xref: /dpdk/lib/eal/common/eal_common_memory.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <fcntl.h>
6 #include <errno.h>
7 #include <stdio.h>
8 #include <stdint.h>
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <unistd.h>
13 #include <inttypes.h>
14 #include <sys/queue.h>
15 
16 #include <rte_fbarray.h>
17 #include <rte_memory.h>
18 #include <rte_eal.h>
19 #include <rte_eal_memconfig.h>
20 #include <rte_eal_paging.h>
21 #include <rte_errno.h>
22 #include <rte_log.h>
23 #ifndef RTE_EXEC_ENV_WINDOWS
24 #include <rte_telemetry.h>
25 #endif
26 
27 #include "eal_memalloc.h"
28 #include "eal_private.h"
29 #include "eal_internal_cfg.h"
30 #include "eal_memcfg.h"
31 #include "eal_options.h"
32 #include "malloc_heap.h"
33 
34 /*
35  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
36  * pointer to the mmap'd area and keep *size unmodified. Else, retry
37  * with a smaller zone: decrease *size by hugepage_sz until it reaches
38  * 0. In this case, return NULL. Note: this function returns an address
39  * which is a multiple of hugepage size.
40  */
41 
42 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
43 
44 static void *next_baseaddr;
45 static uint64_t system_page_sz;
46 
47 #define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5
48 void *
49 eal_get_virtual_area(void *requested_addr, size_t *size,
50 	size_t page_sz, int flags, int reserve_flags)
51 {
52 	bool addr_is_hint, allow_shrink, unmap, no_align;
53 	uint64_t map_sz;
54 	void *mapped_addr, *aligned_addr;
55 	uint8_t try = 0;
56 	struct internal_config *internal_conf =
57 		eal_get_internal_configuration();
58 
59 	if (system_page_sz == 0)
60 		system_page_sz = rte_mem_page_size();
61 
62 	RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
63 
64 	addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
65 	allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
66 	unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
67 
68 	if (next_baseaddr == NULL && internal_conf->base_virtaddr != 0 &&
69 			rte_eal_process_type() == RTE_PROC_PRIMARY)
70 		next_baseaddr = (void *) internal_conf->base_virtaddr;
71 
72 #ifdef RTE_ARCH_64
73 	if (next_baseaddr == NULL && internal_conf->base_virtaddr == 0 &&
74 			rte_eal_process_type() == RTE_PROC_PRIMARY)
75 		next_baseaddr = (void *) eal_get_baseaddr();
76 #endif
77 	if (requested_addr == NULL && next_baseaddr != NULL) {
78 		requested_addr = next_baseaddr;
79 		requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
80 		addr_is_hint = true;
81 	}
82 
83 	/* we don't need alignment of resulting pointer in the following cases:
84 	 *
85 	 * 1. page size is equal to system size
86 	 * 2. we have a requested address, and it is page-aligned, and we will
87 	 *    be discarding the address if we get a different one.
88 	 *
89 	 * for all other cases, alignment is potentially necessary.
90 	 */
91 	no_align = (requested_addr != NULL &&
92 		requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) &&
93 		!addr_is_hint) ||
94 		page_sz == system_page_sz;
95 
96 	do {
97 		map_sz = no_align ? *size : *size + page_sz;
98 		if (map_sz > SIZE_MAX) {
99 			RTE_LOG(ERR, EAL, "Map size too big\n");
100 			rte_errno = E2BIG;
101 			return NULL;
102 		}
103 
104 		mapped_addr = eal_mem_reserve(
105 			requested_addr, (size_t)map_sz, reserve_flags);
106 		if ((mapped_addr == NULL) && allow_shrink)
107 			*size -= page_sz;
108 
109 		if ((mapped_addr != NULL) && addr_is_hint &&
110 				(mapped_addr != requested_addr)) {
111 			try++;
112 			next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz);
113 			if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) {
114 				/* hint was not used. Try with another offset */
115 				eal_mem_free(mapped_addr, map_sz);
116 				mapped_addr = NULL;
117 				requested_addr = next_baseaddr;
118 			}
119 		}
120 	} while ((allow_shrink || addr_is_hint) &&
121 		(mapped_addr == NULL) && (*size > 0));
122 
123 	/* align resulting address - if map failed, we will ignore the value
124 	 * anyway, so no need to add additional checks.
125 	 */
126 	aligned_addr = no_align ? mapped_addr :
127 			RTE_PTR_ALIGN(mapped_addr, page_sz);
128 
129 	if (*size == 0) {
130 		RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
131 			rte_strerror(rte_errno));
132 		return NULL;
133 	} else if (mapped_addr == NULL) {
134 		RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
135 			rte_strerror(rte_errno));
136 		return NULL;
137 	} else if (requested_addr != NULL && !addr_is_hint &&
138 			aligned_addr != requested_addr) {
139 		RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
140 			requested_addr, aligned_addr);
141 		eal_mem_free(mapped_addr, map_sz);
142 		rte_errno = EADDRNOTAVAIL;
143 		return NULL;
144 	} else if (requested_addr != NULL && addr_is_hint &&
145 			aligned_addr != requested_addr) {
146 		RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
147 			requested_addr, aligned_addr);
148 		RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory into secondary processes\n");
149 	} else if (next_baseaddr != NULL) {
150 		next_baseaddr = RTE_PTR_ADD(aligned_addr, *size);
151 	}
152 
153 	RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
154 		aligned_addr, *size);
155 
156 	if (unmap) {
157 		eal_mem_free(mapped_addr, map_sz);
158 	} else if (!no_align) {
159 		void *map_end, *aligned_end;
160 		size_t before_len, after_len;
161 
162 		/* when we reserve space with alignment, we add alignment to
163 		 * mapping size. On 32-bit, if 1GB alignment was requested, this
164 		 * would waste 1GB of address space, which is a luxury we cannot
165 		 * afford. so, if alignment was performed, check if any unneeded
166 		 * address space can be unmapped back.
