1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <ctype.h> 6 #include <errno.h> 7 #include <stdio.h> 8 #include <stdint.h> 9 #include <stdlib.h> 10 #include <string.h> 11 #include <inttypes.h> 12 13 #include <rte_fbarray.h> 14 #include <rte_memory.h> 15 #include <rte_eal.h> 16 #include <rte_eal_memconfig.h> 17 #include <rte_eal_paging.h> 18 #include <rte_errno.h> 19 #include <rte_log.h> 20 #ifndef RTE_EXEC_ENV_WINDOWS 21 #include <rte_telemetry.h> 22 #endif 23 24 #include "eal_memalloc.h" 25 #include "eal_private.h" 26 #include "eal_internal_cfg.h" 27 #include "eal_memcfg.h" 28 #include "eal_options.h" 29 #include "malloc_elem.h" 30 #include "malloc_heap.h" 31 32 /* 33 * Try to mmap *size bytes in /dev/zero. If it is successful, return the 34 * pointer to the mmap'd area and keep *size unmodified. Else, retry 35 * with a smaller zone: decrease *size by hugepage_sz until it reaches 36 * 0. In this case, return NULL. Note: this function returns an address 37 * which is a multiple of hugepage size. 38 */ 39 40 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i" 41 42 static void *next_baseaddr; 43 static uint64_t system_page_sz; 44 45 #define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5 46 void * 47 eal_get_virtual_area(void *requested_addr, size_t *size, 48 size_t page_sz, int flags, int reserve_flags) 49 { 50 bool addr_is_hint, allow_shrink, unmap, no_align; 51 uint64_t map_sz; 52 void *mapped_addr, *aligned_addr; 53 uint8_t try = 0; 54 struct internal_config *internal_conf = 55 eal_get_internal_configuration(); 56 57 if (system_page_sz == 0) 58 system_page_sz = rte_mem_page_size(); 59 60 EAL_LOG(DEBUG, "Ask a virtual area of 0x%zx bytes", *size); 61 62 addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0; 63 allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0; 64 unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0; 65 66 if (next_baseaddr == NULL && internal_conf->base_virtaddr != 0 && 67 rte_eal_process_type() == RTE_PROC_PRIMARY) 68 next_baseaddr = (void *) internal_conf->base_virtaddr; 69 70 #ifdef RTE_ARCH_64 71 if (next_baseaddr == NULL && internal_conf->base_virtaddr == 0 && 72 rte_eal_process_type() == RTE_PROC_PRIMARY) 73 next_baseaddr = (void *) eal_get_baseaddr(); 74 #endif 75 if (requested_addr == NULL && next_baseaddr != NULL) { 76 requested_addr = next_baseaddr; 77 requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz); 78 addr_is_hint = true; 79 } 80 81 /* we don't need alignment of resulting pointer in the following cases: 82 * 83 * 1. page size is equal to system size 84 * 2. we have a requested address, and it is page-aligned, and we will 85 * be discarding the address if we get a different one. 86 * 87 * for all other cases, alignment is potentially necessary. 88 */ 89 no_align = (requested_addr != NULL && 90 requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) && 91 !addr_is_hint) || 92 page_sz == system_page_sz; 93 94 do { 95 map_sz = no_align ? *size : *size + page_sz; 96 if (map_sz > SIZE_MAX) { 97 EAL_LOG(ERR, "Map size too big"); 98 rte_errno = E2BIG; 99 return NULL; 100 } 101 102 mapped_addr = eal_mem_reserve( 103 requested_addr, (size_t)map_sz, reserve_flags); 104 if ((mapped_addr == NULL) && allow_shrink) 105 *size -= page_sz; 106 107 if ((mapped_addr != NULL) && addr_is_hint && 108 (mapped_addr != requested_addr)) { 109 try++; 110 next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz); 111 if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) { 112 /* hint was not used. Try with another offset */ 113 eal_mem_free(mapped_addr, map_sz); 114 mapped_addr = NULL; 115 requested_addr = next_baseaddr; 116 } 117 } 118 } while ((allow_shrink || addr_is_hint) && 119 (mapped_addr == NULL) && (*size > 0)); 120 121 /* align resulting address - if map failed, we will ignore the value 122 * anyway, so no need to add additional checks. 123 */ 124 aligned_addr = no_align ? mapped_addr : 125 RTE_PTR_ALIGN(mapped_addr, page_sz); 126 127 if (*size == 0) { 128 EAL_LOG(ERR, "Cannot get a virtual area of any size: %s", 129 rte_strerror(rte_errno)); 130 return NULL; 131 } else if (mapped_addr == NULL) { 132 EAL_LOG(ERR, "Cannot get a virtual area: %s", 133 rte_strerror(rte_errno)); 134 return NULL; 135 } else if (requested_addr != NULL && !addr_is_hint && 136 aligned_addr != requested_addr) { 137 EAL_LOG(ERR, "Cannot get a virtual area at requested address: %p (got %p)", 138 requested_addr, aligned_addr); 139 eal_mem_free(mapped_addr, map_sz); 140 rte_errno = EADDRNOTAVAIL; 141 return NULL; 142 } else if (requested_addr != NULL && addr_is_hint && 143 aligned_addr != requested_addr) { 144 /* 145 * demote this warning to debug if we did not explicitly request 146 * a base virtual address. 147 */ 148 if (internal_conf->base_virtaddr != 0) { 149 EAL_LOG(WARNING, "WARNING! Base virtual address hint (%p != %p) not respected!", 150 requested_addr, aligned_addr); 151 EAL_LOG(WARNING, " This may cause issues with mapping memory into secondary processes"); 152 } else { 153 EAL_LOG(DEBUG, "WARNING! Base virtual address hint (%p != %p) not respected!", 154 requested_addr, aligned_addr); 155 EAL_LOG(DEBUG, " This may cause issues with mapping memory into secondary processes"); 156 } 157 } else if (next_baseaddr != NULL) { 158 next_baseaddr = RTE_PTR_ADD(aligned_addr, *size); 159 } 160 161 EAL_LOG(DEBUG, "Virtual area found at %p (size = 0x%zx)", 162 aligned_addr, *size); 163 164 if (unmap) { 165 eal_mem_free(mapped_addr, map_sz); 166 } else if (!no_align) { 167 void *map_end, *aligned_end; 168 size_t before_len, after_len; 169 170 /* when we reserve space with alignment, we add alignment to 171 * mapping size. On 32-bit, if 1GB alignment was requested, this 172 * would waste 1GB of address space, which is a luxury we cannot 173 * afford. so, if alignment was performed, check if any unneeded 174 * address space can be unmapped back. 175 */ 176 177 