1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2012 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 */ 34 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <stdint.h> 38 #include <inttypes.h> 39 #include <sys/types.h> 40 #include <string.h> 41 #include <sys/queue.h> 42 #include <stdarg.h> 43 #include <errno.h> 44 #include <getopt.h> 45 46 #include <rte_common.h> 47 #include <rte_byteorder.h> 48 #include <rte_log.h> 49 #include <rte_tailq.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_eal.h> 54 #include <rte_per_lcore.h> 55 #include <rte_launch.h> 56 #include <rte_atomic.h> 57 #include <rte_cycles.h> 58 #include <rte_prefetch.h> 59 #include <rte_lcore.h> 60 #include <rte_per_lcore.h> 61 #include <rte_branch_prediction.h> 62 #include <rte_interrupts.h> 63 #include <rte_pci.h> 64 #include <rte_random.h> 65 #include <rte_debug.h> 66 #include <rte_ether.h> 67 #include <rte_ethdev.h> 68 #include <rte_ring.h> 69 #include <rte_mempool.h> 70 #include <rte_mbuf.h> 71 #include <rte_malloc.h> 72 #include <rte_hash_crc.h> 73 #include <rte_fbk_hash.h> 74 #include <rte_ip.h> 75 76 #include "main.h" 77 78 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 79 80 #define MAX_PORTS 16 81 82 #define MCAST_CLONE_PORTS 2 83 #define MCAST_CLONE_SEGS 2 84 85 #define PKT_MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM) 86 #define NB_PKT_MBUF 8192 87 88 #define HDR_MBUF_SIZE (sizeof(struct rte_mbuf) + 2 * RTE_PKTMBUF_HEADROOM) 89 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 90 91 #define CLONE_MBUF_SIZE (sizeof(struct rte_mbuf)) 92 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 93 94 /* allow max jumbo frame 9.5 KB */ 95 #define JUMBO_FRAME_MAX_SIZE 0x2600 96 97 /* 98 * RX and TX Prefetch, Host, and Write-back threshold values should be 99 * carefully set for optimal performance. Consult the network 100 * controller's datasheet and supporting DPDK documentation for guidance 101 * on how these parameters should be set. 102 */ 103 #define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */ 104 #define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */ 105 #define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */ 106 107 /* 108 * These default values are optimized for use with the Intel(R) 82599 10 GbE 109 * Controller and the DPDK ixgbe PMD. Consider using other values for other 110 * network controllers and/or network drivers. 111 */ 112 #define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */ 113 #define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */ 114 #define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */ 115 116 #define MAX_PKT_BURST 32 117 #define BURST_TX_DRAIN 200000ULL /* around 100us at 2 Ghz */ 118 119 #define SOCKET0 0 120 121 /* Configure how many packets ahead to prefetch, when reading packets */ 122 #define PREFETCH_OFFSET 3 123 124 /* 125 * Construct Ethernet multicast address from IPv4 multicast address. 126 * Citing RFC 1112, section 6.4: 127 * "An IP host group address is mapped to an Ethernet multicast address 128 * by placing the low-order 23-bits of the IP address into the low-order 129 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 130 */ 131 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 132 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 133 134 /* 135 * Configurable number of RX/TX ring descriptors 136 */ 137 #define RTE_TEST_RX_DESC_DEFAULT 128 138 #define RTE_TEST_TX_DESC_DEFAULT 512 139 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 140 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 141 142 /* ethernet addresses of ports */ 143 static struct ether_addr ports_eth_addr[MAX_PORTS]; 144 145 /* mask of enabled ports */ 146 static uint32_t enabled_port_mask = 0; 147 148 static uint8_t nb_ports = 0; 149 150 static int rx_queue_per_lcore = 1; 151 152 struct mbuf_table { 153 uint16_t len; 154 struct rte_mbuf *m_table[MAX_PKT_BURST]; 155 }; 156 157 #define MAX_RX_QUEUE_PER_LCORE 16 158 #define MAX_TX_QUEUE_PER_PORT 16 159 struct lcore_queue_conf { 160 uint64_t tx_tsc; 161 uint16_t n_rx_queue; 162 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 163 uint16_t tx_queue_id[MAX_PORTS]; 164 struct mbuf_table tx_mbufs[MAX_PORTS]; 165 } __rte_cache_aligned; 166 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 167 168 static const struct rte_eth_conf port_conf = { 169 .rxmode = { 170 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 171 .split_hdr_size = 0, 172 .header_split = 0, /**< Header Split disabled */ 173 