167 		 */
168 
169 		map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
170 		aligned_end = RTE_PTR_ADD(aligned_addr, *size);
171 
172 		/* unmap space before aligned mmap address */
173 		before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
174 		if (before_len > 0)
175 			eal_mem_free(mapped_addr, before_len);
176 
177 		/* unmap space after aligned end mmap address */
178 		after_len = RTE_PTR_DIFF(map_end, aligned_end);
179 		if (after_len > 0)
180 			eal_mem_free(aligned_end, after_len);
181 	}
182 
183 	if (!unmap) {
184 		/* Exclude these pages from a core dump. */
185 		eal_mem_set_dump(aligned_addr, *size, false);
186 	}
187 
188 	return aligned_addr;
189 }
190 
191 int
192 eal_memseg_list_init_named(struct rte_memseg_list *msl, const char *name,
193 		uint64_t page_sz, int n_segs, int socket_id, bool heap)
194 {
195 	if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
196 			sizeof(struct rte_memseg))) {
197 		RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
198 			rte_strerror(rte_errno));
199 		return -1;
200 	}
201 
202 	msl->page_sz = page_sz;
203 	msl->socket_id = socket_id;
204 	msl->base_va = NULL;
205 	msl->heap = heap;
206 
207 	RTE_LOG(DEBUG, EAL,
208 		"Memseg list allocated at socket %i, page size 0x%"PRIx64"kB\n",
209 		socket_id, page_sz >> 10);
210 
211 	return 0;
212 }
213 
214 int
215 eal_memseg_list_init(struct rte_memseg_list *msl, uint64_t page_sz,
216 		int n_segs, int socket_id, int type_msl_idx, bool heap)
217 {
218 	char name[RTE_FBARRAY_NAME_LEN];
219 
220 	snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
221 		 type_msl_idx);
222 
223 	return eal_memseg_list_init_named(
224 		msl, name, page_sz, n_segs, socket_id, heap);
225 }
226 
227 int
228 eal_memseg_list_alloc(struct rte_memseg_list *msl, int reserve_flags)
229 {
230 	size_t page_sz, mem_sz;
231 	void *addr;
232 
233 	page_sz = msl->page_sz;
234 	mem_sz = page_sz * msl->memseg_arr.len;
235 
236 	addr = eal_get_virtual_area(
237 		msl->base_va, &mem_sz, page_sz, 0, reserve_flags);
238 	if (addr == NULL) {
239 #ifndef RTE_EXEC_ENV_WINDOWS
240 		/* The hint would be misleading on Windows, because address
241 		 * is by default system-selected (base VA = 0).
242 		 * However, this function is called from many places,
243 		 * including common code, so don't duplicate the message.
244 		 */
245 		if (rte_errno == EADDRNOTAVAIL)
246 			RTE_LOG(ERR, EAL, "Cannot reserve %llu bytes at [%p] - "
247 				"please use '--" OPT_BASE_VIRTADDR "' option\n",
248 				(unsigned long long)mem_sz, msl->base_va);
249 #endif
250 		return -1;
251 	}
252 	msl->base_va = addr;
253 	msl->len = mem_sz;
254 
255 	RTE_LOG(DEBUG, EAL, "VA reserved for memseg list at %p, size %zx\n",
256 			addr, mem_sz);
257 
258 	return 0;
259 }
260 
261 void
262 eal_memseg_list_populate(struct rte_memseg_list *msl, void *addr, int n_segs)
263 {
264 	size_t page_sz = msl->page_sz;
265 	int i;
266 
267 	for (i = 0; i < n_segs; i++) {
268 		struct rte_fbarray *arr = &msl->memseg_arr;
269 		struct rte_memseg *ms = rte_fbarray_get(arr, i);
270 
271 		if (rte_eal_iova_mode() == RTE_IOVA_VA)
272 			ms->iova = (uintptr_t)addr;
273 		else
274 			ms->iova = RTE_BAD_IOVA;
275 		ms->addr = addr;
276 		ms->hugepage_sz = page_sz;
277 		ms->socket_id = 0;
278 		ms->len = page_sz;
279 
280 		rte_fbarray_set_used(arr, i);
281 
282 		addr = RTE_PTR_ADD(addr, page_sz);
283 	}
284 }
285 
286 static struct rte_memseg *
287 virt2memseg(const void *addr, const struct rte_memseg_list *msl)
288 {
289 	const struct rte_fbarray *arr;
290 	void *start, *end;
291 	int ms_idx;
292 
293 	if (msl == NULL)
294 		return NULL;
295 
296 	/* a memseg list was specified, check if it's the right one */
297 	start = msl->base_va;
298 	end = RTE_PTR_ADD(start, msl->len);
299 
300 	if (addr < start || addr >= end)
301 		return NULL;
302 
303 	/* now, calculate index */
304 	arr = &msl->memseg_arr;
