xref: /dpdk/examples/qos_sched/app_thread.c (revision 8b9bd0efe0b6920a08e28eebacf2bb916bdf5653)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 
7 #include <rte_log.h>
8 #include <rte_mbuf.h>
9 #include <rte_malloc.h>
10 #include <rte_cycles.h>
11 #include <rte_ethdev.h>
12 #include <rte_memcpy.h>
13 #include <rte_byteorder.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_sched.h>
16 
17 #include "main.h"
18 
19 /*
20  * QoS parameters are encoded as follows:
21  *		Outer VLAN ID defines subport
22  *		Inner VLAN ID defines pipe
23  *		Destination IP 0.0.XXX.0 defines traffic class
24  *		Destination IP host (0.0.0.XXX) defines queue
25  * Values below define offset to each field from start of frame
26  */
27 #define SUBPORT_OFFSET	7
28 #define PIPE_OFFSET		9
29 #define TC_OFFSET		20
30 #define QUEUE_OFFSET	20
31 #define COLOR_OFFSET	19
32 
33 static inline int
34 get_pkt_sched(struct rte_mbuf *m, uint32_t *subport, uint32_t *pipe,
35 			uint32_t *traffic_class, uint32_t *queue, uint32_t *color)
36 {
37 	uint16_t *pdata = rte_pktmbuf_mtod(m, uint16_t *);
38 
39 	*subport = (rte_be_to_cpu_16(pdata[SUBPORT_OFFSET]) & 0x0FFF) &
40 			(port_params.n_subports_per_port - 1); /* Outer VLAN ID*/
41 	*pipe = (rte_be_to_cpu_16(pdata[PIPE_OFFSET]) & 0x0FFF) &
42 			(port_params.n_pipes_per_subport - 1); /* Inner VLAN ID */
43 	*traffic_class = (pdata[QUEUE_OFFSET] & 0x0F) &
44 			(RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE - 1); /* Destination IP */
45 	*queue = ((pdata[QUEUE_OFFSET] >> 8) & 0x0F) &
46 			(RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS - 1) ; /* Destination IP */
47 	*color = pdata[COLOR_OFFSET] & 0x03; 	/* Destination IP */
48 
49 	return 0;
50 }
51 
52 void
53 app_rx_thread(struct thread_conf **confs)
54 {
55 	uint32_t i, nb_rx;
56 	struct rte_mbuf *rx_mbufs[burst_conf.rx_burst] __rte_cache_aligned;
57 	struct thread_conf *conf;
58 	int conf_idx = 0;
59 
60 	uint32_t subport;
61 	uint32_t pipe;
62 	uint32_t traffic_class;
63 	uint32_t queue;
64 	uint32_t color;
65 
66 	while ((conf = confs[conf_idx])) {
67 		nb_rx = rte_eth_rx_burst(conf->rx_port, conf->rx_queue, rx_mbufs,
68 				burst_conf.rx_burst);
69 
70 		if (likely(nb_rx != 0)) {
71 			APP_STATS_ADD(conf->stat.nb_rx, nb_rx);
72 
73 			for(i = 0; i < nb_rx; i++) {
74 				get_pkt_sched(rx_mbufs[i],
75 						&subport, &pipe, &traffic_class, &queue, &color);
76 				rte_sched_port_pkt_write(rx_mbufs[i], subport, pipe,
77 						traffic_class, queue, (enum rte_meter_color) color);
78 			}
79 
80 			if (unlikely(rte_ring_sp_enqueue_bulk(conf->rx_ring,
81 					(void **)rx_mbufs, nb_rx, NULL) == 0)) {
82 				for(i = 0; i < nb_rx; i++) {
83 					rte_pktmbuf_free(rx_mbufs[i]);
84 
85 					APP_STATS_ADD(conf->stat.nb_drop, 1);
86 				}
87 			}
88 		}
89 		conf_idx++;
90 		if (confs[conf_idx] == NULL)
91 			conf_idx = 0;
92 	}
93 }
94 
95 
96 
97 /* Send the packet to an output interface
98  * For performance reason function returns number of packets dropped, not sent,
99  * so 0 means that all packets were sent successfully
100  */
101 
102 static inline void
103 app_send_burst(struct thread_conf *qconf)
104 {
105 	struct rte_mbuf **mbufs;
106 	uint32_t n, ret;
107 
108 	mbufs = (struct rte_mbuf **)qconf->m_table;
109 	n = qconf->n_mbufs;
110 
111 	do {
112 		ret = rte_eth_tx_burst(qconf->tx_port, qconf->tx_queue, mbufs, (uint16_t)n);
113 		/* we cannot drop the packets, so re-send */
114 		/* update number of packets to be sent */
115 		n -= ret;
116 		mbufs = (struct rte_mbuf **)&mbufs[ret];
117 	} while (n);
118 }
119 
120 
121 /* Send the packet to an output interface */
122 static void
123 app_send_packets(struct thread_conf *qconf, struct rte_mbuf **mbufs, uint32_t nb_pkt)