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 174 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 175 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 176 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 177 }, 178 .txmode = { 179 }, 180 }; 181 182 static const struct rte_eth_rxconf rx_conf = { 183 .rx_thresh = { 184 .pthresh = RX_PTHRESH, 185 .hthresh = RX_HTHRESH, 186 .wthresh = RX_WTHRESH, 187 }, 188 }; 189 190 static const struct rte_eth_txconf tx_conf = { 191 .tx_thresh = { 192 .pthresh = TX_PTHRESH, 193 .hthresh = TX_HTHRESH, 194 .wthresh = TX_WTHRESH, 195 }, 196 .tx_free_thresh = 0, /* Use PMD default values */ 197 .tx_rs_thresh = 0, /* Use PMD default values */ 198 }; 199 200 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 201 202 203 /* Multicast */ 204 static struct rte_fbk_hash_params mcast_hash_params = { 205 .name = "MCAST_HASH", 206 .entries = 1024, 207 .entries_per_bucket = 4, 208 .socket_id = SOCKET0, 209 .hash_func = NULL, 210 .init_val = 0, 211 }; 212 213 struct rte_fbk_hash_table *mcast_hash = NULL; 214 215 struct mcast_group_params { 216 uint32_t ip; 217 uint16_t port_mask; 218 }; 219 220 static struct mcast_group_params mcast_group_table[] = { 221 {IPv4(224,0,0,101), 0x1}, 222 {IPv4(224,0,0,102), 0x2}, 223 {IPv4(224,0,0,103), 0x3}, 224 {IPv4(224,0,0,104), 0x4}, 225 {IPv4(224,0,0,105), 0x5}, 226 {IPv4(224,0,0,106), 0x6}, 227 {IPv4(224,0,0,107), 0x7}, 228 {IPv4(224,0,0,108), 0x8}, 229 {IPv4(224,0,0,109), 0x9}, 230 {IPv4(224,0,0,110), 0xA}, 231 {IPv4(224,0,0,111), 0xB}, 232 {IPv4(224,0,0,112), 0xC}, 233 {IPv4(224,0,0,113), 0xD}, 234 {IPv4(224,0,0,114), 0xE}, 235 {IPv4(224,0,0,115), 0xF}, 236 }; 237 238 #define N_MCAST_GROUPS \ 239 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 240 241 242 /* Send burst of packets on an output interface */ 243 static void 244 send_burst(struct lcore_queue_conf *qconf, uint8_t port) 245 { 246 struct rte_mbuf **m_table; 247 uint16_t n, queueid; 248 int ret; 249 250 queueid = qconf->tx_queue_id[port]; 251 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 252 n = qconf->tx_mbufs[port].len; 253 254 ret = rte_eth_tx_burst(port, queueid, m_table, n); 255 while (unlikely (ret < n)) { 256 rte_pktmbuf_free(m_table[ret]); 257 ret++; 258 } 259 260 qconf->tx_mbufs[port].len = 0; 261 } 262 263 /* Get number of bits set. */ 264 static inline uint32_t 265 bitcnt(uint32_t v) 266 { 267 uint32_t n; 268 269 for (n = 0; v != 0; v &= v - 1, n++) 270 ; 271 272 return (n); 273 } 274 275 /** 276 * Create the output multicast packet based on the given input packet. 277 * There are two approaches for creating outgoing packet, though both 278 * are based on data zero-copy idea, they differ in few details: 279 * First one creates a clone of the input packet, e.g - walk though all 280 * segments of the input packet, and for each of them create a new packet 281 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 282 * for more details). Then new mbuf is allocated for the packet header 283 * and is prepended to the 'clone' mbuf. 284 * Second approach doesn't make a clone, it just increment refcnt for all 285 * input packet segments. Then it allocates new mbuf for the packet header 286 * and prepends it to the input packet. 287 * Basically first approach reuses only input packet's data, but creates 288 * it's own copy of packet's metadata. Second approach reuses both input's 289 * packet data and metadata. 290 * The advantage of first approach - is that each outgoing packet has it's 291 * own copy of metadata, so we can safely modify data pointer of the 292 * input packet. That allows us to skip creation if the output packet for 293 * the last destination port, but instead modify input packet's header inplace, 294 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 295 * The advantage of second approach - less work for each outgoing packet, 296 * e.g: we skip "clone" operation completely. Though it comes with a price - 297 * input packet's metadata has to be intact. So for N destination ports we 298 * need to invoke mcast_out_pkt N times. 299 * So for small number of outgoing ports (and segments in the input packet) 300 * first approach will be faster. 301 * As number of outgoing ports (and/or input segments) will grow, 302 * second way will become more preferable. 303 * 304 * @param pkt 305 * Input packet mbuf. 306 * @param use_clone 307 * Control which of the two approaches described above should be used: 308 * - 0 - use second approach: 309 * Don't "clone" input packet. 