xref: /dpdk/examples/qos_sched/app_thread.c (revision 25d11a86c56d50947af33d0b79ede622809bd8b9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 
7 #include <rte_log.h>
8 #include <rte_mbuf.h>
9 #include <rte_malloc.h>
10 #include <rte_cycles.h>
11 #include <rte_ethdev.h>
12 #include <rte_memcpy.h>
13 #include <rte_byteorder.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_sched.h>
16 
17 #include "main.h"
18 
19 /*
20  * QoS parameters are encoded as follows:
21  *		Outer VLAN ID defines subport
22  *		Inner VLAN ID defines pipe
23  *		Destination IP 0.0.XXX.0 defines traffic class
24  *		Destination IP host (0.0.0.XXX) defines queue
25  * Values below define offset to each field from start of frame
26  */
27 #define SUBPORT_OFFSET	7
28 #define PIPE_OFFSET		9
29 #define TC_OFFSET		20
30 #define QUEUE_OFFSET	20
31 #define COLOR_OFFSET	19
32 
33 static inline int
34 get_pkt_sched(struct rte_mbuf *m, uint32_t *subport, uint32_t *pipe,
35 			uint32_t *traffic_class, uint32_t *queue, uint32_t *color)
36 {
37 	uint16_t *pdata = rte_pktmbuf_mtod(m, uint16_t *);
38 
39 	*subport = (rte_be_to_cpu_16(pdata[SUBPORT_OFFSET]) & 0x0FFF) &
40 			(port_params.n_subports_per_port - 1); /* Outer VLAN ID*/
41 	*pipe = (rte_be_to_cpu_16(pdata[PIPE_OFFSET]) & 0x0FFF) &
42 			(port_params.n_pipes_per_subport - 1); /* Inner VLAN ID */
43 	*traffic_class = (pdata[QUEUE_OFFSET] & 0x0F) &
44 			(RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE - 1); /* Destination IP */
45 	*queue = ((pdata[QUEUE_OFFSET] >> 8) & 0x0F) &
46 			(RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS - 1) ; /* Destination IP */
47 	*color = pdata[COLOR_OFFSET] & 0x03; 	/* Destination IP */
48 
49 	return 0;
50 }
51 
52 void
53 app_rx_thread(struct thread_conf **confs)
54 {
55 	uint32_t i, nb_rx;
56 	struct rte_mbuf *rx_mbufs[burst_conf.rx_burst] __rte_cache_aligned;
57 	struct thread_conf *conf;
58 	int conf_idx = 0;
59 
60 	uint32_t subport;
61 	uint32_t pipe;
62 	uint32_t traffic_class;
63 	uint32_t queue;
64 	uint32_t color;
65 
66 	while ((conf = confs[conf_idx])) {
67 		nb_rx = rte_eth_rx_burst(conf->rx_port, conf->rx_queue, rx_mbufs,
68 				burst_conf.rx_burst);
69 
70 		if (likely(nb_rx != 0)) {
71 			APP_STATS_ADD(conf->stat.nb_rx, nb_rx);
72 
73 			for(i = 0; i < nb_rx; i++) {
74 				get_pkt_sched(rx_mbufs[i],
75 						&subport, &pipe, &traffic_class, &queue, &color);
76 				rte_sched_port_pkt_write(conf->sched_port,
77 						rx_mbufs[i],
78 						subport, pipe,
79 						traffic_class, queue,
80 						(enum rte_meter_color) color);
81 			}
82 
83 			if (unlikely(rte_ring_sp_enqueue_bulk(conf->rx_ring,
84 					(void **)rx_mbufs, nb_rx, NULL) == 0)) {
85 				for(i = 0; i < nb_rx; i++) {
86 					rte_pktmbuf_free(rx_mbufs[i]);
87 
88 					APP_STATS_ADD(conf->stat.nb_drop, 1);
89 				}
90 			}
91 		}
92 		conf_idx++;
93 		if (confs[conf_idx] == NULL)
94 			conf_idx = 0;
95 	}
96 }
97 
98 
99 
100 /* Send the packet to an output interface
101  * For performance reason function returns number of packets dropped, not sent,
102  * so 0 means that all packets were sent successfully
103  */
104 
105 static inline void
106 app_send_burst(struct thread_conf *qconf)
107 {
108 	struct rte_mbuf **mbufs;
109 	uint32_t n, ret;
110 
111 	mbufs = (struct rte_mbuf **)qconf->m_table;
112 	n = qconf->n_mbufs;
113 
114 	do {
115 		ret = rte_eth_tx_burst(qconf->tx_port, qconf->tx_queue, mbufs, (uint16_t)n);
116 		/* we cannot drop the packets, so re-send */
117 		/* update number of packets to be sent */
118 		n -= ret;
119 		mbufs = (struct rte_mbuf **)&mbufs[ret];
120 	} while (n);
121 }
122 
123 
124 /* Send the packet to an output interface */
125 static void
126 app_send_packets(struct thread_conf *qconf, struct rte_mbuf **mbufs, uint32_t nb_pkt)
