1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <fcntl.h> 6 #include <errno.h> 7 #include <stdio.h> 8 #include <stdint.h> 9 #include <stdlib.h> 10 #include <stdarg.h> 11 #include <string.h> 12 #include <unistd.h> 13 #include <inttypes.h> 14 #include <sys/queue.h> 15 16 #include <rte_fbarray.h> 17 #include <rte_memory.h> 18 #include <rte_eal.h> 19 #include <rte_eal_memconfig.h> 20 #include <rte_eal_paging.h> 21 #include <rte_errno.h> 22 #include <rte_log.h> 23 #ifndef RTE_EXEC_ENV_WINDOWS 24 #include <rte_telemetry.h> 25 #endif 26 27 #include "eal_memalloc.h" 28 #include "eal_private.h" 29 #include "eal_internal_cfg.h" 30 #include "eal_memcfg.h" 31 #include "eal_options.h" 32 #include "malloc_heap.h" 33 34 /* 35 * Try to mmap *size bytes in /dev/zero. If it is successful, return the 36 * pointer to the mmap'd area and keep *size unmodified. Else, retry 37 * with a smaller zone: decrease *size by hugepage_sz until it reaches 38 * 0. In this case, return NULL. Note: this function returns an address 39 * which is a multiple of hugepage size. 40 */ 41 42 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i" 43 44 static void *next_baseaddr; 45 static uint64_t system_page_sz; 46 47 #define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5 48 void * 49 eal_get_virtual_area(void *requested_addr, size_t *size, 50 size_t page_sz, int flags, int reserve_flags) 51 { 52 bool addr_is_hint, allow_shrink, unmap, no_align; 53 uint64_t map_sz; 54 void *mapped_addr, *aligned_addr; 55 uint8_t try = 0; 56 struct internal_config *internal_conf = 57 eal_get_internal_configuration(); 58 59 if (system_page_sz == 0) 60 system_page_sz = rte_mem_page_size(); 61 62 RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size); 63 64 addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0; 65 allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0; 66 unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0; 67 68 if (next_baseaddr == NULL && internal_conf->base_virtaddr != 0 && 69 rte_eal_process_type() == RTE_PROC_PRIMARY) 70 next_baseaddr = (void *) internal_conf->base_virtaddr; 71 72 #ifdef RTE_ARCH_64 73 if (next_baseaddr == NULL && internal_conf->base_virtaddr == 0 && 74 rte_eal_process_type() == RTE_PROC_PRIMARY) 75 next_baseaddr = (void *) eal_get_baseaddr(); 76 #endif 77 if (requested_addr == NULL && next_baseaddr != NULL) { 78 requested_addr = next_baseaddr; 79 requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz); 80 addr_is_hint = true; 81 } 82 83 /* we don't need alignment of resulting pointer in the following cases: 84 * 85 * 1. page size is equal to system size 86 * 2. we have a requested address, and it is page-aligned, and we will 87 * be discarding the address if we get a different one. 88 * 89 * for all other cases, alignment is potentially necessary. 90 */ 91 no_align = (requested_addr != NULL && 92 requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) && 93 !addr_is_hint) || 94 page_sz == system_page_sz; 95 96 do { 97 map_sz = no_align ? *size : *size + page_sz; 98 if (map_sz > SIZE_MAX) { 99 RTE_LOG(ERR, EAL, "Map size too big\n"); 100 rte_errno = E2BIG; 101 return NULL; 102 } 103 104 mapped_addr = eal_mem_reserve( 105 requested_addr, (size_t)map_sz, reserve_flags); 106 if ((mapped_addr == NULL) && allow_shrink) 107 *size -= page_sz; 108 109 if ((mapped_addr != NULL) && addr_is_hint && 110 (mapped_addr != requested_addr)) { 111 try++; 112 next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz); 113 if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) { 114 /* hint was not used. Try with another offset */ 115 eal_mem_free(mapped_addr, map_sz); 116 mapped_addr = NULL; 117 requested_addr = next_baseaddr; 118 } 119 } 120 } while ((allow_shrink || addr_is_hint) && 121 (mapped_addr == NULL) && (*size > 0)); 122 123 /* align resulting address - if map failed, we will ignore the value 124 * anyway, so no need to add additional checks. 