305 	ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
306 	return rte_fbarray_get(arr, ms_idx);
307 }
308 
309 static struct rte_memseg_list *
310 virt2memseg_list(const void *addr)
311 {
312 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
313 	struct rte_memseg_list *msl;
314 	int msl_idx;
315 
316 	for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
317 		void *start, *end;
318 		msl = &mcfg->memsegs[msl_idx];
319 
320 		start = msl->base_va;
321 		end = RTE_PTR_ADD(start, msl->len);
322 		if (addr >= start && addr < end)
323 			break;
324 	}
325 	/* if we didn't find our memseg list */
326 	if (msl_idx == RTE_MAX_MEMSEG_LISTS)
327 		return NULL;
328 	return msl;
329 }
330 
331 struct rte_memseg_list *
332 rte_mem_virt2memseg_list(const void *addr)
333 {
334 	return virt2memseg_list(addr);
335 }
336 
337 struct virtiova {
338 	rte_iova_t iova;
339 	void *virt;
340 };
341 static int
342 find_virt(const struct rte_memseg_list *msl __rte_unused,
343 		const struct rte_memseg *ms, void *arg)
344 {
345 	struct virtiova *vi = arg;
346 	if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
347 		size_t offset = vi->iova - ms->iova;
348 		vi->virt = RTE_PTR_ADD(ms->addr, offset);
349 		/* stop the walk */
350 		return 1;
351 	}
352 	return 0;
353 }
354 static int
355 find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
356 		const struct rte_memseg *ms, size_t len, void *arg)
357 {
358 	struct virtiova *vi = arg;
359 	if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
360 		size_t offset = vi->iova - ms->iova;
361 		vi->virt = RTE_PTR_ADD(ms->addr, offset);
362 		/* stop the walk */
363 		return 1;
364 	}
365 	return 0;
366 }
367 
368 void *
369 rte_mem_iova2virt(rte_iova_t iova)
370 {
371 	struct virtiova vi;
372 	const struct internal_config *internal_conf =
373 		eal_get_internal_configuration();
374 
375 	memset(&vi, 0, sizeof(vi));
376 
377 	vi.iova = iova;
378 	/* for legacy mem, we can get away with scanning VA-contiguous segments,
379 	 * as we know they are PA-contiguous as well
380 	 */
381 	if (internal_conf->legacy_mem)
382 		rte_memseg_contig_walk(find_virt_legacy, &vi);
383 	else
384 		rte_memseg_walk(find_virt, &vi);
385 
386 	return vi.virt;
387 }
388 
389 struct rte_memseg *
390 rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
391 {
392 	return virt2memseg(addr, msl != NULL ? msl :
393 			rte_mem_virt2memseg_list(addr));
394 }
395 
396 static int
397 physmem_size(const struct rte_memseg_list *msl, void *arg)
398 {
399 	uint64_t *total_len = arg;
400 
401 	if (msl->external)
402 		return 0;
403 
404 	*total_len += msl->memseg_arr.count * msl->page_sz;
405 
406 	return 0;
407 }
408 
409 /* get the total size of memory */
410 uint64_t
411 rte_eal_get_physmem_size(void)
412 {
413 	uint64_t total_len = 0;
414 
415 	rte_memseg_list_walk(physmem_size, &total_len);
416 
417 	return total_len;
418 }
419 
420 static int
421 dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
422 		void *arg)
423 {
424 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
425 	int msl_idx, ms_idx, fd;
426 	FILE *f = arg;
427 
428 	msl_idx = msl - mcfg->memsegs;
429 	if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
430 		return -1;
431 
432 	ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
433 	if (ms_idx < 0)
434 		return -1;
435 
436 	fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx);
437 	fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
438 			"virt:%p, socket_id:%"PRId32", "
439 			"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
440 			"nrank:%"PRIx32" fd:%i\n",
441 			msl_idx, ms_idx,
442 			ms->iova,
443 			ms->len,
444 			ms->addr,
445 			ms->socket_id,
446 			ms->hugepage_sz,
447 			ms->nchannel,
448 			ms->nrank,
449 			fd);
450 
451 	return 0;
452 }
453 
454 /*
455  * Defining here because declared in rte_memory.h, but the actual implementation
456  * is in eal_common_memalloc.c, like all other memalloc internals.