map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz); 178 aligned_end = RTE_PTR_ADD(aligned_addr, *size); 179 180 /* unmap space before aligned mmap address */ 181 before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr); 182 if (before_len > 0) 183 eal_mem_free(mapped_addr, before_len); 184 185 /* unmap space after aligned end mmap address */ 186 after_len = RTE_PTR_DIFF(map_end, aligned_end); 187 if (after_len > 0) 188 eal_mem_free(aligned_end, after_len); 189 } 190 191 if (!unmap) { 192 /* Exclude these pages from a core dump. */ 193 eal_mem_set_dump(aligned_addr, *size, false); 194 } 195 196 return aligned_addr; 197 } 198 199 int 200 eal_memseg_list_init_named(struct rte_memseg_list *msl, const char *name, 201 uint64_t page_sz, int n_segs, int socket_id, bool heap) 202 { 203 if (rte_fbarray_init(&msl->memseg_arr, name, n_segs, 204 sizeof(struct rte_memseg))) { 205 EAL_LOG(ERR, "Cannot allocate memseg list: %s", 206 rte_strerror(rte_errno)); 207 return -1; 208 } 209 210 msl->page_sz = page_sz; 211 msl->socket_id = socket_id; 212 msl->base_va = NULL; 213 msl->heap = heap; 214 215 EAL_LOG(DEBUG, 216 "Memseg list allocated at socket %i, page size 0x%"PRIx64"kB", 217 socket_id, page_sz >> 10); 218 219 return 0; 220 } 221 222 int 223 eal_memseg_list_init(struct rte_memseg_list *msl, uint64_t page_sz, 224 int n_segs, int socket_id, int type_msl_idx, bool heap) 225 { 226 char name[RTE_FBARRAY_NAME_LEN]; 227 228 snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id, 229 type_msl_idx); 230 231 return eal_memseg_list_init_named( 232 msl, name, page_sz, n_segs, socket_id, heap); 233 } 234 235 int 236 eal_memseg_list_alloc(struct rte_memseg_list *msl, int reserve_flags) 237 { 238 size_t page_sz, mem_sz; 239 void *addr; 240 241 page_sz = msl->page_sz; 242 mem_sz = page_sz * msl->memseg_arr.len; 243 244 addr = eal_get_virtual_area( 245 msl->base_va, &mem_sz, page_sz, 0, reserve_flags); 246 if (addr == NULL) { 247 #ifndef RTE_EXEC_ENV_WINDOWS 248 /* The hint would be misleading on Windows, because address 249 * is by default system-selected (base VA = 0). 250 * However, this function is called from many places, 251 * including common code, so don't duplicate the message. 252 */ 253 if (rte_errno == EADDRNOTAVAIL) 254 EAL_LOG(ERR, "Cannot reserve %llu bytes at [%p] - " 255 "please use '--" OPT_BASE_VIRTADDR "' option", 256 (unsigned long long)mem_sz, msl->base_va); 257 #endif 258 return -1; 259 } 260 msl->base_va = addr; 261 msl->len = mem_sz; 262 263 EAL_LOG(DEBUG, "VA reserved for memseg list at %p, size %zx", 264 addr, mem_sz); 265 266 return 0; 267 } 268 269 void 270 eal_memseg_list_populate(struct rte_memseg_list *msl, void *addr, int n_segs) 271 { 272 size_t page_sz = msl->page_sz; 273 int i; 274 275 for (i = 0; i < n_segs; i++) { 276 struct rte_fbarray *arr = &msl->memseg_arr; 277 struct rte_memseg *ms = rte_fbarray_get(arr, i); 278 279 if (rte_eal_iova_mode() == RTE_IOVA_VA) 280 ms->iova = (uintptr_t)addr; 281 else 282 ms->iova = RTE_BAD_IOVA; 283 ms->addr = addr; 284 ms->hugepage_sz = page_sz; 285 ms->socket_id = 0; 286 ms->len = page_sz; 287 288 rte_fbarray_set_used(arr, i); 289 290 addr = RTE_PTR_ADD(addr, page_sz); 291 } 292 } 293 294 static struct rte_memseg * 295 virt2memseg(const void *addr, const struct rte_memseg_list *msl) 296 { 297 const struct rte_fbarray *arr; 298 void *start, *end; 299 int ms_idx; 300 301 if (msl == NULL) 302 return NULL; 303 304 /* a memseg list was specified, check if it's the right one */ 305 start = msl->base_va; 306 end = RTE_PTR_ADD(start, msl->len); 307 308 if (addr < start || addr >= end) 309 return NULL; 310 311 /* now, calculate index */ 312 arr = &msl->memseg_arr; 313 ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz; 314 return rte_fbarray_get(arr, ms_idx); 315 } 316 317 static struct rte_memseg_list * 318 virt2memseg_list(const void *addr) 319 { 320 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 321 struct rte_memseg_list *msl; 322 int msl_idx; 323 324 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { 325 void *start, *end; 326 msl = &mcfg->memsegs[msl_idx]; 327 328 start = msl->base_va; 329 end = RTE_PTR_ADD(start, msl->len); 330 if (addr >= start && addr < end) 331 break; 332 } 333 /* if we didn't find our memseg list */ 334 if (msl_idx == RTE_MAX_MEMSEG_LISTS) 335 return NULL; 336 return msl; 337 } 338 339 struct rte_memseg_list * 340 rte_mem_virt2memseg_list(const void *addr) 341 { 342 return virt2memseg_list(addr); 343 } 344 345 struct virtiova { 346 rte_iova_t iova; 347 void *virt; 348 }; 349 static int 350 find_virt(const struct rte_memseg_list *msl __rte_unused, 351 const struct rte_memseg *ms, void *arg) 352 { 353 struct virtiova *vi = arg; 354 if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) { 355 size_t offset = vi->iova - ms->iova; 356 vi->virt = RTE_PTR_ADD(ms->addr, offset); 357 /* stop the walk */ 358 return 1; 359 } 360 return 0; 361 } 362 static int 363 find_virt_legacy(const struct rte_memseg_list *msl __rte_unused, 364 const struct rte_memseg *ms, size_t len, void *arg) 365 { 366 struct virtiova *vi = arg; 367 if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) { 368 size_t offset = vi->iova - ms->iova; 369 vi->virt = RTE_PTR_ADD(ms->addr, offset); 370 /* stop the walk */ 371 return 1; 372 } 373 return 0; 374 } 375 376 void * 377 rte_mem_iova2virt(rte_iova_t iova) 378 { 379 struct virtiova vi; 380 const struct internal_config *internal_conf = 381 eal_get_internal_configuration(); 382 383 memset(&vi, 0, sizeof(vi)); 384 385 vi.iova = iova; 386 /* for legacy mem, we can get away with scanning VA-contiguous segments, 387 * as we know they are PA-contiguous as well 388 */ 389 if (internal_conf->legacy_mem) 390 rte_memseg_contig_walk(find_virt_legacy, &vi); 391 else 392 rte_memseg_walk(find_virt, &vi); 393 394 return vi.virt; 395 } 396 397 struct rte_memseg * 398 rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl) 