310 * Prepend new header directly to the input packet 311 * - 1 - use first approach: 312 * Make a "clone" of input packet first. 313 * Prepend new header to the clone of the input packet 314 * @return 315 * - The pointer to the new outgoing packet. 316 * - NULL if operation failed. 317 */ 318 static inline struct rte_mbuf * 319 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 320 { 321 struct rte_mbuf *hdr; 322 323 /* Create new mbuf for the header. */ 324 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 325 return (NULL); 326 327 /* If requested, then make a new clone packet. */ 328 if (use_clone != 0 && 329 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 330 rte_pktmbuf_free(hdr); 331 return (NULL); 332 } 333 334 /* prepend new header */ 335 hdr->pkt.next = pkt; 336 337 338 /* update header's fields */ 339 hdr->pkt.pkt_len = (uint16_t)(hdr->pkt.data_len + pkt->pkt.pkt_len); 340 hdr->pkt.nb_segs = (uint8_t)(pkt->pkt.nb_segs + 1); 341 342 /* copy metadata from source packet*/ 343 hdr->pkt.in_port = pkt->pkt.in_port; 344 hdr->pkt.vlan_tci = pkt->pkt.vlan_tci; 345 hdr->pkt.l2_len = pkt->pkt.l2_len; 346 hdr->pkt.l3_len = pkt->pkt.l3_len; 347 hdr->pkt.hash = pkt->pkt.hash; 348 349 hdr->ol_flags = pkt->ol_flags; 350 351 __rte_mbuf_sanity_check(hdr, RTE_MBUF_PKT, 1); 352 return (hdr); 353 } 354 355 /* 356 * Write new Ethernet header to the outgoing packet, 357 * and put it into the outgoing queue for the given port. 358 */ 359 static inline void 360 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 361 struct lcore_queue_conf *qconf, uint8_t port) 362 { 363 struct ether_hdr *ethdr; 364 uint16_t len; 365 366 /* Construct Ethernet header. */ 367 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 368 RTE_MBUF_ASSERT(ethdr != NULL); 369 370 ether_addr_copy(dest_addr, ðdr->d_addr); 371 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 372 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 373 374 /* Put new packet into the output queue */ 375 len = qconf->tx_mbufs[port].len; 376 qconf->tx_mbufs[port].m_table[len] = pkt; 377 qconf->tx_mbufs[port].len = ++len; 378 379 /* Transmit packets */ 380 if (unlikely(MAX_PKT_BURST == len)) 381 send_burst(qconf, port); 382 } 383 384 /* Multicast forward of the input packet */ 385 static inline void 386 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 387 { 388 struct rte_mbuf *mc; 389 struct ipv4_hdr *iphdr; 390 uint32_t dest_addr, port_mask, port_num, use_clone; 391 int32_t hash; 392 uint8_t port; 393 union { 394 uint64_t as_int; 395 struct ether_addr as_addr; 396 } dst_eth_addr; 397 398 /* Remove the Ethernet header from the input packet */ 399 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 400 RTE_MBUF_ASSERT(iphdr != NULL); 401 402 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 403 404 /* 405 * Check that it is a valid multicast address and 406 * we have some active ports assigned to it. 407 */ 408 if(!IS_IPV4_MCAST(dest_addr) || 409 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 410 (port_mask = hash & enabled_port_mask) == 0) { 411 rte_pktmbuf_free(m); 412 return; 413 } 414 415 /* Calculate number of destination ports. */ 416 port_num = bitcnt(port_mask); 417 418 /* Should we use rte_pktmbuf_clone() or not. */ 419 use_clone = (port_num <= MCAST_CLONE_PORTS && 420 m->pkt.nb_segs <= MCAST_CLONE_SEGS); 421 422 /* Mark all packet's segments as referenced port_num times */ 423 if (use_clone == 0) 424 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 425 426 /* construct destination ethernet address */ 427 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 428 429 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 430 431 /* Prepare output packet and send it out. */ 432 if ((port_mask & 1) != 0) { 433 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 434 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 435 qconf, port); 436 else if (use_clone == 0) 437 rte_pktmbuf_free(m); 438 } 439 } 440 441 /* 442 * If we making clone packets, then, for the last destination port, 443 * we can overwrite input packet's metadata. 