457  */
458 int
459 rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
460 		void *arg)
461 {
462 	const struct internal_config *internal_conf =
463 		eal_get_internal_configuration();
464 
465 	/* FreeBSD boots with legacy mem enabled by default */
466 	if (internal_conf->legacy_mem) {
467 		RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
468 		rte_errno = ENOTSUP;
469 		return -1;
470 	}
471 	return eal_memalloc_mem_event_callback_register(name, clb, arg);
472 }
473 
474 int
475 rte_mem_event_callback_unregister(const char *name, void *arg)
476 {
477 	const struct internal_config *internal_conf =
478 		eal_get_internal_configuration();
479 
480 	/* FreeBSD boots with legacy mem enabled by default */
481 	if (internal_conf->legacy_mem) {
482 		RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
483 		rte_errno = ENOTSUP;
484 		return -1;
485 	}
486 	return eal_memalloc_mem_event_callback_unregister(name, arg);
487 }
488 
489 int
490 rte_mem_alloc_validator_register(const char *name,
491 		rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
492 {
493 	const struct internal_config *internal_conf =
494 		eal_get_internal_configuration();
495 
496 	/* FreeBSD boots with legacy mem enabled by default */
497 	if (internal_conf->legacy_mem) {
498 		RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
499 		rte_errno = ENOTSUP;
500 		return -1;
501 	}
502 	return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
503 			limit);
504 }
505 
506 int
507 rte_mem_alloc_validator_unregister(const char *name, int socket_id)
508 {
509 	const struct internal_config *internal_conf =
510 		eal_get_internal_configuration();
511 
512 	/* FreeBSD boots with legacy mem enabled by default */
513 	if (internal_conf->legacy_mem) {
514 		RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
515 		rte_errno = ENOTSUP;
516 		return -1;
517 	}
518 	return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
519 }
520 
521 /* Dump the physical memory layout on console */
522 void
523 rte_dump_physmem_layout(FILE *f)
524 {
525 	rte_memseg_walk(dump_memseg, f);
526 }
527 
528 static int
529 check_iova(const struct rte_memseg_list *msl __rte_unused,
530 		const struct rte_memseg *ms, void *arg)
531 {
532 	uint64_t *mask = arg;
533 	rte_iova_t iova;
534 
535 	/* higher address within segment */
536 	iova = (ms->iova + ms->len) - 1;
537 	if (!(iova & *mask))
538 		return 0;
539 
540 	RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n",
541 			    ms->iova, ms->len);
542 
543 	RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask);
544 	return 1;
545 }
546 
547 #define MAX_DMA_MASK_BITS 63
548 
549 /* check memseg iovas are within the required range based on dma mask */
550 static int
551 check_dma_mask(uint8_t maskbits, bool thread_unsafe)
552 {
553 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
554 	uint64_t mask;
555 	int ret;
556 
557 	/* Sanity check. We only check width can be managed with 64 bits
558 	 * variables. Indeed any higher value is likely wrong. */
559 	if (maskbits > MAX_DMA_MASK_BITS) {
560 		RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n",
561 				   maskbits, MAX_DMA_MASK_BITS);
562 		return -1;
563 	}
564 
565 	/* create dma mask */
566 	mask = ~((1ULL << maskbits) - 1);
567 
568 	if (thread_unsafe)
569 		ret = rte_memseg_walk_thread_unsafe(check_iova, &mask);
570 	else
571 		ret = rte_memseg_walk(check_iova, &mask);
572 
573 	if (ret)
574 		/*
575 		 * Dma mask precludes hugepage usage.
576 		 * This device can not be used and we do not need to keep
577 		 * the dma mask.
578 		 */
579 		return 1;
580 
581 	/*
582 	 * we need to keep the more restricted maskbit for checking
583 	 * potential dynamic memory allocation in the future.
584 	 */
585 	mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
586 			     RTE_MIN(mcfg->dma_maskbits, maskbits);
587 
588 	return 0;
589 }
590 
591 int
592 rte_mem_check_dma_mask(uint8_t maskbits)
593 {
594 	return check_dma_mask(maskbits, false);
595 }
596 
597 int
598 rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits)
599 {
600 	return check_dma_mask(maskbits, true);
601 }
602 
603 /*
604  * Set dma mask to use when memory initialization is done.
605  *
606  * This function should ONLY be used by code executed before the memory
607  * initialization. PMDs should use rte_mem_check_dma_mask if addressing
608  * limitations by the device.
609  */
610 void
611 rte_mem_set_dma_mask(uint8_t maskbits)
612 {
613 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
614 
615 	mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
616 			     RTE_MIN(mcfg->dma_maskbits, maskbits);
617 }
618 
619 /* return the number of memory channels */
620 unsigned rte_memory_get_nchannel(void)
621 {
622 	return rte_eal_get_configuration()->mem_config->nchannel;
623 }
624 
625 /* return the number of memory rank */
626 unsigned rte_memory_get_nrank(void)
627 {
628 	return rte_eal_get_configuration()->mem_config->nrank;
629 }
630 
631 static int
632 rte_eal_memdevice_init(void)
633 {
634 	struct rte_config *config;
635 	const struct internal_config *internal_conf;
636 
637 	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
638 		return 0;
639 
640 	internal_conf = eal_get_internal_configuration();
641 	config = rte_eal_get_configuration();
642 	config->mem_config->nchannel = internal_conf->force_nchannel;
643 	config->mem_config->nrank = internal_conf->force_nrank;
644 
645 	return 0;
646 }
647 
648 /* Lock page in physical memory and prevent from swapping. */
649 int
650 rte_mem_lock_page(const void *virt)
651 {
652 	uintptr_t virtual = (uintptr_t)virt;
653 	size_t page_size = rte_mem_page_size();
654 	uintptr_t aligned = RTE_PTR_ALIGN_FLOOR(virtual, page_size);
655 	return rte_mem_lock((void *)aligned, page_size);
656 }
657 
658 int
659 rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg)
660 {
661 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
662 	int i, ms_idx, ret = 0;
663 
664 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
665 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
666 		const struct rte_memseg *ms;
667 		struct rte_fbarray *arr;
668 
669 		if (msl->memseg_arr.count == 0)
670 			continue;
671 
672 		arr = &msl->memseg_arr;
673 
674 		ms_idx = rte_fbarray_find_next_used(arr, 0);
675 		while (ms_idx >= 0) {
676 			int n_segs;
677 			size_t len;
678 
679 			ms = rte_fbarray_get(arr, ms_idx);
680 
681 			/* find how many more segments there are, starting with
682 			 * this one.