127 {
128 	uint32_t i, len;
129 
130 	len = qconf->n_mbufs;
131 	for(i = 0; i < nb_pkt; i++) {
132 		qconf->m_table[len] = mbufs[i];
133 		len++;
134 		/* enough pkts to be sent */
135 		if (unlikely(len == burst_conf.tx_burst)) {
136 			qconf->n_mbufs = len;
137 			app_send_burst(qconf);
138 			len = 0;
139 		}
140 	}
141 
142 	qconf->n_mbufs = len;
143 }
144 
145 void
146 app_tx_thread(struct thread_conf **confs)
147 {
148 	struct rte_mbuf *mbufs[burst_conf.qos_dequeue];
149 	struct thread_conf *conf;
150 	int conf_idx = 0;
151 	int retval;
152 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
153 
154 	while ((conf = confs[conf_idx])) {
155 		retval = rte_ring_sc_dequeue_bulk(conf->tx_ring, (void **)mbufs,
156 					burst_conf.qos_dequeue, NULL);
157 		if (likely(retval != 0)) {
158 			app_send_packets(conf, mbufs, burst_conf.qos_dequeue);
159 
160 			conf->counter = 0; /* reset empty read loop counter */
161 		}
162 
163 		conf->counter++;
164 
165 		/* drain ring and TX queues */
166 		if (unlikely(conf->counter > drain_tsc)) {
167 			/* now check is there any packets left to be transmitted */
168 			if (conf->n_mbufs != 0) {
169 				app_send_burst(conf);
170 
171 				conf->n_mbufs = 0;
172 			}
173 			conf->counter = 0;
174 		}
175 
176 		conf_idx++;
177 		if (confs[conf_idx] == NULL)
178 			conf_idx = 0;
179 	}
180 }
181 
182 
183 void
184 app_worker_thread(struct thread_conf **confs)
185 {
186 	struct rte_mbuf *mbufs[burst_conf.ring_burst];
187 	struct thread_conf *conf;
188 	int conf_idx = 0;
189 
190 	while ((conf = confs[conf_idx])) {
191 		uint32_t nb_pkt;
192 
193 		/* Read packet from the ring */
194 		nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs,
195 					burst_conf.ring_burst, NULL);
196 		if (likely(nb_pkt)) {
197 			int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs,
198 					nb_pkt);
199 
200 			APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent);
201 			APP_STATS_ADD(conf->stat.nb_rx, nb_pkt);
202 		}
203 
204 		nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs,
205 					burst_conf.qos_dequeue);
206 		if (likely(nb_pkt > 0))
207 			while (rte_ring_sp_enqueue_bulk(conf->tx_ring,
208 					(void **)mbufs, nb_pkt, NULL) == 0)
209 				; /* empty body */
210 
211 		conf_idx++;
212 		if (confs[conf_idx] == NULL)
213 			conf_idx = 0;
214 	}
215 }
216 
217 
218 void
219 app_mixed_thread(struct thread_conf **confs)
220 {
221 	struct rte_mbuf *mbufs[burst_conf.ring_burst];
222 	struct thread_conf *conf;
223 	int conf_idx = 0;
224 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
225 
226 	while ((conf = confs[conf_idx])) {
227 		uint32_t nb_pkt;
228 
229 		/* Read packet from the ring */
230 		nb_pkt = rte_ring_sc_dequeue_burst(conf->rx_ring, (void **)mbufs,
231 					burst_conf.ring_burst, NULL);
232 		if (likely(nb_pkt)) {
233 			int nb_sent = rte_sched_port_enqueue(conf->sched_port, mbufs,
234 					nb_pkt);
235 
236 			APP_STATS_ADD(conf->stat.nb_drop, nb_pkt - nb_sent);
237 			APP_STATS_ADD(conf->stat.nb_rx, nb_pkt);
238 		}
239 
240 
241 		nb_pkt = rte_sched_port_dequeue(conf->sched_port, mbufs,
242 					burst_conf.qos_dequeue);
243 		if (likely(nb_pkt > 0)) {
244 			app_send_packets(conf, mbufs, nb_pkt);
245 
246 			conf->counter = 0; /* reset empty read loop counter */
247 		}
248 
249 		conf->counter++;
250 
251 		/* drain ring and TX queues */
252 		if (unlikely(conf->counter > drain_tsc)) {
253 
254 			/* now check is there any packets left to be transmitted */
255 			if (conf->n_mbufs != 0) {
256 				app_send_burst(conf);
257 
258 				conf->n_mbufs = 0;
259 			}
260 			conf->counter = 0;
261 		}
262 
263 		conf_idx++;
264 		if (confs[conf_idx] == NULL)
265 			conf_idx = 0;
266 	}
267 }
268