might still be referenced 1069 * by other processes. 1070 */ 1071 if (internal_conf->no_shconf == 0 && mcfg->mem_cfg_addr != 0) { 1072 if (rte_mem_unmap(mcfg, RTE_ALIGN(sizeof(*mcfg), page_sz)) != 0) 1073 EAL_LOG(ERR, "Could not unmap shared memory config: %s", 1074 rte_strerror(rte_errno)); 1075 } 1076 rte_eal_get_configuration()->mem_config = NULL; 1077 1078 return 0; 1079 } 1080 1081 /* init memory subsystem */ 1082 int 1083 rte_eal_memory_init(void) 1084 { 1085 const struct internal_config *internal_conf = 1086 eal_get_internal_configuration(); 1087 int retval; 1088 1089 EAL_LOG(DEBUG, "Setting up physically contiguous memory..."); 1090 1091 if (rte_eal_memseg_init() < 0) 1092 goto fail; 1093 1094 if (eal_memalloc_init() < 0) 1095 goto fail; 1096 1097 retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? 1098 rte_eal_hugepage_init() : 1099 rte_eal_hugepage_attach(); 1100 if (retval < 0) 1101 goto fail; 1102 1103 if (internal_conf->no_shconf == 0 && rte_eal_memdevice_init() < 0) 1104 goto fail; 1105 1106 return 0; 1107 fail: 1108 return -1; 1109 } 1110 1111 #ifndef RTE_EXEC_ENV_WINDOWS 1112 #define EAL_MEMZONE_LIST_REQ "/eal/memzone_list" 1113 #define EAL_MEMZONE_INFO_REQ "/eal/memzone_info" 1114 #define EAL_HEAP_LIST_REQ "/eal/heap_list" 1115 #define EAL_HEAP_INFO_REQ "/eal/heap_info" 1116 #define EAL_MEMSEG_LISTS_REQ "/eal/memseg_lists" 1117 #define EAL_MEMSEG_LIST_INFO_REQ "/eal/memseg_list_info" 1118 #define EAL_MEMSEG_INFO_REQ "/eal/memseg_info" 1119 #define EAL_ELEMENT_LIST_REQ "/eal/mem_element_list" 1120 #define EAL_ELEMENT_INFO_REQ "/eal/mem_element_info" 1121 #define ADDR_STR 15 1122 1123 1124 /* Telemetry callback handler to return heap stats for requested heap id. */ 1125 static int 1126 handle_eal_heap_info_request(const char *cmd __rte_unused, const char *params, 1127 struct rte_tel_data *d) 1128 { 1129 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1130 struct rte_malloc_socket_stats sock_stats; 1131 struct malloc_heap *heap; 1132 unsigned int heap_id; 1133 1134 if (params == NULL || strlen(params) == 0) 1135 return -1; 1136 1137 heap_id = (unsigned int)strtoul(params, NULL, 10); 1138 1139 /* Get the heap stats of user provided heap id */ 1140 heap = &mcfg->malloc_heaps[heap_id]; 1141 malloc_heap_get_stats(heap, &sock_stats); 1142 1143 rte_tel_data_start_dict(d); 1144 rte_tel_data_add_dict_uint(d, "Heap_id", heap_id); 1145 rte_tel_data_add_dict_string(d, "Name", heap->name); 1146 rte_tel_data_add_dict_uint(d, "Heap_size", 1147 sock_stats.heap_totalsz_bytes); 1148 rte_tel_data_add_dict_uint(d, "Free_size", 1149 sock_stats.heap_freesz_bytes); 1150 rte_tel_data_add_dict_uint(d, "Alloc_size", 1151 sock_stats.heap_allocsz_bytes); 1152 rte_tel_data_add_dict_uint(d, "Greatest_free_size", 1153 sock_stats.greatest_free_size); 1154 rte_tel_data_add_dict_uint(d, "Alloc_count", sock_stats.alloc_count); 1155 rte_tel_data_add_dict_uint(d, "Free_count", sock_stats.free_count); 1156 1157 return 0; 1158 } 1159 1160 /* Telemetry callback handler to list the heap ids setup. */ 1161 static int 1162 