683 			 */
684 			n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
685 			len = n_segs * msl->page_sz;
686 
687 			ret = func(msl, ms, len, arg);
688 			if (ret)
689 				return ret;
690 			ms_idx = rte_fbarray_find_next_used(arr,
691 					ms_idx + n_segs);
692 		}
693 	}
694 	return 0;
695 }
696 
697 int
698 rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
699 {
700 	int ret = 0;
701 
702 	/* do not allow allocations/frees/init while we iterate */
703 	rte_mcfg_mem_read_lock();
704 	ret = rte_memseg_contig_walk_thread_unsafe(func, arg);
705 	rte_mcfg_mem_read_unlock();
706 
707 	return ret;
708 }
709 
710 int
711 rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg)
712 {
713 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
714 	int i, ms_idx, ret = 0;
715 
716 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
717 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
718 		const struct rte_memseg *ms;
719 		struct rte_fbarray *arr;
720 
721 		if (msl->memseg_arr.count == 0)
722 			continue;
723 
724 		arr = &msl->memseg_arr;
725 
726 		ms_idx = rte_fbarray_find_next_used(arr, 0);
727 		while (ms_idx >= 0) {
728 			ms = rte_fbarray_get(arr, ms_idx);
729 			ret = func(msl, ms, arg);
730 			if (ret)
731 				return ret;
732 			ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
733 		}
734 	}
735 	return 0;
736 }
737 
738 int
739 rte_memseg_walk(rte_memseg_walk_t func, void *arg)
740 {
741 	int ret = 0;
742 
743 	/* do not allow allocations/frees/init while we iterate */
744 	rte_mcfg_mem_read_lock();
745 	ret = rte_memseg_walk_thread_unsafe(func, arg);
746 	rte_mcfg_mem_read_unlock();
747 
748 	return ret;
749 }
750 
751 int
752 rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg)
753 {
754 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
755 	int i, ret = 0;
756 
757 	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
758 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
759 
760 		if (msl->base_va == NULL)
761 			continue;
762 
763 		ret = func(msl, arg);
764 		if (ret)
765 			return ret;
766 	}
767 	return 0;
768 }
769 
770 int
771 rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
772 {
773 	int ret = 0;
774 
775 	/* do not allow allocations/frees/init while we iterate */
776 	rte_mcfg_mem_read_lock();
777 	ret = rte_memseg_list_walk_thread_unsafe(func, arg);
778 	rte_mcfg_mem_read_unlock();
779 
780 	return ret;
781 }
782 
783 int
784 rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms)
785 {
786 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
787 	struct rte_memseg_list *msl;
788 	struct rte_fbarray *arr;
789 	int msl_idx, seg_idx, ret;
790 
791 	if (ms == NULL) {
792 		rte_errno = EINVAL;
793 		return -1;
794 	}
795 
796 	msl = rte_mem_virt2memseg_list(ms->addr);
797 	if (msl == NULL) {
798 		rte_errno = EINVAL;
799 		return -1;
800 	}
801 	arr = &msl->memseg_arr;
802 
803 	msl_idx = msl - mcfg->memsegs;
804 	seg_idx = rte_fbarray_find_idx(arr, ms);
805 
806 	if (!rte_fbarray_is_used(arr, seg_idx)) {
807 		rte_errno = ENOENT;
808 		return -1;
809 	}
810 
811 	/* segment fd API is not supported for external segments */
812 	if (msl->external) {
813 		rte_errno = ENOTSUP;
814 		return -1;
815 	}
816 
817 	ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx);
818 	if (ret < 0) {
819 		rte_errno = -ret;
820 		ret = -1;
821 	}
822 	return ret;
823 }
824 
825 int
826 rte_memseg_get_fd(const struct rte_memseg *ms)
827 {
828 	int ret;
829 
830 	rte_mcfg_mem_read_lock();
831 	ret = rte_memseg_get_fd_thread_unsafe(ms);
832 	rte_mcfg_mem_read_unlock();
833 
834 	return ret;
835 }
836 
837 int
838 rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms,
839 		size_t *offset)
840 {
841 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
842 	struct rte_memseg_list *msl;
843 	struct rte_fbarray *arr;
844 	int msl_idx, seg_idx, ret;
845 
846 	if (ms == NULL || offset == NULL) {
847 		rte_errno = EINVAL;
848 		return -1;
849 	}
850 
851 	msl = rte_mem_virt2memseg_list(ms->addr);
852 	if (msl == NULL) {
853 		rte_errno = EINVAL;
854 		return -1;
855 	}
856 	arr = &msl->memseg_arr;
857 
858 	msl_idx = msl - mcfg->memsegs;
859 	seg_idx = rte_fbarray_find_idx(arr, ms);
860 
861 	if (!rte_fbarray_is_used(arr, seg_idx)) {
862 		rte_errno = ENOENT;
863 		return -1;
864 	}
865 
866 	/* segment fd API is not supported for external segments */
867 	if (msl->external) {
868 		rte_errno = ENOTSUP;
869 		return -1;