125 */ 126 aligned_addr = no_align ? mapped_addr : 127 RTE_PTR_ALIGN(mapped_addr, page_sz); 128 129 if (*size == 0) { 130 RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n", 131 rte_strerror(rte_errno)); 132 return NULL; 133 } else if (mapped_addr == NULL) { 134 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n", 135 rte_strerror(rte_errno)); 136 return NULL; 137 } else if (requested_addr != NULL && !addr_is_hint && 138 aligned_addr != requested_addr) { 139 RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n", 140 requested_addr, aligned_addr); 141 eal_mem_free(mapped_addr, map_sz); 142 rte_errno = EADDRNOTAVAIL; 143 return NULL; 144 } else if (requested_addr != NULL && addr_is_hint && 145 aligned_addr != requested_addr) { 146 RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n", 147 requested_addr, aligned_addr); 148 RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n"); 149 } else if (next_baseaddr != NULL) { 150 next_baseaddr = RTE_PTR_ADD(aligned_addr, *size); 151 } 152 153 RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n", 154 aligned_addr, *size); 155 156 if (unmap) { 157 eal_mem_free(mapped_addr, map_sz); 158 } else if (!no_align) { 159 void *map_end, *aligned_end; 160 size_t before_len, after_len; 161 162 /* when we reserve space with alignment, we add alignment to 163 * mapping size. On 32-bit, if 1GB alignment was requested, this 164 * would waste 1GB of address space, which is a luxury we cannot 165 * afford. so, if alignment was performed, check if any unneeded 166 * address space can be unmapped back. 167 */ 168 169 map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz); 170 aligned_end = RTE_PTR_ADD(aligned_addr, *size); 171 172 /* unmap space before aligned mmap address */ 173 before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr); 174 if (before_len > 0) 175 eal_mem_free(mapped_addr, before_len); 176 177 /* unmap space after aligned end mmap address */ 178 after_len = RTE_PTR_DIFF(map_end, aligned_end); 179 if (after_len > 0) 180 eal_mem_free(aligned_end, after_len); 181 } 182 183 if (!unmap) { 184 /* Exclude these pages from a core dump. */ 185 eal_mem_set_dump(aligned_addr, *size, false); 186 } 187 188 return aligned_addr; 189 } 190 191 int 192 eal_memseg_list_init_named(struct rte_memseg_list *msl, const char *name, 193 uint64_t page_sz, int n_segs, int socket_id, bool heap) 194 { 195 if (rte_fbarray_init(&msl->memseg_arr, name, n_segs, 196 sizeof(struct rte_memseg))) { 197 RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n", 198 rte_strerror(rte_errno)); 199 return -1; 200 } 201 202 msl->page_sz = page_sz; 203 msl->socket_id = socket_id; 204 msl->base_va = NULL; 205 msl->heap = heap; 206 207 RTE_LOG(DEBUG, EAL, 208 "Memseg list allocated at socket %i, page size 0x%"PRIx64"kB\n", 209 socket_id, page_sz >> 10); 210 211 return 0; 212 } 213 214 int 215 eal_memseg_list_init(struct rte_memseg_list *msl, uint64_t page_sz, 216 int n_segs, int socket_id, int type_msl_idx, bool heap) 217 { 218 char name[RTE_FBARRAY_NAME_LEN]; 219 220 snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id, 221 type_msl_idx); 222 223 return eal_memseg_list_init_named( 224 msl, name, page_sz, n_segs, socket_id, heap); 225 } 226 227 int 228 eal_memseg_list_alloc(struct rte_memseg_list *msl, int reserve_flags) 229 { 230 size_t page_sz, mem_sz; 231 void *addr; 232 233 page_sz = msl->page_sz; 234 mem_sz = page_sz * msl->memseg_arr.len; 235 236 addr = eal_get_virtual_area( 237 msl->base_va, &mem_sz, page_sz, 0, reserve_flags); 238 if (addr == NULL) { 239 #ifndef RTE_EXEC_ENV_WINDOWS 240 /* The hint would be misleading on Windows, because address 241 * is by default system-selected (base VA = 0). 242 * However, this function is called from many places, 243 * including common code, so don't duplicate the message. 244 */ 245 if (rte_errno == EADDRNOTAVAIL) 246 RTE_LOG(ERR, EAL, "Cannot reserve %llu bytes at [%p] - " 247 "please use '--" OPT_BASE_VIRTADDR "' option\n", 248 (unsigned long long)mem_sz, msl->base_va); 249 #endif 250 return -1; 251 } 252 msl->base_va = addr; 253 msl->len = mem_sz; 254 255 RTE_LOG(DEBUG, EAL, "VA reserved for memseg list at %p, size %zx\n", 256 addr, mem_sz); 257 258 return 0; 259 } 260 261 void 262 eal_memseg_list_populate(struct rte_memseg_list *msl, void *addr, int n_segs) 263 { 264 size_t page_sz = msl->page_sz; 265 int i; 266 267 for (i = 0; i < n_segs; i++) { 268 struct rte_fbarray *arr = &msl->memseg_arr; 269 struct rte_memseg *ms = rte_fbarray_get(arr, i); 270 271 if (rte_eal_iova_mode() == RTE_IOVA_VA) 272 ms->iova = (uintptr_t)addr; 273 else 274 ms->iova = RTE_BAD_IOVA; 275 ms->addr = addr; 276 ms->hugepage_sz = page_sz; 277 ms->socket_id = 0; 278 ms->len = page_sz; 279 280 rte_fbarray_set_used(arr, i); 281 282 addr = RTE_PTR_ADD(addr, page_sz); 283 } 284 } 285 286 static struct rte_memseg * 287 virt2memseg(const void *addr, const struct rte_memseg_list *msl) 288 { 289 const struct rte_fbarray *arr; 290 void *start, *end; 