handle_eal_heap_list_request(const char *cmd __rte_unused, 1163 const char *params __rte_unused, 1164 struct rte_tel_data *d) 1165 { 1166 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1167 struct rte_malloc_socket_stats sock_stats; 1168 unsigned int heap_id; 1169 1170 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1171 /* Iterate through all initialised heaps */ 1172 for (heap_id = 0; heap_id < RTE_MAX_HEAPS; heap_id++) { 1173 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; 1174 1175 malloc_heap_get_stats(heap, &sock_stats); 1176 if (sock_stats.heap_totalsz_bytes != 0) 1177 rte_tel_data_add_array_int(d, heap_id); 1178 } 1179 1180 return 0; 1181 } 1182 1183 /* Telemetry callback handler to return memzone info for requested index. */ 1184 static int 1185 handle_eal_memzone_info_request(const char *cmd __rte_unused, 1186 const char *params, struct rte_tel_data *d) 1187 { 1188 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1189 struct rte_memseg_list *msl = NULL; 1190 int ms_idx, ms_count = 0; 1191 void *cur_addr, *mz_end; 1192 struct rte_memzone *mz; 1193 struct rte_memseg *ms; 1194 char addr[ADDR_STR]; 1195 unsigned int mz_idx; 1196 size_t page_sz; 1197 1198 if (params == NULL || strlen(params) == 0) 1199 return -1; 1200 1201 mz_idx = strtoul(params, NULL, 10); 1202 1203 /* Get the memzone handle using index */ 1204 mz = rte_fbarray_get(&mcfg->memzones, mz_idx); 1205 1206 rte_tel_data_start_dict(d); 1207 rte_tel_data_add_dict_uint(d, "Zone", mz_idx); 1208 rte_tel_data_add_dict_string(d, "Name", mz->name); 1209 rte_tel_data_add_dict_uint(d, "Length", mz->len); 1210 snprintf(addr, ADDR_STR, "%p", mz->addr); 1211 rte_tel_data_add_dict_string(d, "Address", addr); 1212 rte_tel_data_add_dict_int(d, "Socket", mz->socket_id); 1213 rte_tel_data_add_dict_uint(d, "Flags", mz->flags); 1214 1215 /* go through each page occupied by this memzone */ 1216 msl = rte_mem_virt2memseg_list(mz->addr); 1217 if (!msl) { 1218 EAL_LOG(DEBUG, "Skipping bad memzone"); 1219 return -1; 1220 } 1221 page_sz = (size_t)mz->hugepage_sz; 1222 cur_addr = RTE_PTR_ALIGN_FLOOR(mz->addr, page_sz); 1223 mz_end = RTE_PTR_ADD(cur_addr, mz->len); 1224 1225 ms_idx = RTE_PTR_DIFF(mz->addr, msl->base_va) / page_sz; 1226 ms = rte_fbarray_get(&msl->memseg_arr, ms_idx); 1227 1228 rte_tel_data_add_dict_uint(d, "Hugepage_size", page_sz); 1229 snprintf(addr, ADDR_STR, "%p", ms->addr); 1230 rte_tel_data_add_dict_string(d, "Hugepage_base", addr); 1231 1232 do { 1233 /* advance VA to next page */ 1234 cur_addr = RTE_PTR_ADD(cur_addr, page_sz); 1235 1236 /* memzones occupy contiguous segments */ 1237 ++ms; 1238 ms_count++; 1239 } while (cur_addr < mz_end); 1240 1241 rte_tel_data_add_dict_int(d, "Hugepage_used", ms_count); 1242 1243 return 0; 1244 } 1245 1246 static void 1247 memzone_list_cb(const struct rte_memzone *mz __rte_unused, 1248 void *arg __rte_unused) 1249 { 1250 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1251 struct rte_tel_data *d = arg; 1252 int mz_idx; 1253 1254 mz_idx = rte_fbarray_find_idx(&mcfg->memzones, mz); 1255 