870 	}
871 
872 	ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset);
873 	if (ret < 0) {
874 		rte_errno = -ret;
875 		ret = -1;
876 	}
877 	return ret;
878 }
879 
880 int
881 rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset)
882 {
883 	int ret;
884 
885 	rte_mcfg_mem_read_lock();
886 	ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset);
887 	rte_mcfg_mem_read_unlock();
888 
889 	return ret;
890 }
891 
892 int
893 rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[],
894 		unsigned int n_pages, size_t page_sz)
895 {
896 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
897 	unsigned int socket_id, n;
898 	int ret = 0;
899 
900 	if (va_addr == NULL || page_sz == 0 || len == 0 ||
901 			!rte_is_power_of_2(page_sz) ||
902 			RTE_ALIGN(len, page_sz) != len ||
903 			((len / page_sz) != n_pages && iova_addrs != NULL) ||
904 			!rte_is_aligned(va_addr, page_sz)) {
905 		rte_errno = EINVAL;
906 		return -1;
907 	}
908 	rte_mcfg_mem_write_lock();
909 
910 	/* make sure the segment doesn't already exist */
911 	if (malloc_heap_find_external_seg(va_addr, len) != NULL) {
912 		rte_errno = EEXIST;
913 		ret = -1;
914 		goto unlock;
915 	}
916 
917 	/* get next available socket ID */
918 	socket_id = mcfg->next_socket_id;
919 	if (socket_id > INT32_MAX) {
920 		RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
921 		rte_errno = ENOSPC;
922 		ret = -1;
923 		goto unlock;
924 	}
925 
926 	/* we can create a new memseg */
927 	n = len / page_sz;
928 	if (malloc_heap_create_external_seg(va_addr, iova_addrs, n,
929 			page_sz, "extmem", socket_id) == NULL) {
930 		ret = -1;
931 		goto unlock;
932 	}
933 
934 	/* memseg list successfully created - increment next socket ID */
935 	mcfg->next_socket_id++;
936 unlock:
937 	rte_mcfg_mem_write_unlock();
938 	return ret;
939 }
940 
941 int
942 rte_extmem_unregister(void *va_addr, size_t len)
943 {
944 	struct rte_memseg_list *msl;
945 	int ret = 0;
946 
947 	if (va_addr == NULL || len == 0) {
948 		rte_errno = EINVAL;
949 		return -1;
950 	}
951 	rte_mcfg_mem_write_lock();
952 
953 	/* find our segment */
954 	msl = malloc_heap_find_external_seg(va_addr, len);
955 	if (msl == NULL) {
956 		rte_errno = ENOENT;
957 		ret = -1;
958 		goto unlock;
959 	}
960 
961 	ret = malloc_heap_destroy_external_seg(msl);
962 unlock:
963 	rte_mcfg_mem_write_unlock();
964 	return ret;
965 }
966 
967 static int
968 sync_memory(void *va_addr, size_t len, bool attach)
969 {
970 	struct rte_memseg_list *msl;
971 	int ret = 0;
972 
973 	if (va_addr == NULL || len == 0) {
974 		rte_errno = EINVAL;
975 		return -1;
976 	}
977 	rte_mcfg_mem_write_lock();
978 
979 	/* find our segment */
980 	msl = malloc_heap_find_external_seg(va_addr, len);
981 	if (msl == NULL) {
982 		rte_errno = ENOENT;
983 		ret = -1;
984 		goto unlock;
985 	}
986 	if (attach)
987 		ret = rte_fbarray_attach(&msl->memseg_arr);
988 	else
989 		ret = rte_fbarray_detach(&msl->memseg_arr);
990 
991 unlock:
992 	rte_mcfg_mem_write_unlock();
993 	return ret;
994 }
995 
996 int
997 rte_extmem_attach(void *va_addr, size_t len)
998 {
999 	return sync_memory(va_addr, len, true);
1000 }
1001 
1002 int
1003 rte_extmem_detach(void *va_addr, size_t len)
1004 {
1005 	return sync_memory(va_addr, len, false);
1006 }
1007 
1008 /* detach all EAL memory */
1009 int
1010 rte_eal_memory_detach(void)
1011 {
1012 	const struct internal_config *internal_conf =
1013 		eal_get_internal_configuration();
1014 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1015 	size_t page_sz = rte_mem_page_size();
1016 	unsigned int i;
1017 
1018 	if (internal_conf->in_memory == 1)
1019 		return 0;
1020 
1021 	rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);
1022 
1023 	/* detach internal memory subsystem data first */
1024 	if (eal_memalloc_cleanup())
1025 		RTE_LOG(ERR, EAL, "Could not release memory subsystem data\n");
1026 
1027 	for (i = 0; i < RTE_DIM(mcfg->memsegs); i++) {
1028 		struct rte_memseg_list *msl = &mcfg->memsegs[i];
1029 
1030 		/* skip uninitialized segments */
1031 		if (msl->base_va == NULL)
1032 			continue;
1033 		/*
1034 		 * external segments are supposed to be detached at this point,
1035 		 * but if they aren't, we can't really do anything about it,
1036 		 * because if we skip them here, they'll become invalid after
1037 		 * we unmap the memconfig anyway. however, if this is externally
1038 		 * referenced memory, we have no business unmapping it.