291 int ms_idx; 292 293 if (msl == NULL) 294 return NULL; 295 296 /* a memseg list was specified, check if it's the right one */ 297 start = msl->base_va; 298 end = RTE_PTR_ADD(start, msl->len); 299 300 if (addr < start || addr >= end) 301 return NULL; 302 303 /* now, calculate index */ 304 arr = &msl->memseg_arr; 305 ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz; 306 return rte_fbarray_get(arr, ms_idx); 307 } 308 309 static struct rte_memseg_list * 310 virt2memseg_list(const void *addr) 311 { 312 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 313 struct rte_memseg_list *msl; 314 int msl_idx; 315 316 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) { 317 void *start, *end; 318 msl = &mcfg->memsegs[msl_idx]; 319 320 start = msl->base_va; 321 end = RTE_PTR_ADD(start, msl->len); 322 if (addr >= start && addr < end) 323 break; 324 } 325 /* if we didn't find our memseg list */ 326 if (msl_idx == RTE_MAX_MEMSEG_LISTS) 327 return NULL; 328 return msl; 329 } 330 331 struct rte_memseg_list * 332 rte_mem_virt2memseg_list(const void *addr) 333 { 334 return virt2memseg_list(addr); 335 } 336 337 struct virtiova { 338 rte_iova_t iova; 339 void *virt; 340 }; 341 static int 342 find_virt(const struct rte_memseg_list *msl __rte_unused, 343 const struct rte_memseg *ms, void *arg) 344 { 345 struct virtiova *vi = arg; 346 if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) { 347 size_t offset = vi->iova - ms->iova; 348 vi->virt = RTE_PTR_ADD(ms->addr, offset); 349 /* stop the walk */ 350 return 1; 351 } 352 return 0; 353 } 354 static int 355 find_virt_legacy(const struct rte_memseg_list *msl __rte_unused, 356 const struct rte_memseg *ms, size_t len, void *arg) 357 { 358 struct virtiova *vi = arg; 359 if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) { 360 size_t offset = vi->iova - ms->iova; 361 vi->virt = RTE_PTR_ADD(ms->addr, offset); 362 /* stop the walk */ 363 return 1; 364 } 365 return 0; 366 } 367 368 void * 369 rte_mem_iova2virt(rte_iova_t iova) 370 { 371 struct virtiova vi; 372 const struct internal_config *internal_conf = 373 eal_get_internal_configuration(); 374 375 memset(&vi, 0, sizeof(vi)); 376 377 vi.iova = iova; 378 /* for legacy mem, we can get away with scanning VA-contiguous segments, 379 * as we know they are PA-contiguous as well 380 */ 381 if (internal_conf->legacy_mem) 382 rte_memseg_contig_walk(find_virt_legacy, &vi); 383 else 384 rte_memseg_walk(find_virt, &vi); 385 386 return vi.virt; 387 } 388 389 struct rte_memseg * 390 rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl) 391 { 392 return virt2memseg(addr, msl != NULL ? msl : 393 rte_mem_virt2memseg_list(addr)); 394 } 395 396 static int 397 physmem_size(const struct rte_memseg_list *msl, void *arg) 398 { 399 uint64_t *total_len = arg; 400 401 if (msl->external) 402 return 0; 403 404 *total_len += msl->memseg_arr.count * msl->page_sz; 405 406 return 0; 407 } 408 409 /* get the total size of memory */ 410 uint64_t 411 rte_eal_get_physmem_size(void) 412 { 413 uint64_t total_len = 0; 414 415 rte_memseg_list_walk(physmem_size, &total_len); 416 417 return total_len; 418 } 419 420 static int 421 dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms, 422 void *arg) 423 { 424 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 425 int msl_idx, ms_idx, fd; 426 FILE *f = arg; 427 428 msl_idx = msl - mcfg->memsegs; 429 if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS) 430 return -1; 431 432 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 433 if (ms_idx < 0) 434 return -1; 435 436 fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx); 437 fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, " 438 "virt:%p, socket_id:%"PRId32", " 439 "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", " 440 "nrank:%"PRIx32" fd:%i\n", 441 msl_idx, ms_idx, 442 ms->iova, 443 ms->len, 444 ms->addr, 445 ms->socket_id, 446 ms->hugepage_sz, 447 ms->nchannel, 448 ms->nrank, 449 fd); 450 451 return 0; 452 } 453 454 /* 455 * Defining here because declared in rte_memory.h, but the actual implementation 456 * is in eal_common_memalloc.c, like all other memalloc internals. 