399 { 400 return virt2memseg(addr, msl != NULL ? msl : 401 rte_mem_virt2memseg_list(addr)); 402 } 403 404 static int 405 physmem_size(const struct rte_memseg_list *msl, void *arg) 406 { 407 uint64_t *total_len = arg; 408 409 if (msl->external) 410 return 0; 411 412 *total_len += msl->memseg_arr.count * msl->page_sz; 413 414 return 0; 415 } 416 417 /* get the total size of memory */ 418 uint64_t 419 rte_eal_get_physmem_size(void) 420 { 421 uint64_t total_len = 0; 422 423 rte_memseg_list_walk(physmem_size, &total_len); 424 425 return total_len; 426 } 427 428 static int 429 dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms, 430 void *arg) 431 { 432 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 433 int msl_idx, ms_idx, fd; 434 FILE *f = arg; 435 436 msl_idx = msl - mcfg->memsegs; 437 if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS) 438 return -1; 439 440 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 441 if (ms_idx < 0) 442 return -1; 443 444 fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx); 445 fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, " 446 "virt:%p, socket_id:%"PRId32", " 447 "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", " 448 "nrank:%"PRIx32" fd:%i\n", 449 msl_idx, ms_idx, 450 ms->iova, 451 ms->len, 452 ms->addr, 453 ms->socket_id, 454 ms->hugepage_sz, 455 ms->nchannel, 456 ms->nrank, 457 fd); 458 459 return 0; 460 } 461 462 /* 463 * Defining here because declared in rte_memory.h, but the actual implementation 464 * is in eal_common_memalloc.c, like all other memalloc internals. 465 */ 466 int 467 rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb, 468 void *arg) 469 { 470 const struct internal_config *internal_conf = 471 eal_get_internal_configuration(); 472 473 /* FreeBSD boots with legacy mem enabled by default */ 474 if (internal_conf->legacy_mem) { 475 EAL_LOG(DEBUG, "Registering mem event callbacks not supported"); 476 rte_errno = ENOTSUP; 477 return -1; 478 } 479 return eal_memalloc_mem_event_callback_register(name, clb, arg); 480 } 481 482 int 483 rte_mem_event_callback_unregister(const char *name, void *arg) 484 { 485 const struct internal_config *internal_conf = 486 eal_get_internal_configuration(); 487 488 /* FreeBSD boots with legacy mem enabled by default */ 489 if (internal_conf->legacy_mem) { 490 EAL_LOG(DEBUG, "Registering mem event callbacks not supported"); 491 rte_errno = ENOTSUP; 492 return -1; 493 } 494 return eal_memalloc_mem_event_callback_unregister(name, arg); 495 } 496 497 int 498 rte_mem_alloc_validator_register(const char *name, 499 rte_mem_alloc_validator_t clb, int socket_id, size_t limit) 500 { 501 const struct internal_config *internal_conf = 502 eal_get_internal_configuration(); 503 504 /* FreeBSD boots with legacy mem enabled by default */ 505 if (internal_conf->legacy_mem) { 506 EAL_LOG(DEBUG, "Registering mem alloc validators not supported"); 507 rte_errno = ENOTSUP; 508 return -1; 509 } 510 return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id, 511 limit); 512 } 513 514 int 515 rte_mem_alloc_validator_unregister(const char *name, int socket_id) 516 { 517 const struct internal_config *internal_conf = 518 eal_get_internal_configuration(); 519 520 /* FreeBSD boots with legacy mem enabled by default */ 521 if (internal_conf->legacy_mem) { 522 EAL_LOG(DEBUG, "Registering mem alloc validators not supported"); 523 rte_errno = ENOTSUP; 524 return -1; 525 } 526 return eal_memalloc_mem_alloc_validator_unregister(name, socket_id); 527 } 528 529 /* Dump the physical memory layout on console */ 530 void 531 rte_dump_physmem_layout(FILE *f) 532 { 533 rte_memseg_walk(dump_memseg, f); 534 } 535 536 static int 537 check_iova(const struct rte_memseg_list *msl __rte_unused, 538 const struct rte_memseg *ms, void *arg) 539 { 540 uint64_t *mask = arg; 541 rte_iova_t iova; 542 543 /* higher address within segment */ 544 iova = (ms->iova + ms->len) - 1; 545 if (!(iova & *mask)) 546 return 0; 547 548 EAL_LOG(DEBUG, "memseg iova %"PRIx64", len %zx, out of range", 549 ms->iova, ms->len); 550 551 EAL_LOG(DEBUG, "\tusing dma mask %"PRIx64, *mask); 552 return 1; 553 } 554 555 #define MAX_DMA_MASK_BITS 63 556 557 /* check memseg iovas are within the required range based on dma mask */ 558 static int 559 check_dma_mask(uint8_t maskbits, bool thread_unsafe) 560 { 561 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 562 uint64_t mask; 563 int ret; 564 565 /* Sanity check. We only check width can be managed with 64 bits 566 * variables. Indeed any higher value is likely wrong. */ 567 if (maskbits > MAX_DMA_MASK_BITS) { 568 EAL_LOG(ERR, "wrong dma mask size %u (Max: %u)", 569 maskbits, MAX_DMA_MASK_BITS); 570 return -1; 571 } 572 573 /* create dma mask */ 574 mask = ~((1ULL << maskbits) - 1); 575 576 if (thread_unsafe) 577 ret = rte_memseg_walk_thread_unsafe(check_iova, &mask); 578 else 579 ret = rte_memseg_walk(check_iova, &mask); 580 581 if (ret) 582 /* 583 * Dma mask precludes hugepage usage. 584 * This device can not be used and we do not need to keep 585 * the dma mask. 586 */ 587 return 1; 588 589 /* 590 * we need to keep the more restricted maskbit for checking 591 * potential dynamic memory allocation in the future. 592 */ 593 mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : 594 RTE_MIN(mcfg->dma_maskbits, maskbits); 595 596 return 0; 597 } 598 599 int 600 rte_mem_check_dma_mask(uint8_t maskbits) 601 { 602 return check_dma_mask(maskbits, false); 603 } 604 605 int 606 rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits) 607 { 608 return check_dma_mask(maskbits, true); 609 } 610 611 /* 612 * Set dma mask to use when memory initialization is done. 613 * 614 * This function should ONLY be used by code executed before the memory 615 * initialization. PMDs should use rte_mem_check_dma_mask if addressing 616 * limitations by the device. 