1039 		 */
1040 		if (!msl->external)
1041 			if (rte_mem_unmap(msl->base_va, msl->len) != 0)
1042 				RTE_LOG(ERR, EAL, "Could not unmap memory: %s\n",
1043 						rte_strerror(rte_errno));
1044 
1045 		/*
1046 		 * we are detaching the fbarray rather than destroying because
1047 		 * other processes might still reference this fbarray, and we
1048 		 * have no way of knowing if they still do.
1049 		 */
1050 		if (rte_fbarray_detach(&msl->memseg_arr))
1051 			RTE_LOG(ERR, EAL, "Could not detach fbarray: %s\n",
1052 					rte_strerror(rte_errno));
1053 	}
1054 	rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
1055 
1056 	/*
1057 	 * we've detached the memseg lists, so we can unmap the shared mem
1058 	 * config - we can't zero it out because it might still be referenced
1059 	 * by other processes.
1060 	 */
1061 	if (internal_conf->no_shconf == 0 && mcfg->mem_cfg_addr != 0) {
1062 		if (rte_mem_unmap(mcfg, RTE_ALIGN(sizeof(*mcfg), page_sz)) != 0)
1063 			RTE_LOG(ERR, EAL, "Could not unmap shared memory config: %s\n",
1064 					rte_strerror(rte_errno));
1065 	}
1066 	rte_eal_get_configuration()->mem_config = NULL;
1067 
1068 	return 0;
1069 }
1070 
1071 /* init memory subsystem */
1072 int
1073 rte_eal_memory_init(void)
1074 {
1075 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1076 	const struct internal_config *internal_conf =
1077 		eal_get_internal_configuration();
1078 
1079 	int retval;
1080 	RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
1081 
1082 	if (!mcfg)
1083 		return -1;
1084 
1085 	/* lock mem hotplug here, to prevent races while we init */
1086 	rte_mcfg_mem_read_lock();
1087 
1088 	if (rte_eal_memseg_init() < 0)
1089 		goto fail;
1090 
1091 	if (eal_memalloc_init() < 0)
1092 		goto fail;
1093 
1094 	retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
1095 			rte_eal_hugepage_init() :
1096 			rte_eal_hugepage_attach();
1097 	if (retval < 0)
1098 		goto fail;
1099 
1100 	if (internal_conf->no_shconf == 0 && rte_eal_memdevice_init() < 0)
1101 		goto fail;
1102 
1103 	return 0;
1104 fail:
1105 	rte_mcfg_mem_read_unlock();
1106 	return -1;
1107 }
1108 
1109 #ifndef RTE_EXEC_ENV_WINDOWS
1110 #define EAL_MEMZONE_LIST_REQ	"/eal/memzone_list"
1111 #define EAL_MEMZONE_INFO_REQ	"/eal/memzone_info"
1112 #define EAL_HEAP_LIST_REQ	"/eal/heap_list"
1113 #define EAL_HEAP_INFO_REQ	"/eal/heap_info"
1114 #define ADDR_STR		15
1115 
1116 /* Telemetry callback handler to return heap stats for requested heap id. */
1117 static int
1118 handle_eal_heap_info_request(const char *cmd __rte_unused, const char *params,
1119 			     struct rte_tel_data *d)
1120 {
1121 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1122 	struct rte_malloc_socket_stats sock_stats;
1123 	struct malloc_heap *heap;
1124 	unsigned int heap_id;
1125 
1126 	if (params == NULL || strlen(params) == 0)
1127 		return -1;
1128 
1129 	heap_id = (unsigned int)strtoul(params, NULL, 10);
1130 
1131 	/* Get the heap stats of user provided heap id */
1132 	heap = &mcfg->malloc_heaps[heap_id];
1133 	malloc_heap_get_stats(heap, &sock_stats);
1134 
1135 	rte_tel_data_start_dict(d);
1136 	rte_tel_data_add_dict_int(d, "Head id", heap_id);
1137 	rte_tel_data_add_dict_string(d, "Name", heap->name);
1138 	rte_tel_data_add_dict_u64(d, "Heap_size",
1139 				  sock_stats.heap_totalsz_bytes);
1140 	rte_tel_data_add_dict_u64(d, "Free_size", sock_stats.heap_freesz_bytes);
1141 	rte_tel_data_add_dict_u64(d, "Alloc_size",
1142 				  sock_stats.heap_allocsz_bytes);
1143 	rte_tel_data_add_dict_u64(d, "Greatest_free_size",
1144 				  sock_stats.greatest_free_size);
1145 	rte_tel_data_add_dict_u64(d, "Alloc_count", sock_stats.alloc_count);
1146 	rte_tel_data_add_dict_u64(d, "Free_count", sock_stats.free_count);
1147 
1148 	return 0;
1149 }
1150 
1151 /* Telemetry callback handler to list the heap ids setup. */
1152 static int
1153 handle_eal_heap_list_request(const char *cmd __rte_unused,
1154 				const char *params __rte_unused,
1155 				struct rte_tel_data *d)
1156 {
1157 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1158 	struct rte_malloc_socket_stats sock_stats;