457 */ 458 int 459 rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb, 460 void *arg) 461 { 462 const struct internal_config *internal_conf = 463 eal_get_internal_configuration(); 464 465 /* FreeBSD boots with legacy mem enabled by default */ 466 if (internal_conf->legacy_mem) { 467 RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n"); 468 rte_errno = ENOTSUP; 469 return -1; 470 } 471 return eal_memalloc_mem_event_callback_register(name, clb, arg); 472 } 473 474 int 475 rte_mem_event_callback_unregister(const char *name, void *arg) 476 { 477 const struct internal_config *internal_conf = 478 eal_get_internal_configuration(); 479 480 /* FreeBSD boots with legacy mem enabled by default */ 481 if (internal_conf->legacy_mem) { 482 RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n"); 483 rte_errno = ENOTSUP; 484 return -1; 485 } 486 return eal_memalloc_mem_event_callback_unregister(name, arg); 487 } 488 489 int 490 rte_mem_alloc_validator_register(const char *name, 491 rte_mem_alloc_validator_t clb, int socket_id, size_t limit) 492 { 493 const struct internal_config *internal_conf = 494 eal_get_internal_configuration(); 495 496 /* FreeBSD boots with legacy mem enabled by default */ 497 if (internal_conf->legacy_mem) { 498 RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n"); 499 rte_errno = ENOTSUP; 500 return -1; 501 } 502 return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id, 503 limit); 504 } 505 506 int 507 rte_mem_alloc_validator_unregister(const char *name, int socket_id) 508 { 509 const struct internal_config *internal_conf = 510 eal_get_internal_configuration(); 511 512 /* FreeBSD boots with legacy mem enabled by default */ 513 if (internal_conf->legacy_mem) { 514 RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n"); 515 rte_errno = ENOTSUP; 516 return -1; 517 } 518 return eal_memalloc_mem_alloc_validator_unregister(name, socket_id); 519 } 520 521 /* Dump the physical memory layout on console */ 522 void 523 rte_dump_physmem_layout(FILE *f) 524 { 525 rte_memseg_walk(dump_memseg, f); 526 } 527 528 static int 529 check_iova(const struct rte_memseg_list *msl __rte_unused, 530 const struct rte_memseg *ms, void *arg) 531 { 532 uint64_t *mask = arg; 533 rte_iova_t iova; 534 535 /* higher address within segment */ 536 iova = (ms->iova + ms->len) - 1; 537 if (!(iova & *mask)) 538 return 0; 539 540 RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n", 541 ms->iova, ms->len); 542 543 RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask); 544 return 1; 545 } 546 547 #define MAX_DMA_MASK_BITS 63 548 549 /* check memseg iovas are within the required range based on dma mask */ 550 static int 551 check_dma_mask(uint8_t maskbits, bool thread_unsafe) 552 { 553 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 554 uint64_t mask; 555 int ret; 556 557 /* Sanity check. We only check width can be managed with 64 bits 558 * variables. Indeed any higher value is likely wrong. */ 559 if (maskbits > MAX_DMA_MASK_BITS) { 560 RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n", 561 maskbits, MAX_DMA_MASK_BITS); 562 return -1; 563 } 564 565 /* create dma mask */ 566 mask = ~((1ULL << maskbits) - 1); 567 568 if (thread_unsafe) 569 ret = rte_memseg_walk_thread_unsafe(check_iova, &mask); 570 else 571 ret = rte_memseg_walk(check_iova, &mask); 572 573 if (ret) 574 /* 575 * Dma mask precludes hugepage usage. 576 * This device can not be used and we do not need to keep 577 * the dma mask. 578 */ 579 return 1; 580 581 /* 582 * we need to keep the more restricted maskbit for checking 583 * potential dynamic memory allocation in the future. 584 */ 585 mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : 586 RTE_MIN(mcfg->dma_maskbits, maskbits); 587 588 return 0; 589 } 590 591 int 592 rte_mem_check_dma_mask(uint8_t maskbits) 593 { 594 return check_dma_mask(maskbits, false); 595 } 596 597 int 598 rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits) 599 { 600 return check_dma_mask(maskbits, true); 601 } 602 603 /* 604 * Set dma mask to use when memory initialization is done. 605 * 606 * This function should ONLY be used by code executed before the memory 607 * initialization. PMDs should use rte_mem_check_dma_mask if addressing 608 * limitations by the device. 