rte_tel_data_add_array_int(d, mz_idx); 1256 } 1257 1258 1259 /* Telemetry callback handler to list the memzones reserved. */ 1260 static int 1261 handle_eal_memzone_list_request(const char *cmd __rte_unused, 1262 const char *params __rte_unused, 1263 struct rte_tel_data *d) 1264 { 1265 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1266 rte_memzone_walk(memzone_list_cb, d); 1267 1268 return 0; 1269 } 1270 1271 /* n_vals is the number of params to be parsed. */ 1272 static int 1273 parse_params(const char *params, uint32_t *vals, size_t n_vals) 1274 { 1275 char dlim[2] = ","; 1276 char *params_args; 1277 size_t count = 0; 1278 char *token; 1279 1280 if (vals == NULL || params == NULL || strlen(params) == 0) 1281 return -1; 1282 1283 /* strtok expects char * and param is const char *. Hence on using 1284 * params as "const char *" compiler throws warning. 1285 */ 1286 params_args = strdup(params); 1287 if (params_args == NULL) 1288 return -1; 1289 1290 token = strtok(params_args, dlim); 1291 while (token && isdigit(*token) && count < n_vals) { 1292 vals[count++] = strtoul(token, NULL, 10); 1293 token = strtok(NULL, dlim); 1294 } 1295 1296 free(params_args); 1297 1298 if (count < n_vals) 1299 return -1; 1300 1301 return 0; 1302 } 1303 1304 static int 1305 handle_eal_memseg_lists_request(const char *cmd __rte_unused, 1306 const char *params __rte_unused, 1307 struct rte_tel_data *d) 1308 { 1309 struct rte_mem_config *mcfg; 1310 int i; 1311 1312 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1313 1314 rte_mcfg_mem_read_lock(); 1315 mcfg = rte_eal_get_configuration()->mem_config; 1316 1317 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 1318 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 1319 if (msl->memseg_arr.count == 0) 1320 continue; 1321 1322 rte_tel_data_add_array_int(d, i); 1323 } 1324 rte_mcfg_mem_read_unlock(); 1325 1326 return 0; 1327 } 1328 1329 static int 1330 handle_eal_memseg_list_info_request(const char *cmd __rte_unused, 1331 const char *params, struct rte_tel_data *d) 1332 { 1333 struct rte_mem_config *mcfg; 1334 struct rte_memseg_list *msl; 1335 struct rte_fbarray *arr; 1336 uint32_t ms_list_idx; 1337 int ms_idx; 1338 /* size of an array == num params to be parsed. */ 1339 uint32_t vals[1] = {0}; 1340 1341 if (parse_params(params, vals, RTE_DIM(vals)) < 0) 1342 return -1; 1343 1344 ms_list_idx = vals[0]; 1345 if (ms_list_idx >= RTE_MAX_MEMSEG_LISTS) 1346 return -1; 1347 1348 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1349 1350 rte_mcfg_mem_read_lock(); 1351 mcfg = rte_eal_get_configuration()->mem_config; 1352 msl = &mcfg->memsegs[ms_list_idx]; 1353 if (msl->memseg_arr.count == 0) 1354 goto done; 1355 1356 arr = &msl->memseg_arr; 1357 1358 ms_idx = rte_fbarray_find_next_used(arr, 0); 1359 while (ms_idx >= 0) { 1360 rte_tel_data_add_array_int(d, ms_idx); 1361 ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1); 1362 } 1363 1364 done: 1365 rte_mcfg_mem_read_unlock(); 1366 1367 return 0; 1368 } 1369 1370 static int 1371 handle_eal_memseg_info_request(const char *cmd __rte_unused, 1372 