124 {
125 	uint32_t i, len;
126 
127 	len = qconf->n_mbufs;
128 	for(i = 0; i < nb_pkt; i++) {
129 		qconf->m_table[len] = mbufs[i];
130 		len++;
131 		/* enough pkts to be sent */
132 		if (unlikely(len == burst_conf.tx_burst)) {
133 			qconf->n_mbufs = len;
134 			app_send_burst(qconf);
135 			len = 0;
136 		}
137 	}
138 
139 	qconf->n_mbufs = len;
140 }
141 
142 void
143 app_tx_thread(struct thread_conf **confs)
144 {
145 	struct rte_mbuf *mbufs[burst_conf.qos_dequeue];
146 	struct thread_conf *conf;
147 	int conf_idx = 0;
148 	int retval;
149 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
150 
151 	while ((conf = confs[conf_idx])) {
152 		retval = rte_ring_sc_dequeue_bulk(conf->tx_ring, (void **)mbufs,
153 					burst_conf.qos_dequeue, NULL);
154 		if (likely(retval != 0)) {
155 			app_send_packets(conf, mbufs, burst_conf.qos_dequeue);
156 
157 			conf->counter = 0; /* reset empty read loop counter */
158 		}
159 
160 		conf->counter++;
161 
162 		/* drain ring and TX queues */
163 		if (unlikely(conf->counter > drain_tsc)) {
164 			/* now check is there any packets left to be transmitted */
165 			if (conf->n_mbufs != 0) {
166 				app_send_burst(conf);
167 
168 				conf->n_mbufs = 0;
169 			}
170 			conf->counter = 0;
171 		}
172 
173 		conf_idx++;
174 		if (confs[conf_idx] == NULL)
175 			conf_idx = 0;
176 	}
177 }
178 
179 
180 void
181 app_worker_thread(struct thread_conf **confs)
182 {
183 	struct rte_mbuf *mbufs[burst_conf.ring_burst];
184 	struct thread_conf *conf;
185 	int conf_idx = 0;
186 
187 	while ((conf = confs[conf_idx])) {
188 		uint32_t nb_pkt;
189 
190 		/* Read packet from the ring */
191 		nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs,
192 					burst_conf.ring_burst, NULL);
193 		if (likely(nb_pkt)) {
194 			int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs,
195 					nb_pkt);
196 
197 			APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent);
198 			APP_STATS_ADD(conf->stat.nb_rx, nb_pkt);
199 		}
200 
201 		nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs,
202 					burst_conf.qos_dequeue);
203 		if (likely(nb_pkt > 0))
204 			while (rte_ring_sp_enqueue_bulk(conf->tx_ring,
205 					(void **)mbufs, nb_pkt, NULL) == 0)
206 				; /* empty body */
207 
208 		conf_idx++;
209 		if (confs[conf_idx] == NULL)
210 			conf_idx = 0;
211 	}
212 }
213 
214 
215 void
216 app_mixed_thread(struct thread_conf **confs)
217 {
218 	struct rte_mbuf *mbufs[burst_conf.ring_burst];
219 	struct thread_conf *conf;
220 	int conf_idx = 0;
221 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
222 
223 	while ((conf = confs[conf_idx])) {
224 		uint32_t nb_pkt;
225 
226 		/* Read packet from the ring */
227 		nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs,
228 					burst_conf.ring_burst, NULL);
229 		if (likely(nb_pkt)) {
230 			int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs,
231 					nb_pkt);
232 
233 			APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent);
234 			APP_STATS_ADD(conf->stat.nb_rx, nb_pkt);
235 		}
236 
237 
238 		nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs,
239 					burst_conf.qos_dequeue);
240 		if (likely(nb_pkt > 0)) {
241 			app_send_packets(conf, mbufs, nb_pkt);
242 
243 			conf->counter = 0; /* reset empty read loop counter */
244 		}
245 
246 		conf->counter++;
247 
248 		/* drain ring and TX queues */
249 		if (unlikely(conf->counter > drain_tsc)) {
250 
251 			/* now check is there any packets left to be transmitted */
252 			if (conf->n_mbufs != 0) {
253 				app_send_burst(conf);
254 
255 				conf->n_mbufs = 0;
256 			}
257 			conf->counter = 0;
258 		}
259 
260 		conf_idx++;
261 		if (confs[conf_idx] == NULL)
262 			conf_idx = 0;
263 	}
264 }
265