609 */ 610 void 611 rte_mem_set_dma_mask(uint8_t maskbits) 612 { 613 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 614 615 mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits : 616 RTE_MIN(mcfg->dma_maskbits, maskbits); 617 } 618 619 /* return the number of memory channels */ 620 unsigned rte_memory_get_nchannel(void) 621 { 622 return rte_eal_get_configuration()->mem_config->nchannel; 623 } 624 625 /* return the number of memory rank */ 626 unsigned rte_memory_get_nrank(void) 627 { 628 return rte_eal_get_configuration()->mem_config->nrank; 629 } 630 631 static int 632 rte_eal_memdevice_init(void) 633 { 634 struct rte_config *config; 635 const struct internal_config *internal_conf; 636 637 if (rte_eal_process_type() == RTE_PROC_SECONDARY) 638 return 0; 639 640 internal_conf = eal_get_internal_configuration(); 641 config = rte_eal_get_configuration(); 642 config->mem_config->nchannel = internal_conf->force_nchannel; 643 config->mem_config->nrank = internal_conf->force_nrank; 644 645 return 0; 646 } 647 648 /* Lock page in physical memory and prevent from swapping. */ 649 int 650 rte_mem_lock_page(const void *virt) 651 { 652 uintptr_t virtual = (uintptr_t)virt; 653 size_t page_size = rte_mem_page_size(); 654 uintptr_t aligned = RTE_PTR_ALIGN_FLOOR(virtual, page_size); 655 return rte_mem_lock((void *)aligned, page_size); 656 } 657 658 int 659 rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg) 660 { 661 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 662 int i, ms_idx, ret = 0; 663 664 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 665 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 666 const struct rte_memseg *ms; 667 struct rte_fbarray *arr; 668 669 if (msl->memseg_arr.count == 0) 670 continue; 671 672 arr = &msl->memseg_arr; 673 674 ms_idx = rte_fbarray_find_next_used(arr, 0); 675 while (ms_idx >= 0) { 676 int n_segs; 677 size_t len; 678 679 ms = rte_fbarray_get(arr, ms_idx); 680 681 /* find how many more segments there are, starting with 682 * this one. 683 */ 684 n_segs = rte_fbarray_find_contig_used(arr, ms_idx); 685 len = n_segs * msl->page_sz; 686 687 ret = func(msl, ms, len, arg); 688 if (ret) 689 return ret; 690 ms_idx = rte_fbarray_find_next_used(arr, 691 ms_idx + n_segs); 692 } 693 } 694 return 0; 695 } 696 697 int 698 rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg) 699 { 700 int ret = 0; 701 702 /* do not allow allocations/frees/init while we iterate */ 703 rte_mcfg_mem_read_lock(); 704 ret = rte_memseg_contig_walk_thread_unsafe(func, arg); 705 rte_mcfg_mem_read_unlock(); 706 707 return ret; 708 } 709 710 int 711 rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg) 712 { 713 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 714 int i, ms_idx, ret = 0; 715 716 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 717 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 718 const struct rte_memseg *ms; 719 struct rte_fbarray *arr; 720 721 if (msl->memseg_arr.count == 0) 722 continue; 723 724 arr = &msl->memseg_arr; 725 726 ms_idx = rte_fbarray_find_next_used(arr, 0); 727 while (ms_idx >= 0) { 728 ms = rte_fbarray_get(arr, ms_idx); 729 ret = func(msl, ms, arg); 730 if (ret) 731 return ret; 732 ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1); 733 } 734 } 735 return 0; 736 } 737 738 int 739 rte_memseg_walk(rte_memseg_walk_t func, void *arg) 740 { 741 int ret = 0; 742 743 /* do not allow allocations/frees/init while we iterate */ 744 rte_mcfg_mem_read_lock(); 745 ret = rte_memseg_walk_thread_unsafe(func, arg); 746 rte_mcfg_mem_read_unlock(); 747 748 return ret; 749 } 750 751 int 752 rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg) 753 { 754 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 755 int i, ret = 0; 756 757 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { 758 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 759 760 if (msl->base_va == NULL) 761 continue; 762 763 ret = func(msl, arg); 764 if (ret) 765 return ret; 766 } 767 return 0; 768 } 769 770 int 771 rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg) 772 { 773 int ret = 0; 774 775 /* do not allow allocations/frees/init while we iterate */ 776 rte_mcfg_mem_read_lock(); 777 ret = rte_memseg_list_walk_thread_unsafe(func, arg); 778 rte_mcfg_mem_read_unlock(); 779 780 return ret; 781 } 782 783 int 784 rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms) 785 { 786 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 787 struct rte_memseg_list *msl; 788 struct rte_fbarray *arr; 789 int msl_idx, seg_idx, ret; 790 791 if (ms == NULL) { 792 rte_errno = EINVAL; 793 return -1; 794 } 795 796 msl = rte_mem_virt2memseg_list(ms->addr); 797 if (msl == NULL) { 798 rte_errno = EINVAL; 799 return -1; 800 } 801 arr = &msl->memseg_arr; 802 803 msl_idx = msl - mcfg->memsegs; 804 seg_idx = rte_fbarray_find_idx(arr, ms); 805 806 if (!rte_fbarray_is_used(arr, seg_idx)) { 807 rte_errno = ENOENT; 808 return -1; 809 } 810 811 /* segment fd