1159 	unsigned int heap_id;
1160 
1161 	rte_tel_data_start_array(d, RTE_TEL_INT_VAL);
1162 	/* Iterate through all initialised heaps */
1163 	for (heap_id = 0; heap_id < RTE_MAX_HEAPS; heap_id++) {
1164 		struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
1165 
1166 		malloc_heap_get_stats(heap, &sock_stats);
1167 		if (sock_stats.heap_totalsz_bytes != 0)
1168 			rte_tel_data_add_array_int(d, heap_id);
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 /* Telemetry callback handler to return memzone info for requested index. */
1175 static int
1176 handle_eal_memzone_info_request(const char *cmd __rte_unused,
1177 				const char *params, struct rte_tel_data *d)
1178 {
1179 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1180 	struct rte_memseg_list *msl = NULL;
1181 	int ms_idx, ms_count = 0;
1182 	void *cur_addr, *mz_end;
1183 	struct rte_memzone *mz;
1184 	struct rte_memseg *ms;
1185 	char addr[ADDR_STR];
1186 	unsigned int mz_idx;
1187 	size_t page_sz;
1188 
1189 	if (params == NULL || strlen(params) == 0)
1190 		return -1;
1191 
1192 	mz_idx = strtoul(params, NULL, 10);
1193 
1194 	/* Get the memzone handle using index */
1195 	mz = rte_fbarray_get(&mcfg->memzones, mz_idx);
1196 
1197 	rte_tel_data_start_dict(d);
1198 	rte_tel_data_add_dict_int(d, "Zone", mz_idx);
1199 	rte_tel_data_add_dict_string(d, "Name", mz->name);
1200 	rte_tel_data_add_dict_int(d, "Length", mz->len);
1201 	snprintf(addr, ADDR_STR, "%p", mz->addr);
1202 	rte_tel_data_add_dict_string(d, "Address", addr);
1203 	rte_tel_data_add_dict_int(d, "Socket", mz->socket_id);
1204 	rte_tel_data_add_dict_int(d, "Flags", mz->flags);
1205 
1206 	/* go through each page occupied by this memzone */
1207 	msl = rte_mem_virt2memseg_list(mz->addr);
1208 	if (!msl) {
1209 		RTE_LOG(DEBUG, EAL, "Skipping bad memzone\n");
1210 		return -1;
1211 	}
1212 	page_sz = (size_t)mz->hugepage_sz;
1213 	cur_addr = RTE_PTR_ALIGN_FLOOR(mz->addr, page_sz);
1214 	mz_end = RTE_PTR_ADD(cur_addr, mz->len);
1215 
1216 	ms_idx = RTE_PTR_DIFF(mz->addr, msl->base_va) / page_sz;
1217 	ms = rte_fbarray_get(&msl->memseg_arr, ms_idx);
1218 
1219 	rte_tel_data_add_dict_int(d, "Hugepage_size", page_sz);
1220 	snprintf(addr, ADDR_STR, "%p", ms->addr);
1221 	rte_tel_data_add_dict_string(d, "Hugepage_base", addr);
1222 
1223 	do {
1224 		/* advance VA to next page */
1225 		cur_addr = RTE_PTR_ADD(cur_addr, page_sz);
1226 
1227 		/* memzones occupy contiguous segments */
1228 		++ms;
1229 		ms_count++;
1230 	} while (cur_addr < mz_end);
1231 
1232 	rte_tel_data_add_dict_int(d, "Hugepage_used", ms_count);
1233 
1234 	return 0;
1235 }
1236 
1237 static void
1238 memzone_list_cb(const struct rte_memzone *mz __rte_unused,
1239 		 void *arg __rte_unused)
1240 {
1241 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1242 	struct rte_tel_data *d = arg;
1243 	int mz_idx;
1244 
1245 	mz_idx = rte_fbarray_find_idx(&mcfg->memzones, mz);
1246 	rte_tel_data_add_array_int(d, mz_idx);
1247 }
1248 
1249 
1250 /* Telemetry callback handler to list the memzones reserved. */
1251 static int
1252 handle_eal_memzone_list_request(const char *cmd __rte_unused,
1253 				const char *params __rte_unused,
1254 				struct rte_tel_data *d)
1255 {
1256 	rte_tel_data_start_array(d, RTE_TEL_INT_VAL);
1257 	rte_memzone_walk(memzone_list_cb, d);
1258 
1259 	return 0;
1260 }
1261 
1262 RTE_INIT(memory_telemetry)
1263 {
1264 	rte_telemetry_register_cmd(
1265 			EAL_MEMZONE_LIST_REQ, handle_eal_memzone_list_request,
1266 			"List of memzone index reserved. Takes no parameters");
1267 	rte_telemetry_register_cmd(
1268 			EAL_MEMZONE_INFO_REQ, handle_eal_memzone_info_request,
1269 			"Returns memzone info. Parameters: int mz_id");
1270 	rte_telemetry_register_cmd(
1271 			EAL_HEAP_LIST_REQ, handle_eal_heap_list_request,
1272 			"List of heap index setup. Takes no parameters");
1273 	rte_telemetry_register_cmd(
1274 			EAL_HEAP_INFO_REQ, handle_eal_heap_info_request,
1275 			"Returns malloc heap stats. Parameters: int heap_id");
1276 }
1277 #endif
1278