617 */ 618 void 619 rte_mem_set_dma_mask(uint8_t maskbits) 620 { 621 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 622 623 mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : 624 RTE_MIN(mcfg->dma_maskbits, maskbits); 625 } 626 627 /* return the number of memory channels */ 628 unsigned rte_memory_get_nchannel(void) 629 { 630 return rte_eal_get_configuration()->mem_config->nchannel; 631 } 632 633 /* return the number of memory rank */ 634 unsigned rte_memory_get_nrank(void) 635 { 636 return rte_eal_get_configuration()->mem_config->nrank; 637 } 638 639 static int 640 rte_eal_memdevice_init(void) 641 { 642 struct rte_config *config; 643 const struct internal_config *internal_conf; 644 645 if (rte_eal_process_type() == RTE_PROC_SECONDARY) 646 return 0; 647 648 internal_conf = eal_get_internal_configuration(); 649 config = rte_eal_get_configuration(); 650 config->mem_config->nchannel = internal_conf->force_nchannel; 651 config->mem_config->nrank = internal_conf->force_nrank; 652 653 return 0; 654 } 655 656 /* Lock page in physical memory and prevent from swapping. */ 657 int 658 rte_mem_lock_page(const void *virt) 659 { 660 uintptr_t virtual = (uintptr_t)virt; 661 size_t page_size = rte_mem_page_size(); 662 uintptr_t aligned = RTE_PTR_ALIGN_FLOOR(virtual, page_size); 663 return rte_mem_lock((void *)aligned, page_size); 664 } 665 666 int 667 rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg) 668 { 669 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 670 int i, ms_idx, ret = 0; 671 672 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 673 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 674 const struct rte_memseg *ms; 675 struct rte_fbarray *arr; 676 677 if (msl->memseg_arr.count == 0) 678 continue; 679 680 arr = &msl->memseg_arr; 681 682 ms_idx = rte_fbarray_find_next_used(arr, 0); 683 while (ms_idx >= 0) { 684 int n_segs; 685 size_t len; 686 687 ms = rte_fbarray_get(arr, ms_idx); 688 689 /* find how many more segments there are, starting with 690 * this one. 691 */ 692 n_segs = rte_fbarray_find_contig_used(arr, ms_idx); 693 len = n_segs * msl->page_sz; 694 695 ret = func(msl, ms, len, arg); 696 if (ret) 697 return ret; 698 ms_idx = rte_fbarray_find_next_used(arr, 699 ms_idx + n_segs); 700 } 701 } 702 return 0; 703 } 704 705 int 706 rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg) 707 { 708 int ret = 0; 709 710 /* do not allow allocations/frees/init while we iterate */ 711 rte_mcfg_mem_read_lock(); 712 ret = rte_memseg_contig_walk_thread_unsafe(func, arg); 713 rte_mcfg_mem_read_unlock(); 714 715 return ret; 716 } 717 718 int 719 rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg) 720 { 721 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 722 int i, ms_idx, ret = 0; 723 724 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 725 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 726 const struct rte_memseg *ms; 727 struct rte_fbarray *arr; 728 729 if (msl->memseg_arr.count == 0) 730 continue; 731 732 arr = &msl->memseg_arr; 733 734 ms_idx = rte_fbarray_find_next_used(arr, 0); 735 while (ms_idx >= 0) { 736 ms = rte_fbarray_get(arr, ms_idx); 737 ret = func(msl, ms, arg); 738 if (ret) 739 return ret; 740 ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1); 741 } 742 } 743 return 0; 744 } 745 746 int 747 rte_memseg_walk(rte_memseg_walk_t func, void *arg) 748 { 749 int ret = 0; 750 751 /* do not allow allocations/frees/init while we iterate */ 752 rte_mcfg_mem_read_lock(); 753 ret = rte_memseg_walk_thread_unsafe(func, arg); 754 rte_mcfg_mem_read_unlock(); 755 756 return ret; 757 } 758 759 int 760 rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg) 761 { 762 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 763 int i, ret = 0; 764 765 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 766 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 767 768 if (msl->base_va == NULL) 769 continue; 770 771 ret = func(msl, arg); 772 if (ret) 773 return ret; 774 } 775 return 0; 776 } 777 778 int 779 rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg) 780 { 781 int ret = 0; 782 783 /* do not allow allocations/frees/init while we iterate */ 784 rte_mcfg_mem_read_lock(); 785 ret = rte_memseg_list_walk_thread_unsafe(func, arg); 786 rte_mcfg_mem_read_unlock(); 787 788 return ret; 789 } 790 791 int 792 rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms) 793 { 794 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 795 struct rte_memseg_list *msl; 796 struct rte_fbarray *arr; 797 int msl_idx, seg_idx, ret; 798 799 if (ms == NULL) { 800 rte_errno = EINVAL; 801 return -1; 802 } 803 804 msl = rte_mem_virt2memseg_list(ms->addr); 805 if (msl == NULL) { 806 rte_errno = EINVAL; 807 return -1; 808 } 809 arr = &msl->memseg_arr; 810 811 msl_idx = msl - mcfg->memsegs; 812 seg_idx = rte_fbarray_find_idx(arr, ms); 813 814 if (!rte_fbarray_is_used(arr, seg_idx)) { 815 rte_errno = ENOENT; 816 return -1; 817 } 818 819 /* segment fd API is not supported for external segments */ 820 if (msl->external) { 821 rte_errno = ENOTSUP; 822 return -1; 823 } 824 825 ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx); 826 if (ret < 0) { 827 rte_errno = -ret; 828 ret = -1; 829 } 830 return ret; 831 } 832 833 int 834 rte_memseg_get_fd(const struct rte_memseg *ms) 835 { 836 int ret; 837 838 rte_mcfg_mem_read_lock(); 839 ret = rte_memseg_get_fd_thread_unsafe(ms); 840 rte_mcfg_mem_read_unlock(); 841 842 return ret; 843 } 844 845 int 846 rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms, 847 size_t *offset) 848 { 849 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 850 struct rte_memseg_list *msl; 851 struct rte_fbarray *arr; 852 int msl_idx, seg_idx, ret; 853 854 if (ms == NULL || offset == NULL) { 855 rte_errno = EINVAL; 856 return -1; 857 } 858 859 msl = rte_mem_virt2memseg_list(ms->addr); 860 if (msl == NULL) { 861 rte_errno = EINVAL; 862 return -1; 863 } 864 arr = &msl->memseg_arr; 865 866 msl_idx = msl - mcfg->memsegs; 