API is not supported for external segments */ 812 if (msl->external) { 813 rte_errno = ENOTSUP; 814 return -1; 815 } 816 817 ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx); 818 if (ret < 0) { 819 rte_errno = -ret; 820 ret = -1; 821 } 822 return ret; 823 } 824 825 int 826 rte_memseg_get_fd(const struct rte_memseg *ms) 827 { 828 int ret; 829 830 rte_mcfg_mem_read_lock(); 831 ret = rte_memseg_get_fd_thread_unsafe(ms); 832 rte_mcfg_mem_read_unlock(); 833 834 return ret; 835 } 836 837 int 838 rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms, 839 size_t *offset) 840 { 841 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 842 struct rte_memseg_list *msl; 843 struct rte_fbarray *arr; 844 int msl_idx, seg_idx, ret; 845 846 if (ms == NULL || offset == NULL) { 847 rte_errno = EINVAL; 848 return -1; 849 } 850 851 msl = rte_mem_virt2memseg_list(ms->addr); 852 if (msl == NULL) { 853 rte_errno = EINVAL; 854 return -1; 855 } 856 arr = &msl->memseg_arr; 857 858 msl_idx = msl - mcfg->memsegs; 859 seg_idx = rte_fbarray_find_idx(arr, ms); 860 861 if (!rte_fbarray_is_used(arr, seg_idx)) { 862 rte_errno = ENOENT; 863 return -1; 864 } 865 866 /* segment fd API is not supported for external segments */ 867 if (msl->external) { 868 rte_errno = ENOTSUP; 869 return -1; 870 } 871 872 ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset); 873 if (ret < 0) { 874 rte_errno = -ret; 875 ret = -1; 876 } 877 return ret; 878 } 879 880 int 881 rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset) 882 { 883 int ret; 884 885 rte_mcfg_mem_read_lock(); 886 ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset); 887 rte_mcfg_mem_read_unlock(); 888 889 return ret; 890 } 891 892 int 893 rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[], 894 unsigned int n_pages, size_t page_sz) 895 { 896 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 897 unsigned int socket_id, n; 898 int ret = 0; 899 900 if (va_addr == NULL || page_sz == 0 || len == 0 || 901 !rte_is_power_of_2(page_sz) || 902 RTE_ALIGN(len, page_sz) != len || 903 ((len / page_sz) != n_pages && iova_addrs != NULL) || 904 !rte_is_aligned(va_addr, page_sz)) { 905 rte_errno = EINVAL; 906 return -1; 907 } 908 rte_mcfg_mem_write_lock(); 909 910 /* make sure the segment doesn't already exist */ 911 if (malloc_heap_find_external_seg(va_addr, len) != NULL) { 912 rte_errno = EEXIST; 913 ret = -1; 914 goto unlock; 915 } 916 917 /* get next available socket ID */ 918 socket_id = mcfg->next_socket_id; 919 if (socket_id > INT32_MAX) { 920 RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n"); 921 rte_errno = ENOSPC; 922 ret = -1; 923 goto unlock; 924 } 925 926 /* we can create a new memseg */ 927 n = len / page_sz; 928 if (malloc_heap_create_external_seg(va_addr, iova_addrs, n, 929 page_sz, "extmem", socket_id) == NULL) { 930 ret = -1; 931 goto unlock; 932 } 933 934 /* memseg list successfully created - increment next socket ID */ 935 mcfg->next_socket_id++; 936 unlock: 937 rte_mcfg_mem_write_unlock(); 938 return ret; 939 } 940 941 int 942 rte_extmem_unregister(void *va_addr, size_t len) 943 { 944 struct rte_memseg_list *msl; 945 int ret = 0; 946 947 if (va_addr == NULL || len == 0) { 948 rte_errno = EINVAL; 949 return -1; 950 } 951 rte_mcfg_mem_write_lock(); 952 953 /* find our segment */ 954 msl = malloc_heap_find_external_seg(va_addr, len); 955 if (msl == NULL) { 956 rte_errno = ENOENT; 957 ret = -1; 958 goto unlock; 959 } 960 961 ret = malloc_heap_destroy_external_seg(msl); 962 unlock: 963 rte_mcfg_mem_write_unlock(); 964 return ret; 965 } 966 967 static int 968 sync_memory(void *va_addr, size_t len, bool attach) 969 { 970 struct rte_memseg_list *msl; 971 int ret = 0; 972 973 if (va_addr == NULL || len == 0) { 974 rte_errno = EINVAL; 975 return -1; 976 } 977 rte_mcfg_mem_write_lock(); 978 979 /* find our segment */ 980 msl = malloc_heap_find_external_seg(va_addr, len); 981 if (msl == NULL) { 982 rte_errno = ENOENT; 983 ret = -1; 984 goto unlock; 985 } 986 if (attach) 987 ret = rte_fbarray_attach(&msl->memseg_arr); 988 else 989 ret = rte_fbarray_detach(&msl->memseg_arr); 990 991 unlock: 992 rte_mcfg_mem_write_unlock(); 993 return ret; 994 } 995 996 int 997 rte_extmem_attach(void *va_addr, size_t len) 998 { 999 return sync_memory(va_addr, len, true); 1000 } 1001 1002 int 1003 rte_extmem_detach(void *va_addr, size_t len) 1004 { 1005 return sync_memory(va_addr, len, false); 1006 } 1007 1008 /* detach all EAL memory */ 1009 int 