const char *params, struct rte_tel_data *d) 1373 { 1374 struct rte_mem_config *mcfg; 1375 uint64_t ms_start_addr, ms_end_addr, ms_size, hugepage_size, ms_iova; 1376 struct rte_memseg_list *msl; 1377 const struct rte_memseg *ms; 1378 struct rte_fbarray *arr; 1379 char addr[ADDR_STR]; 1380 uint32_t ms_list_idx = 0; 1381 uint32_t ms_idx = 0; 1382 int32_t ms_socket_id; 1383 uint32_t ms_flags; 1384 /* size of an array == num params to be parsed. */ 1385 uint32_t vals[2] = {0}; 1386 1387 if (parse_params(params, vals, RTE_DIM(vals)) < 0) 1388 return -1; 1389 1390 ms_list_idx = vals[0]; 1391 if (ms_list_idx >= RTE_MAX_MEMSEG_LISTS) 1392 return -1; 1393 1394 ms_idx = vals[1]; 1395 1396 rte_mcfg_mem_read_lock(); 1397 1398 mcfg = rte_eal_get_configuration()->mem_config; 1399 msl = &mcfg->memsegs[ms_list_idx]; 1400 if (msl->memseg_arr.count == 0) { 1401 rte_mcfg_mem_read_unlock(); 1402 return -1; 1403 } 1404 1405 arr = &msl->memseg_arr; 1406 ms = rte_fbarray_get(arr, ms_idx); 1407 if (ms == NULL) { 1408 rte_mcfg_mem_read_unlock(); 1409 EAL_LOG(DEBUG, "Error fetching requested memseg."); 1410 return -1; 1411 } 1412 1413 ms_iova = ms->iova; 1414 ms_start_addr = ms->addr_64; 1415 ms_end_addr = (uint64_t)RTE_PTR_ADD(ms_start_addr, ms->len); 1416 ms_size = ms->len; 1417 hugepage_size = ms->hugepage_sz; 1418 ms_socket_id = ms->socket_id; 1419 ms_flags = ms->flags; 1420 1421 rte_mcfg_mem_read_unlock(); 1422 1423 rte_tel_data_start_dict(d); 1424 rte_tel_data_add_dict_int(d, "Memseg_list_index", ms_list_idx); 1425 rte_tel_data_add_dict_int(d, "Memseg_index", ms_idx); 1426 if (ms_iova == RTE_BAD_IOVA) 1427 snprintf(addr, ADDR_STR, "Bad IOVA"); 1428 else 1429 snprintf(addr, ADDR_STR, "0x%"PRIx64, ms_iova); 1430 1431 rte_tel_data_add_dict_string(d, "IOVA_addr", addr); 1432 snprintf(addr, ADDR_STR, "0x%"PRIx64, ms_start_addr); 1433 rte_tel_data_add_dict_string(d, "Start_addr", addr); 1434 snprintf(addr, ADDR_STR, "0x%"PRIx64, ms_end_addr); 1435 rte_tel_data_add_dict_string(d, "End_addr", addr); 1436 rte_tel_data_add_dict_uint(d, "Size", ms_size); 1437 rte_tel_data_add_dict_uint(d, "Hugepage_size", hugepage_size); 1438 rte_tel_data_add_dict_int(d, "Socket_id", ms_socket_id); 1439 rte_tel_data_add_dict_int(d, "flags", ms_flags); 1440 1441 return 0; 1442 } 1443 1444 static int 1445 handle_eal_element_list_request(const char *cmd __rte_unused, 1446 const char *params, struct rte_tel_data *d) 1447 { 1448 struct rte_mem_config *mcfg; 1449 struct rte_memseg_list *msl; 1450 const struct rte_memseg *ms; 1451 struct malloc_elem *elem; 1452 struct malloc_heap *heap; 1453 uint64_t ms_start_addr, ms_end_addr; 1454 uint64_t elem_start_addr, elem_end_addr; 1455 uint32_t ms_list_idx = 0; 1456 uint32_t heap_id = 0; 1457 uint32_t ms_idx = 0; 1458 int elem_count = 0; 1459 /* size of an array == num params to be parsed. */ 1460 uint32_t vals[3] = {0}; 1461 1462 if (parse_params(params, vals, RTE_DIM(vals)) < 0) 1463 return -1; 1464 1465 heap_id = vals[0]; 1466 if (heap_id >= RTE_MAX_HEAPS) 1467 return -1; 1468 1469 ms_list_idx = vals[1]; 1470 if (ms_list_idx >= RTE_MAX_MEMSEG_LISTS) 1471 return -1; 1472 1473 ms_idx = vals[2]; 1474 1475 rte_mcfg_mem_read_lock(); 1476 1477 mcfg = rte_eal_get_configuration()->mem_config; 1478 msl = &mcfg->memsegs[ms_list_idx]; 1479 ms = rte_fbarray_get(&msl->memseg_arr, ms_idx); 1480 if (ms == NULL) { 1481 rte_mcfg_mem_read_unlock(); 1482 EAL_LOG(DEBUG, "Error fetching requested memseg."); 1483 return -1; 1484 } 1485 1486 ms_start_addr = ms->addr_64; 1487 ms_end_addr = (uint64_t)RTE_PTR_ADD(ms_start_addr, ms->len); 1488 rte_mcfg_mem_read_unlock(); 1489 1490 rte_tel_data_start_dict(d); 1491 1492 heap = &mcfg->malloc_heaps[heap_id]; 1493 rte_spinlock_lock(&heap->lock); 1494 1495 elem = heap->first; 1496 while (elem) { 1497 elem_start_addr = (uint64_t)elem; 1498 elem_end_addr = 1499 (uint64_t)RTE_PTR_ADD(elem_start_addr, elem->size); 1500 1501 if ((uint64_t)elem_start_addr >= ms_start_addr && 1502 (uint64_t)elem_end_addr <= ms_end_addr) 1503 elem_count++; 1504 elem = elem->next; 1505 } 1506 1507 rte_spinlock_unlock(&heap->lock); 1508 1509 rte_tel_data_add_dict_int(d, "Element_count", elem_count); 1510 1511 return 0; 1512 } 1513 1514 static int 1515 handle_eal_element_info_request(const char *cmd __rte_unused, 1516 const char *params, struct rte_tel_data *d) 1517 { 1518 struct rte_mem_config *mcfg; 1519 struct rte_memseg_list *msl; 1520 const struct rte_memseg *ms; 1521 struct malloc_elem *elem; 1522 struct malloc_heap *heap; 1523 struct rte_tel_data *c; 1524 uint64_t ms_start_addr, ms_end_addr; 1525 uint64_t elem_start_addr, elem_end_addr; 1526 uint32_t ms_list_idx = 0; 1527 uint32_t heap_id = 0; 1528 uint32_t ms_idx = 0; 1529 uint32_t start_elem = 0, end_elem = 0; 1530 uint32_t count = 0, elem_count = 0; 1531 char str[ADDR_STR]; 1532 /* size of an array == num params to be parsed. */ 1533 uint32_t vals[5] = {0}; 1534 1535 if (parse_params(params, vals, RTE_DIM(vals)) < 0) 1536 return -1; 1537 1538 heap_id = vals[0]; 1539 if (heap_id >= RTE_MAX_HEAPS) 1540 return -1; 1541 1542 ms_list_idx = vals[1]; 1543 if (ms_list_idx >= RTE_MAX_MEMSEG_LISTS) 1544 return -1; 1545 1546 ms_idx = vals[2]; 1547 start_elem = vals[3]; 1548 end_elem = vals[4]; 1549 1550 if (end_elem < start_elem) 1551 return -1; 1552 1553 rte_mcfg_mem_read_lock(); 1554 1555 mcfg = rte_eal_get_configuration()->mem_config; 1556 msl = &mcfg->memsegs[ms_list_idx]; 1557 ms = rte_fbarray_get(&msl->memseg_arr, ms_idx); 1558 if (ms == NULL) { 1559 rte_mcfg_mem_read_unlock(); 1560 EAL_LOG(DEBUG, "Error fetching requested memseg."); 1561 return -1; 1562 } 1563 1564 ms_start_addr = ms->addr_64; 1565 ms_end_addr = (uint64_t)RTE_PTR_ADD(ms_start_addr, ms->len); 1566 1567 rte_mcfg_mem_read_unlock(); 1568 1569 rte_tel_data_start_dict(d); 1570 1571 heap = &mcfg->malloc_heaps[heap_id]; 1572 rte_spinlock_lock(&heap->lock); 1573 1574 elem = heap->first; 1575 while (elem) { 1576 elem_start_addr = (uint64_t)elem; 1577 elem_end_addr = 1578 (uint64_t)RTE_PTR_ADD(elem_start_addr, elem->size); 1579 1580 if (elem_start_addr < ms_start_addr || 1581 elem_end_addr > ms_end_addr) { 1582 elem = elem->next; 