867 seg_idx = rte_fbarray_find_idx(arr, ms); 868 869 if (!rte_fbarray_is_used(arr, seg_idx)) { 870 rte_errno = ENOENT; 871 return -1; 872 } 873 874 /* segment fd API is not supported for external segments */ 875 if (msl->external) { 876 rte_errno = ENOTSUP; 877 return -1; 878 } 879 880 ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset); 881 if (ret < 0) { 882 rte_errno = -ret; 883 ret = -1; 884 } 885 return ret; 886 } 887 888 int 889 rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset) 890 { 891 int ret; 892 893 rte_mcfg_mem_read_lock(); 894 ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset); 895 rte_mcfg_mem_read_unlock(); 896 897 return ret; 898 } 899 900 int 901 rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[], 902 unsigned int n_pages, size_t page_sz) 903 { 904 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 905 unsigned int socket_id, n; 906 int ret = 0; 907 908 if (va_addr == NULL || page_sz == 0 || len == 0 || 909 !rte_is_power_of_2(page_sz) || 910 RTE_ALIGN(len, page_sz) != len || 911 ((len / page_sz) != n_pages && iova_addrs != NULL) || 912 !rte_is_aligned(va_addr, page_sz)) { 913 rte_errno = EINVAL; 914 return -1; 915 } 916 rte_mcfg_mem_write_lock(); 917 918 /* make sure the segment doesn't already exist */ 919 if (malloc_heap_find_external_seg(va_addr, len) != NULL) { 920 rte_errno = EEXIST; 921 ret = -1; 922 goto unlock; 923 } 924 925 /* get next available socket ID */ 926 socket_id = mcfg->next_socket_id; 927 if (socket_id > INT32_MAX) { 928 EAL_LOG(ERR, "Cannot assign new socket ID's"); 929 rte_errno = ENOSPC; 930 ret = -1; 931 goto unlock; 932 } 933 934 /* we can create a new memseg */ 935 n = len / page_sz; 936 if (malloc_heap_create_external_seg(va_addr, iova_addrs, n, 937 page_sz, "extmem", socket_id) == NULL) { 938 ret = -1; 939 goto unlock; 940 } 941 942 /* memseg list successfully created - increment next socket ID */ 943 mcfg->next_socket_id++; 944 unlock: 945 rte_mcfg_mem_write_unlock(); 946 return ret; 947 } 948 949 int 950 rte_extmem_unregister(void *va_addr, size_t len) 951 { 952 struct rte_memseg_list *msl; 953 int ret = 0; 954 955 if (va_addr == NULL || len == 0) { 956 rte_errno = EINVAL; 957 return -1; 958 } 959 rte_mcfg_mem_write_lock(); 960 961 /* find our segment */ 962 msl = malloc_heap_find_external_seg(va_addr, len); 963 if (msl == NULL) { 964 rte_errno = ENOENT; 965 ret = -1; 966 goto unlock; 967 } 968 969 ret = malloc_heap_destroy_external_seg(msl); 970 unlock: 971 rte_mcfg_mem_write_unlock(); 972 return ret; 973 } 974 975 static int 976 sync_memory(void *va_addr, size_t len, bool attach) 977 { 978 struct rte_memseg_list *msl; 979 int ret = 0; 980 981 if (va_addr == NULL || len == 0) { 982 rte_errno = EINVAL; 983 return -1; 984 } 985 rte_mcfg_mem_write_lock(); 986 987 /* find our segment */ 988 msl = malloc_heap_find_external_seg(va_addr, len); 989 if (msl == NULL) { 990 rte_errno = ENOENT; 991 ret = -1; 992 goto unlock; 993 } 994 if (attach) 995 ret = rte_fbarray_attach(&msl->memseg_arr); 996 else 997 ret = rte_fbarray_detach(&msl->memseg_arr); 998 999 unlock: 1000 rte_mcfg_mem_write_unlock(); 1001 return ret; 1002 } 1003 1004 int 1005 rte_extmem_attach(void *va_addr, size_t len) 1006 { 1007 return sync_memory(va_addr, len, true); 1008 } 1009 1010 int 1011 rte_extmem_detach(void *va_addr, size_t len) 1012 { 1013 return sync_memory(va_addr, len, false); 1014 } 1015 1016 /* detach all EAL memory */ 1017 int 1018 rte_eal_memory_detach(void) 1019 { 1020 const struct internal_config *internal_conf = 1021 eal_get_internal_configuration(); 1022 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1023 size_t page_sz = rte_mem_page_size(); 1024 unsigned int i; 1025 1026 if (internal_conf->in_memory == 1) 1027 return 0; 1028 1029 rte_rwlock_write_lock(&mcfg->memory_hotplug_lock); 1030 1031 /* detach internal memory subsystem data first */ 1032 if (eal_memalloc_cleanup()) 1033 EAL_LOG(ERR, "Could not release memory subsystem data"); 1034 1035 for (i = 0; i < RTE_DIM(mcfg->memsegs); i++) { 1036 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 1037 1038 /* skip uninitialized segments */ 1039 if (msl->base_va == NULL) 1040 continue; 1041 /* 1042 * external segments are supposed to be detached at this point, 1043 * but if they aren't, we can't really do anything about it, 1044 * because if we skip them here, they'll become invalid after 1045 * we unmap the memconfig anyway. however, if this is externally 1046 * referenced memory, we have no business unmapping it. 1047 */ 1048 if (!msl->external) 1049 if (rte_mem_unmap(msl->base_va, msl->len) != 0) 1050 EAL_LOG(ERR, "Could not unmap memory: %s", 1051 rte_strerror(rte_errno)); 1052 1053 /* 1054 * we are detaching the fbarray rather than destroying because 1055 * other processes might still reference this fbarray, and we 1056 * have no way of knowing if they still do. 1057 */ 1058 if (rte_fbarray_detach(&msl->memseg_arr)) 1059 EAL_LOG(ERR, "Could not detach fbarray: %s", 1060 rte_strerror(rte_errno)); 1061 } 1062 rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock); 1063 1064 /* 1065 * we've detached the memseg lists, so we can unmap the shared mem 1066 * config - we can't zero it out because it might still be referenced 1067 * by other processes. 1068 */ 1069 if (internal_conf->no_shconf == 0 && mcfg->mem_cfg_addr != 0) { 1070 if (rte_mem_unmap(mcfg, RTE_ALIGN(sizeof(*mcfg), page_sz)) != 0) 1071 EAL_LOG(ERR, "Could not unmap shared memory config: %s", 1072 rte_strerror(rte_errno)); 1073 } 1074 rte_eal_get_configuration()->mem_config = NULL; 1075 1076 return 0; 1077 } 1078 1079 /* init memory subsystem */ 1080 int 1081 rte_eal_memory_init(void) 1082 { 1083 const struct internal_config *internal_conf = 1084 eal_get_internal_configuration(); 1085 int retval; 1086 1087 EAL_LOG(DEBUG, "Setting up physically contiguous memory..."); 1088 1089 if (rte_eal_memseg_init() < 0) 1090 goto fail; 1091 1092 if (eal_memalloc_init() < 0) 1093 goto fail; 1094 1095 retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? 