1010 rte_eal_memory_detach(void) 1011 { 1012 const struct internal_config *internal_conf = 1013 eal_get_internal_configuration(); 1014 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1015 size_t page_sz = rte_mem_page_size(); 1016 unsigned int i; 1017 1018 if (internal_conf->in_memory == 1) 1019 return 0; 1020 1021 rte_rwlock_write_lock(&mcfg->memory_hotplug_lock); 1022 1023 /* detach internal memory subsystem data first */ 1024 if (eal_memalloc_cleanup()) 1025 RTE_LOG(ERR, EAL, "Could not release memory subsystem data\n"); 1026 1027 for (i = 0; i < RTE_DIM(mcfg->memsegs); i++) { 1028 struct rte_memseg_list *msl = &mcfg->memsegs[i]; 1029 1030 /* skip uninitialized segments */ 1031 if (msl->base_va == NULL) 1032 continue; 1033 /* 1034 * external segments are supposed to be detached at this point, 1035 * but if they aren't, we can't really do anything about it, 1036 * because if we skip them here, they'll become invalid after 1037 * we unmap the memconfig anyway. however, if this is externally 1038 * referenced memory, we have no business unmapping it. 1039 */ 1040 if (!msl->external) 1041 if (rte_mem_unmap(msl->base_va, msl->len) != 0) 1042 RTE_LOG(ERR, EAL, "Could not unmap memory: %s\n", 1043 rte_strerror(rte_errno)); 1044 1045 /* 1046 * we are detaching the fbarray rather than destroying because 1047 * other processes might still reference this fbarray, and we 1048 * have no way of knowing if they still do. 1049 */ 1050 if (rte_fbarray_detach(&msl->memseg_arr)) 1051 RTE_LOG(ERR, EAL, "Could not detach fbarray: %s\n", 1052 rte_strerror(rte_errno)); 1053 } 1054 rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock); 1055 1056 /* 1057 * we've detached the memseg lists, so we can unmap the shared mem 1058 * config - we can't zero it out because it might still be referenced 1059 * by other processes. 1060 */ 1061 if (internal_conf->no_shconf == 0 && mcfg->mem_cfg_addr != 0) { 1062 if (rte_mem_unmap(mcfg, RTE_ALIGN(sizeof(*mcfg), page_sz)) != 0) 1063 RTE_LOG(ERR, EAL, "Could not unmap shared memory config: %s\n", 1064 rte_strerror(rte_errno)); 1065 } 1066 rte_eal_get_configuration()->mem_config = NULL; 1067 1068 return 0; 1069 } 1070 1071 /* init memory subsystem */ 1072 int 1073 rte_eal_memory_init(void) 1074 { 1075 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1076 const struct internal_config *internal_conf = 1077 eal_get_internal_configuration(); 1078 1079 int retval; 1080 RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n"); 1081 1082 if (!mcfg) 1083 return -1; 1084 1085 /* lock mem hotplug here, to prevent races while we init */ 1086 rte_mcfg_mem_read_lock(); 1087 1088 if (rte_eal_memseg_init() < 0) 1089 goto fail; 1090 1091 if (eal_memalloc_init() < 0) 1092 goto fail; 1093 1094 retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? 1095 rte_eal_hugepage_init() : 1096 rte_eal_hugepage_attach(); 1097 if (retval < 0) 1098 goto fail; 1099 1100 if (internal_conf->no_shconf == 0 && rte_eal_memdevice_init() < 0) 1101 goto fail; 1102 1103 return 0; 1104 fail: 1105 rte_mcfg_mem_read_unlock(); 1106 return -1; 1107 } 1108 1109 #ifndef RTE_EXEC_ENV_WINDOWS 1110 #define EAL_MEMZONE_LIST_REQ "/eal/memzone_list" 1111 #define EAL_MEMZONE_INFO_REQ "/eal/memzone_info" 1112 #define EAL_HEAP_LIST_REQ "/eal/heap_list" 1113 #define EAL_HEAP_INFO_REQ "/eal/heap_info" 1114 #define ADDR_STR 15 1115 1116 /* Telemetry callback handler to return heap stats for requested heap id. */ 1117 static int 1118 handle_eal_heap_info_request(const char *cmd __rte_unused, const char *params, 1119 struct rte_tel_data *d) 1120 { 1121 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1122 struct rte_malloc_socket_stats sock_stats; 1123 struct malloc_heap *heap; 1124 unsigned int heap_id; 1125 1126 if (params == NULL || strlen(params) == 0) 1127 return -1; 1128 1129 heap_id = (unsigned int)strtoul(params, NULL, 10); 1130 1131 /* Get the heap stats of user provided heap id */ 1132 heap = &mcfg->malloc_heaps[heap_id]; 1133 malloc_heap_get_stats(heap, &sock_stats); 1134 1135 rte_tel_data_start_dict(d); 1136 rte_tel_data_add_dict_int(d, "Head id", heap_id); 1137 rte_tel_data_add_dict_string(d, "Name", heap->name); 1138 rte_tel_data_add_dict_u64(d, "Heap_size", 1139 sock_stats.heap_totalsz_bytes); 1140 rte_tel_data_add_dict_u64(d, "Free_size", sock_stats.heap_freesz_bytes); 1141 rte_tel_data_add_dict_u64(d, "Alloc_size", 1142 sock_stats.heap_allocsz_bytes); 1143 rte_tel_data_add_dict_u64(d, "Greatest_free_size", 