1583 continue; 1584 } 1585 1586 if (count < start_elem) { 1587 elem = elem->next; 1588 count++; 1589 continue; 1590 } 1591 1592 c = rte_tel_data_alloc(); 1593 if (c == NULL) 1594 break; 1595 1596 rte_tel_data_start_dict(c); 1597 rte_tel_data_add_dict_int(c, "msl_id", ms_list_idx); 1598 rte_tel_data_add_dict_int(c, "ms_id", ms_idx); 1599 snprintf(str, ADDR_STR, "0x%"PRIx64, ms_start_addr); 1600 rte_tel_data_add_dict_string(c, "memseg_start_addr", str); 1601 snprintf(str, ADDR_STR, "0x%"PRIx64, ms_end_addr); 1602 rte_tel_data_add_dict_string(c, "memseg_end_addr", str); 1603 snprintf(str, ADDR_STR, "0x%"PRIx64, elem_start_addr); 1604 rte_tel_data_add_dict_string(c, "element_start_addr", str); 1605 snprintf(str, ADDR_STR, "0x%"PRIx64, elem_end_addr); 1606 rte_tel_data_add_dict_string(c, "element_end_addr", str); 1607 rte_tel_data_add_dict_int(c, "element_size", elem->size); 1608 snprintf(str, ADDR_STR, "%s", elem->state == 0 ? "Free" : 1609 elem->state == 1 ? "Busy" : elem->state == 2 ? 1610 "Pad" : "Error"); 1611 rte_tel_data_add_dict_string(c, "element_state", str); 1612 1613 snprintf(str, ADDR_STR, "%s_%u", "element", count); 1614 if (rte_tel_data_add_dict_container(d, str, c, 0) != 0) { 1615 rte_tel_data_free(c); 1616 break; 1617 } 1618 1619 elem_count++; 1620 count++; 1621 if (count > end_elem) 1622 break; 1623 1624 elem = elem->next; 1625 } 1626 1627 rte_spinlock_unlock(&heap->lock); 1628 1629 rte_tel_data_add_dict_int(d, "Element_count", elem_count); 1630 1631 return 0; 1632 } 1633 1634 RTE_INIT(memory_telemetry) 1635 { 1636 rte_telemetry_register_cmd( 1637 EAL_MEMZONE_LIST_REQ, handle_eal_memzone_list_request, 1638 "List of memzone index reserved. Takes no parameters"); 1639 rte_telemetry_register_cmd( 1640 EAL_MEMZONE_INFO_REQ, handle_eal_memzone_info_request, 1641 "Returns memzone info. Parameters: int mz_id"); 1642 rte_telemetry_register_cmd( 1643 EAL_HEAP_LIST_REQ, handle_eal_heap_list_request, 1644 "List of heap index setup. Takes no parameters"); 1645 rte_telemetry_register_cmd( 1646 EAL_HEAP_INFO_REQ, handle_eal_heap_info_request, 1647 "Returns malloc heap stats. Parameters: int heap_id"); 1648 rte_telemetry_register_cmd( 1649 EAL_MEMSEG_LISTS_REQ, 1650 handle_eal_memseg_lists_request, 1651 "Returns array of memseg list IDs. Takes no parameters"); 1652 rte_telemetry_register_cmd( 1653 EAL_MEMSEG_LIST_INFO_REQ, 1654 handle_eal_memseg_list_info_request, 1655 "Returns memseg list info. Parameters: int memseg_list_id"); 1656 rte_telemetry_register_cmd( 1657 EAL_MEMSEG_INFO_REQ, handle_eal_memseg_info_request, 1658 "Returns memseg info. Parameter: int memseg_list_id,int memseg_id"); 1659 rte_telemetry_register_cmd(EAL_ELEMENT_LIST_REQ, 1660 handle_eal_element_list_request, 1661 "Returns array of heap element IDs. Parameters: int heap_id, int memseg_list_id, int memseg_id"); 1662 rte_telemetry_register_cmd(EAL_ELEMENT_INFO_REQ, 1663 handle_eal_element_info_request, 1664 "Returns element info. Parameters: int heap_id, int memseg_list_id, int memseg_id, int start_elem_id, int end_elem_id"); 1665 } 1666 #endif 1667