1096 rte_eal_hugepage_init() : 1097 rte_eal_hugepage_attach(); 1098 if (retval < 0) 1099 goto fail; 1100 1101 if (internal_conf->no_shconf == 0 && rte_eal_memdevice_init() < 0) 1102 goto fail; 1103 1104 return 0; 1105 fail: 1106 return -1; 1107 } 1108 1109 #ifndef RTE_EXEC_ENV_WINDOWS 1110 #define EAL_MEMZONE_LIST_REQ "/eal/memzone_list" 1111 #define EAL_MEMZONE_INFO_REQ "/eal/memzone_info" 1112 #define EAL_HEAP_LIST_REQ "/eal/heap_list" 1113 #define EAL_HEAP_INFO_REQ "/eal/heap_info" 1114 #define EAL_MEMSEG_LISTS_REQ "/eal/memseg_lists" 1115 #define EAL_MEMSEG_LIST_INFO_REQ "/eal/memseg_list_info" 1116 #define EAL_MEMSEG_INFO_REQ "/eal/memseg_info" 1117 #define EAL_ELEMENT_LIST_REQ "/eal/mem_element_list" 1118 #define EAL_ELEMENT_INFO_REQ "/eal/mem_element_info" 1119 #define ADDR_STR 15 1120 1121 1122 /* Telemetry callback handler to return heap stats for requested heap id. */ 1123 static int 1124 handle_eal_heap_info_request(const char *cmd __rte_unused, const char *params, 1125 struct rte_tel_data *d) 1126 { 1127 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1128 struct rte_malloc_socket_stats sock_stats; 1129 struct malloc_heap *heap; 1130 unsigned int heap_id; 1131 1132 if (params == NULL || strlen(params) == 0) 1133 return -1; 1134 1135 heap_id = (unsigned int)strtoul(params, NULL, 10); 1136 1137 /* Get the heap stats of user provided heap id */ 1138 heap = &mcfg->malloc_heaps[heap_id]; 1139 malloc_heap_get_stats(heap, &sock_stats); 1140 1141 rte_tel_data_start_dict(d); 1142 rte_tel_data_add_dict_uint(d, "Heap_id", heap_id); 1143 rte_tel_data_add_dict_string(d, "Name", heap->name); 1144 rte_tel_data_add_dict_uint(d, "Heap_size", 1145 sock_stats.heap_totalsz_bytes); 1146 rte_tel_data_add_dict_uint(d, "Free_size", 1147 sock_stats.heap_freesz_bytes); 1148 rte_tel_data_add_dict_uint(d, "Alloc_size", 1149 sock_stats.heap_allocsz_bytes); 1150 rte_tel_data_add_dict_uint(d, "Greatest_free_size", 1151 sock_stats.greatest_free_size); 1152 rte_tel_data_add_dict_uint(d, "Alloc_count", sock_stats.alloc_count); 1153 rte_tel_data_add_dict_uint(d, "Free_count", sock_stats.free_count); 1154 1155 return 0; 1156 } 1157 1158 /* Telemetry callback handler to list the heap ids setup. */ 1159 static int 1160 handle_eal_heap_list_request(const char *cmd __rte_unused, 1161 const char *params __rte_unused, 1162 struct rte_tel_data *d) 1163 { 1164 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1165 struct rte_malloc_socket_stats sock_stats; 1166 unsigned int heap_id; 1167 1168 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1169 /* Iterate through all initialised heaps */ 1170 for (heap_id = 0; heap_id < RTE_MAX_HEAPS; heap_id++) { 1171 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; 1172 1173 malloc_heap_get_stats(heap, &sock_stats); 1174 if (sock_stats.heap_totalsz_bytes != 0) 1175 rte_tel_data_add_array_int(d, heap_id); 1176 } 1177 1178 return 0; 1179 } 1180 1181 /* Telemetry callback handler to return memzone info for requested index. */ 1182 static int 1183 handle_eal_memzone_info_request(const char *cmd __rte_unused, 1184 const char *params, struct rte_tel_data *d) 1185 { 1186 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1187 struct rte_memseg_list *msl = NULL; 1188 int ms_idx, ms_count = 0; 1189 void *cur_addr, *mz_end; 1190 struct rte_memzone *mz; 1191 struct rte_memseg *ms; 1192 char addr[ADDR_STR]; 1193 unsigned int mz_idx; 1194 size_t page_sz; 1195 1196 if (params == NULL || strlen(params) == 0) 1197 return -1; 1198 1199 mz_idx = strtoul(params, NULL, 10); 1200 1201 /* Get the memzone handle using index */ 1202 mz = rte_fbarray_get(&mcfg->memzones, mz_idx); 1203 1204 rte_tel_data_start_dict(d); 1205 rte_tel_data_add_dict_uint(d, "Zone", mz_idx); 1206 rte_tel_data_add_dict_string(d, "Name", mz->name); 1207 rte_tel_data_add_dict_uint(d, "Length", mz->len); 1208 snprintf(addr, ADDR_STR, "%p", mz->addr); 1209 rte_tel_data_add_dict_string(d, "Address", addr); 1210 rte_tel_data_add_dict_int(d, "Socket", mz->socket_id); 1211 rte_tel_data_add_dict_uint(d, "Flags", mz->flags); 1212 1213 /* go through each page occupied by this memzone */ 1214 msl = rte_mem_virt2memseg_list(mz->addr); 1215 if (!msl) { 1216 EAL_LOG(DEBUG, "Skipping bad memzone"); 1217 return -1; 1218 } 1219 page_sz = (size_t)mz->hugepage_sz; 1220 cur_addr = RTE_PTR_ALIGN_FLOOR(mz->addr, page_sz); 1221 mz_end = RTE_PTR_ADD(cur_addr, mz->len); 1222 1223 ms_idx = RTE_PTR_DIFF(mz->addr, msl->base_va) / page_sz; 1224 ms = rte_fbarray_get(&msl->memseg_arr, ms_idx); 1225 1226 rte_tel_data_add_dict_uint(d, "Hugepage_size", page_sz); 1227 snprintf(addr, ADDR_STR, "%p", ms->addr); 1228 rte_tel_data_add_dict_string(d, "Hugepage_base", addr); 1229 1230 do { 1231 /* advance VA to next page */ 1232 cur_addr = RTE_PTR_ADD(cur_addr, page_sz); 1233 1234 /* memzones occupy contiguous segments */ 1235 ++ms; 1236 ms_count++; 1237 } while (cur_addr < mz_end); 1238 1239 rte_tel_data_add_dict_int(d, "Hugepage_used", ms_count); 1240 1241 return 0; 1242 } 1243 1244 static void 1245 memzone_list_cb(const struct rte_memzone *mz __rte_unused, 1246 void *arg __rte_unused) 1247 { 1248 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1249 struct rte_tel_data *d = arg; 1250 int mz_idx; 1251 1252 mz_idx = rte_fbarray_find_idx(&mcfg->memzones, mz); 1253 rte_tel_data_add_array_int(d, mz_idx); 1254 } 1255 1256 1257 /* Telemetry callback handler to list the memzones reserved. */ 1258 static int 1259 handle_eal_memzone_list_request(const char *cmd __rte_unused, 1260 const char *params __rte_unused, 1261 struct rte_tel_data *d) 1262 { 1263 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1264 rte_memzone_walk(memzone_list_cb, d); 1265 1266 return 0; 1267 } 1268 1269 /* n_vals is the number of params to be parsed. */ 1270 static int 1271 parse_params(const char *params, uint32_t *vals, size_t n_vals) 1272 { 1273 char dlim[2] = ","; 1274 char *params_args; 1275 size_t count = 0; 1276 char *token; 1277 1278 if (vals == NULL || params == NULL || strlen(params) == 0) 1279 return -1; 1280 1281 /* strtok expects char * and param is const char *. Hence on using 1282 * params as "const char *" compiler throws warning. 