1144 sock_stats.greatest_free_size); 1145 rte_tel_data_add_dict_u64(d, "Alloc_count", sock_stats.alloc_count); 1146 rte_tel_data_add_dict_u64(d, "Free_count", sock_stats.free_count); 1147 1148 return 0; 1149 } 1150 1151 /* Telemetry callback handler to list the heap ids setup. */ 1152 static int 1153 handle_eal_heap_list_request(const char *cmd __rte_unused, 1154 const char *params __rte_unused, 1155 struct rte_tel_data *d) 1156 { 1157 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1158 struct rte_malloc_socket_stats sock_stats; 1159 unsigned int heap_id; 1160 1161 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1162 /* Iterate through all initialised heaps */ 1163 for (heap_id = 0; heap_id < RTE_MAX_HEAPS; heap_id++) { 1164 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; 1165 1166 malloc_heap_get_stats(heap, &sock_stats); 1167 if (sock_stats.heap_totalsz_bytes != 0) 1168 rte_tel_data_add_array_int(d, heap_id); 1169 } 1170 1171 return 0; 1172 } 1173 1174 /* Telemetry callback handler to return memzone info for requested index. */ 1175 static int 1176 handle_eal_memzone_info_request(const char *cmd __rte_unused, 1177 const char *params, struct rte_tel_data *d) 1178 { 1179 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1180 struct rte_memseg_list *msl = NULL; 1181 int ms_idx, ms_count = 0; 1182 void *cur_addr, *mz_end; 1183 struct rte_memzone *mz; 1184 struct rte_memseg *ms; 1185 char addr[ADDR_STR]; 1186 unsigned int mz_idx; 1187 size_t page_sz; 1188 1189 if (params == NULL || strlen(params) == 0) 1190 return -1; 1191 1192 mz_idx = strtoul(params, NULL, 10); 1193 1194 /* Get the memzone handle using index */ 1195 mz = rte_fbarray_get(&mcfg->memzones, mz_idx); 1196 1197 rte_tel_data_start_dict(d); 1198 rte_tel_data_add_dict_int(d, "Zone", mz_idx); 1199 rte_tel_data_add_dict_string(d, "Name", mz->name); 1200 rte_tel_data_add_dict_int(d, "Length", mz->len); 1201 snprintf(addr, ADDR_STR, "%p", mz->addr); 1202 rte_tel_data_add_dict_string(d, "Address", addr); 1203 rte_tel_data_add_dict_int(d, "Socket", mz->socket_id); 1204 rte_tel_data_add_dict_int(d, "Flags", mz->flags); 1205 1206 /* go through each page occupied by this memzone */ 1207 msl = rte_mem_virt2memseg_list(mz->addr); 1208 if (!msl) { 1209 RTE_LOG(DEBUG, EAL, "Skipping bad memzone\n"); 1210 return -1; 1211 } 1212 page_sz = (size_t)mz->hugepage_sz; 1213 cur_addr = RTE_PTR_ALIGN_FLOOR(mz->addr, page_sz); 1214 mz_end = RTE_PTR_ADD(cur_addr, mz->len); 1215 1216 ms_idx = RTE_PTR_DIFF(mz->addr, msl->base_va) / page_sz; 1217 ms = rte_fbarray_get(&msl->memseg_arr, ms_idx); 1218 1219 rte_tel_data_add_dict_int(d, "Hugepage_size", page_sz); 1220 snprintf(addr, ADDR_STR, "%p", ms->addr); 1221 rte_tel_data_add_dict_string(d, "Hugepage_base", addr); 1222 1223 do { 1224 /* advance VA to next page */ 1225 cur_addr = RTE_PTR_ADD(cur_addr, page_sz); 1226 1227 /* memzones occupy contiguous segments */ 1228 ++ms; 1229 ms_count++; 1230 } while (cur_addr < mz_end); 1231 1232 rte_tel_data_add_dict_int(d, "Hugepage_used", ms_count); 1233 1234 return 0; 1235 } 1236 1237 static void 1238 memzone_list_cb(const struct rte_memzone *mz __rte_unused, 1239 void *arg __rte_unused) 1240 { 1241 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; 1242 struct rte_tel_data *d = arg; 1243 int mz_idx; 1244 1245 mz_idx = rte_fbarray_find_idx(&mcfg->memzones, mz); 1246 rte_tel_data_add_array_int(d, mz_idx); 1247 } 1248 1249 1250 /* Telemetry callback handler to list the memzones reserved. */ 1251 static int 1252 handle_eal_memzone_list_request(const char *cmd __rte_unused, 1253 const char *params __rte_unused, 1254 struct rte_tel_data *d) 1255 { 1256 rte_tel_data_start_array(d, RTE_TEL_INT_VAL); 1257 rte_memzone_walk(memzone_list_cb, d); 1258 1259 return 0; 1260 } 1261 1262 RTE_INIT(memory_telemetry) 1263 { 1264 rte_telemetry_register_cmd( 1265 EAL_MEMZONE_LIST_REQ, handle_eal_memzone_list_request, 1266 "List of memzone index reserved. Takes no parameters"); 1267 rte_telemetry_register_cmd( 1268 EAL_MEMZONE_INFO_REQ, handle_eal_memzone_info_request, 1269 "Returns memzone info. Parameters: int mz_id"); 1270 rte_telemetry_register_cmd( 1271 EAL_HEAP_LIST_REQ, handle_eal_heap_list_request, 1272 "List of heap index setup. Takes no parameters"); 1273 rte_telemetry_register_cmd( 1274 EAL_HEAP_INFO_REQ, handle_eal_heap_info_request, 1275 "Returns malloc heap stats. Parameters: int heap_id"); 1276 } 1277 #endif 1278