1283 */ 1284 params_args = strdup(params); 1285 if (params_args == NULL) 1286 return -1; 1287 1288 token = strtok(params_args, dlim); 1289 while (token && isdigit(*token) && count < n_vals) { 1290 vals[count++] = strtoul(token, NULL, 10); 1291 token = strtok(NULL, dlim); 1292 } 1293 1294 free(params_args); 1295 1296 if (count < n_vals) 1297 return -1; 1298 1299 return 0; 1300 } 1301 1302 static int 1303 handle_eal_memseg_lists_request(const char *cmd __rte_unused, 1304 const char *params __rte_unused, 1305 struct rte_tel_data *d) 1306 { 1307 struct rte_mem_config *mcfg; 1308 int i; 1309 1310 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1311 1312 rte_mcfg_mem_read_lock(); 1313 mcfg = rte_eal_get_configuration()->mem_config; 1314 1315 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 1316 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 1317 if (msl->memseg_arr.count == 0) 1318 continue; 1319 1320 rte_tel_data_add_array_int(d, i); 1321 } 1322 rte_mcfg_mem_read_unlock(); 1323 1324 return 0; 1325 } 1326 1327 static int 1328 handle_eal_memseg_list_info_request(const char *cmd __rte_unused, 1329 const char *params, struct rte_tel_data *d) 1330 { 1331 struct rte_mem_config *mcfg; 1332 struct rte_memseg_list *msl; 1333 struct rte_fbarray *arr; 1334 uint32_t ms_list_idx; 1335 int ms_idx; 1336 /* size of an array == num params to be parsed. */ 1337 uint32_t vals[1] = {0}; 1338 1339 if (parse_params(params, vals, RTE_DIM(vals)) < 0) 1340 return -1; 1341 1342 ms_list_idx = vals[0]; 1343 if (ms_list_idx >= RTE_MAX_MEMSEG_LISTS) 1344 return -1; 1345 1346 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1347 1348 rte_mcfg_mem_read_lock(); 1349 mcfg = rte_eal_get_configuration()->mem_config; 1350 msl = &mcfg->memsegs[ms_list_idx]; 1351 if (msl->memseg_arr.count == 0) 1352 goto done; 1353 1354 arr = &msl->memseg_arr; 1355 1356 ms_idx = rte_fbarray_find_next_used(arr, 0); 1357 while (ms_idx >= 0) { 1358 rte_tel_data_add_array_int(d, ms_idx); 1359 ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1); 1360 } 1361 1362 done: 1363 rte_mcfg_mem_read_unlock(); 1364 1365 return 0; 1366 } 1367 1368 static int 1369 handle_eal_memseg_info_request(const char *cmd __rte_unused, 1370 const char *params, struct rte_tel_data *d) 1371 { 1372 struct rte_mem_config *mcfg; 1373 uint64_t ms_start_addr, ms_end_addr, ms_size, hugepage_size, ms_iova; 1374 struct rte_memseg_list *msl; 1375 const struct rte_memseg *ms; 1376 struct rte_fbarray *arr; 1377 char addr[ADDR_STR]; 1378 uint32_t ms_list_idx = 0; 1379 uint32_t ms_idx = 0; 1380 int32_t ms_socket_id; 1381 uint32_t ms_flags; 1382 /* size of an array == num params to be parsed. */ 1383 uint32_t vals[2] = {0}; 1384 1385 if (parse_params(params, vals, RTE_DIM(vals)) < 0) 1386 return -1; 1387 1388 ms_list_idx = vals[0]; 1389 if (ms_list_idx >= RTE_MAX_MEMSEG_LISTS) 1390 return -1; 1391 1392 ms_idx = vals[1]; 1393 1394 rte_mcfg_mem_read_lock(); 1395 1396 mcfg = rte_eal_get_configuration()->mem_config; 1397 msl = &mcfg->memsegs[ms_list_idx]; 1398 if (msl->memseg_arr.count == 0) { 1399 rte_mcfg_mem_read_unlock(); 1400 return -1; 1401 } 1402 1403 arr = &msl->memseg_arr; 1404 ms = rte_fbarray_get(arr, ms_idx); 1405 if (ms == NULL) { 1406 rte_mcfg_mem_read_unlock(); 1407 EAL_LOG(DEBUG, "Error fetching requested memseg."); 1408 return -1; 1409 } 1410 1411 ms_iova = ms->iova; 1412 ms_start_addr = ms->addr_64; 1413 ms_end_addr = (uint64_t)RTE_PTR_ADD(ms_start_addr, ms->len); 1414 ms_size = ms->len; 1415 hugepage_size = ms->hugepage_sz; 1416 ms_socket_id = ms->socket_id; 1417 ms_flags = ms->flags; 1418 1419 rte_mcfg_mem_read_unlock(); 1420 1421 rte_tel_data_start_dict(d); 1422 rte_tel_data_add_dict_int(d, "Memseg_list_index", ms_list_idx); 1423 rte_tel_data_add_dict_int(d, "Memseg_index", ms_idx); 1424 if (ms_iova == RTE_BAD_IOVA) 1425 snprintf(addr, ADDR_STR, "Bad IOVA"); 1426 else 1427 snprintf(addr, ADDR_STR, "0x%"PRIx64, ms_iova); 1428 1429 rte_tel_data_add_dict_string(d, "IOVA_addr", addr); 1430 snprintf(addr, ADDR_STR, "0x%"PRIx64, ms_start_addr); 1431 rte_tel_data_add_dict_string(d, "Start_addr", addr); 1432 snprintf(addr, ADDR_STR, "0x%"PRIx64, ms_end_addr); 1433 rte_tel_data_add_dict_string(d, "End_addr", addr); 1434 rte_tel_data_add_dict_uint(d, "Size", ms_size); 1435 rte_tel_data_add_dict_uint(d, "Hugepage_size", hugepage_size); 1436 rte_tel_data_add_dict_int(d, "Socket_id", ms_socket_id); 1437 rte_tel_data_add_dict_int(d, "flags", ms_flags); 1438 1439 return 0; 1440 } 1441 1442 static int 1443 handle_eal_element_list_request(const char *cmd __rte_unused, 1444 const char *params, struct rte_tel_data *d) 1445 { 1446 struct rte_mem_config *mcfg; 1447 struct rte_memseg_list *msl; 1448 const struct rte_memseg *ms; 1449 struct malloc_elem *elem; 1450 struct malloc_heap *heap; 1451 uint64_t ms_start_addr, ms_end_addr; 1452 uint64_t elem_start_addr, elem_end_addr; 1453 uint32_t ms_list_idx = 0; 1454 uint32_t heap_id = 0; 1455 uint32_t ms_idx = 0; 1456 int elem_count = 0; 1457 /* size of an array == num params to be parsed. */ 1458 uint32_t vals[3] = {0}; 1459 1460 if (parse_params(params, vals, RTE_DIM(vals)) < 0) 1461 return -1; 1462 1463 heap_id = vals[0]; 1464 if (heap_id >= RTE_MAX_HEAPS) 1465 return -1; 1466 1467 ms_list_idx = vals[1]; 1468 if (ms_list_idx >= RTE_MAX_MEMSEG_LISTS) 1469 return -1; 1470 1471 ms_idx = vals[2]; 1472 1473 rte_mcfg_mem_read_lock(); 1474 1475 mcfg = rte_eal_get_configuration()->mem_config; 1476 msl = &mcfg->memsegs[ms_list_idx]; 1477 ms = rte_fbarray_get(&msl->memseg_arr, ms_idx); 1478 if (ms == NULL) { 1479 rte_mcfg_mem_read_unlock(); 1480 EAL_LOG(DEBUG, "Error fetching requested memseg."); 1481 return -1; 1482 } 1483 1484 ms_start_addr = ms->addr_64; 1485 ms_end_addr = (uint64_t)RTE_PTR_ADD(ms_start_addr, ms->len); 1486 rte_mcfg_mem_read_unlock(); 1487 1488 rte_tel_data_start_dict(d); 1489 1490 heap = &mcfg->malloc_heaps[heap_id]; 1491 rte_spinlock_lock(&heap->lock); 1492 1493 elem = heap->first; 1494 while (elem) { 1495 elem_start_addr = (uint64_t)elem; 1496 elem_end_addr = 1497 (uint64_t)RTE_PTR_ADD(elem_start_addr, elem->size); 1498 1499 if ((uint64_t)elem_start_addr >= ms_start_addr && 1500 (uint64_t)elem_end_addr <= ms_end_addr) 1501 elem_count++; 1502 elem = elem->next; 1503 } 1504 1505 rte_spinlock_unlock(&heap->lock); 1506 1507 rte_tel_data_add_dict_int(d, "Element_count", elem_count); 1508 1509 return 0; 1510 } 1511 1512 static int 1513 handle_eal_element_info_request(const char *cmd __rte_unused, 1514 const char *params, struct rte_tel_data *d) 1515 { 1516 struct rte_mem_config *mcfg; 1517 struct rte_memseg_list *msl; 1518 const struct rte_memseg *ms; 1519 struct malloc_elem *elem; 1520 struct malloc_heap *heap; 1521 struct rte_tel_data *c; 1522 uint64_t ms_start_addr, ms_end_addr; 1523 uint64_t elem_start_addr, elem_end_addr; 1524 uint32_t ms_list_idx = 0; 1525 uint32_t heap_id = 0; 1526 uint32_t ms_idx = 0; 1527 uint32_t start_elem = 0, end_elem = 0; 1528 uint32_t count = 0, elem_count = 0; 1529 char str[ADDR_STR]; 1530 /* size of an array == num params to be parsed. */ 1531 uint32_t vals[5] = {0}; 1532 1533 if (parse_params(params, vals, RTE_DIM(vals)) < 0) 1534 return -1; 1535 1536 heap_id = vals[0]; 1537 if (heap_id >= RTE_MAX_HEAPS) 1538 return -1; 1539 1540 ms_list_idx = vals[1]; 1541 if (ms_list_idx >= RTE_MAX_MEMSEG_LISTS) 1542 return -1; 1543 1544 ms_idx = vals[2]; 1545 start_elem = vals[3]; 1546 end_elem = vals[4]; 1547 1548 if (end_elem < start_elem) 1549 return -1; 1550 1551 rte_mcfg_mem_read_lock(); 1552 1553 mcfg = rte_eal_get_configuration()->mem_config; 1554 msl = &mcfg->memsegs[ms_list_idx]; 1555 ms = rte_fbarray_get(&msl->memseg_arr, ms_idx); 1556 if (ms == NULL) { 1557 rte_mcfg_mem_read_unlock(); 1558 EAL_LOG(DEBUG, "Error fetching requested memseg."); 1559 return -1; 1560 } 1561 1562 ms_start_addr = ms->addr_64; 1563 ms_end_addr = (uint64_t)RTE_PTR_ADD(ms_start_addr, ms->len); 1564 1565 rte_mcfg_mem_read_unlock(); 1566 1567 rte_tel_data_start_dict(d); 1568 1569 heap = &mcfg->malloc_heaps[heap_id]; 1570 rte_spinlock_lock(&heap->lock); 1571 1572 elem = heap->first; 1573 while (elem) { 1574 elem_start_addr = (uint64_t)elem; 1575 elem_end_addr = 1576 (uint64_t)RTE_PTR_ADD(elem_start_addr, elem->size); 1577 1578 if (elem_start_addr < ms_start_addr || 1579 elem_end_addr > ms_end_addr) { 1580 elem = elem->next; 1581 continue; 1582 } 1583 1584 if (count < start_elem) { 1585 elem = elem->next; 1586 count++; 1587 continue; 1588 } 1589 1590 c = rte_tel_data_alloc(); 1591 if (c == NULL) 1592 break; 1593 1594 rte_tel_data_start_dict(c); 1595 rte_tel_data_add_dict_int(c, "msl_id", ms_list_idx); 1596 rte_tel_data_add_dict_int(c, "ms_id", ms_idx); 1597 snprintf(str, ADDR_STR, "0x%"PRIx64, ms_start_addr); 1598 rte_tel_data_add_dict_string(c, "memseg_start_addr", str); 1599 snprintf(str, ADDR_STR, "0x%"PRIx64, ms_end_addr); 1600 rte_tel_data_add_dict_string(c, "memseg_end_addr", str); 1601 snprintf(str, ADDR_STR, "0x%"PRIx64, elem_start_addr); 1602 rte_tel_data_add_dict_string(c, "element_start_addr", str); 1603 snprintf(str, ADDR_STR, "0x%"PRIx64, elem_end_addr); 1604 rte_tel_data_add_dict_string(c, "element_end_addr", str); 1605 rte_tel_data_add_dict_int(c, "element_size", elem->size); 1606 snprintf(str, ADDR_STR, "%s", elem->state == 0 ? "Free" : 1607 elem->state == 1 ? "Busy" : elem->state == 2 ? 1608 "Pad" : "Error"); 1609 rte_tel_data_add_dict_string(c, "element_state", str); 1610 1611 snprintf(str, ADDR_STR, "%s_%u", "element", count); 1612 if (rte_tel_data_add_dict_container(d, str, c, 0) != 0) { 1613 rte_tel_data_free(c); 1614 break; 1615 } 1616 1617 elem_count++; 1618 count++; 1619 if (count > end_elem) 1620 break; 1621 1622 elem = elem->next; 1623 } 1624 1625 rte_spinlock_unlock(&heap->lock); 1626 1627 rte_tel_data_add_dict_int(d, "Element_count", elem_count); 1628 1629 return 0; 1630 } 1631 1632 RTE_INIT(memory_telemetry) 1633 { 1634 rte_telemetry_register_cmd( 1635 EAL_MEMZONE_LIST_REQ, handle_eal_memzone_list_request, 1636 "List of memzone index reserved. Takes no parameters"); 1637 rte_telemetry_register_cmd( 1638 EAL_MEMZONE_INFO_REQ, handle_eal_memzone_info_request, 1639 "Returns memzone info. Parameters: int mz_id"); 1640 rte_telemetry_register_cmd( 1641 EAL_HEAP_LIST_REQ, handle_eal_heap_list_request, 1642 "List of heap index setup. Takes no parameters"); 1643 rte_telemetry_register_cmd( 1644 EAL_HEAP_INFO_REQ, handle_eal_heap_info_request, 1645 "Returns malloc heap stats. Parameters: int heap_id"); 1646 rte_telemetry_register_cmd( 1647 EAL_MEMSEG_LISTS_REQ, 1648 handle_eal_memseg_lists_request, 1649 "Returns array of memseg list IDs. Takes no parameters"); 1650 rte_telemetry_register_cmd( 1651 EAL_MEMSEG_LIST_INFO_REQ, 1652 handle_eal_memseg_list_info_request, 1653 "Returns memseg list info. Parameters: int memseg_list_id"); 1654 rte_telemetry_register_cmd( 1655 EAL_MEMSEG_INFO_REQ, handle_eal_memseg_info_request, 1656 "Returns memseg info. Parameter: int memseg_list_id,int memseg_id"); 1657 rte_telemetry_register_cmd(EAL_ELEMENT_LIST_REQ, 1658 handle_eal_element_list_request, 1659 "Returns array of heap element IDs. Parameters: int heap_id, int memseg_list_id, int memseg_id"); 1660 rte_telemetry_register_cmd(EAL_ELEMENT_INFO_REQ, 1661 handle_eal_element_info_request, 1662 "Returns element info. Parameters: int heap_id, int memseg_list_id, int memseg_id, int start_elem_id, int end_elem_id"); 1663 } 1664 #endif 1665