444 */ 445 if (use_clone != 0) 446 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 447 else 448 rte_pktmbuf_free(m); 449 } 450 451 /* Send burst of outgoing packet, if timeout expires. */ 452 static inline void 453 send_timeout_burst(struct lcore_queue_conf *qconf) 454 { 455 uint64_t cur_tsc; 456 uint8_t portid; 457 458 cur_tsc = rte_rdtsc(); 459 if (likely (cur_tsc < qconf->tx_tsc + BURST_TX_DRAIN)) 460 return; 461 462 for (portid = 0; portid < MAX_PORTS; portid++) { 463 if (qconf->tx_mbufs[portid].len != 0) 464 send_burst(qconf, portid); 465 } 466 qconf->tx_tsc = cur_tsc; 467 } 468 469 /* main processing loop */ 470 static __attribute__((noreturn)) int 471 main_loop(__rte_unused void *dummy) 472 { 473 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 474 uint32_t lcore_id; 475 int i, j, nb_rx; 476 uint8_t portid; 477 struct lcore_queue_conf *qconf; 478 479 lcore_id = rte_lcore_id(); 480 qconf = &lcore_queue_conf[lcore_id]; 481 482 483 if (qconf->n_rx_queue == 0) { 484 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 485 lcore_id); 486 while(1); 487 } 488 489 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 490 lcore_id); 491 492 for (i = 0; i < qconf->n_rx_queue; i++) { 493 494 portid = qconf->rx_queue_list[i]; 495 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 496 lcore_id, (int) portid); 497 } 498 499 while (1) { 500 501 /* 502 * Read packet from RX queues 503 */ 504 for (i = 0; i < qconf->n_rx_queue; i++) { 505 506 portid = qconf->rx_queue_list[i]; 507 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 508 MAX_PKT_BURST); 509 510 /* Prefetch first packets */ 511 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 512 rte_prefetch0(rte_pktmbuf_mtod( 513 pkts_burst[j], void *)); 514 } 515 516 /* Prefetch and forward already prefetched packets */ 517 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 518 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 519 j + PREFETCH_OFFSET], void *)); 520 mcast_forward(pkts_burst[j], qconf); 521 } 522 523 /* Forward remaining prefetched packets */ 524 for (; j < nb_rx; j++) { 525 mcast_forward(pkts_burst[j], qconf); 526 } 527 } 528 529 /* Send out packets from TX queues */ 530 send_timeout_burst(qconf); 531 } 532 } 533 534 /* display usage */ 535 static void 536 print_usage(const char *prgname) 537 { 538 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 539 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 540 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 541 prgname); 542 } 543 544 static uint32_t 545 parse_portmask(const char *portmask) 546 { 547 char *end = NULL; 548 unsigned long pm; 549 550 /* parse hexadecimal string */ 551 pm = strtoul(portmask, &end, 16); 552 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 553 return 0; 554 555 return ((uint32_t)pm); 556 } 557 558 static int 559 parse_nqueue(const char *q_arg) 560 { 561 char *end = NULL; 562 unsigned long n; 563 564 /* parse numerical string */ 565 errno = 0; 566 n = strtoul(q_arg, &end, 0); 567 if (errno != 0 || end == NULL || *end != '\0' || 568 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 569 return (-1); 570 571 return (n); 572 } 573 574 /* Parse the argument given in the command line of the application */ 575 static int 576 parse_args(int argc, char **argv) 577 { 578 int opt, ret; 579 char **argvopt; 580 int option_index; 581 char *prgname = argv[0]; 582 static struct option lgopts[] = { 583 {NULL, 0, 0, 0} 584 }; 585 586 argvopt = argv; 587 588 while ((opt = getopt_long(argc, argvopt, "p:q:", 589 lgopts, &option_index)) != EOF) { 590 591 switch (opt) { 592 /* portmask */ 593 case 'p': 594 enabled_port_mask = parse_portmask(optarg); 595 if (enabled_port_mask == 0) { 596 printf("invalid portmask\n"); 597 print_usage(prgname); 598 return -1; 599 } 600 break; 601 602 /* nqueue */ 603 case 'q': 604 rx_queue_per_lcore = parse_nqueue(optarg); 605 if (rx_queue_per_lcore < 0) { 606 printf("invalid queue number\n"); 607 print_usage(prgname); 608 return -1; 609 } 610 break; 611 612 default: 613 print_usage(prgname); 614 return -1; 615 } 616 } 617 618 if (optind >= 0) 619 argv[optind-1] = prgname; 620 621 ret = optind-1; 622 optind = 0; /* reset getopt lib */ 623 return ret; 624 } 625 626 static void 627 print_ethaddr(const char *name, struct ether_addr *eth_addr) 628 { 629 printf("%s%02X:%02X:%02X:%02X:%02X:%02X", name, 630 eth_addr->addr_bytes[0], 631 eth_addr->addr_bytes[1], 632 eth_addr->addr_bytes[2], 633 eth_addr->addr_bytes[3], 634 eth_addr->addr_bytes[4], 635 eth_addr->addr_bytes[5]); 636 } 637 638 static int 639 init_mcast_hash(void) 640 { 641 uint32_t i; 642 643 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 644 if (mcast_hash == NULL){ 645 return -1; 646 } 647 648 for (i = 0; i < N_MCAST_GROUPS; i ++){ 649 if (rte_fbk_hash_add_key(mcast_hash, 650 mcast_group_table[i].ip, 651 mcast_group_table[i].port_mask) < 0) { 652 return -1; 653 } 654 } 655 656 return 0; 657 } 658 659 int 660 MAIN(int argc, char **argv) 661 { 662 struct lcore_queue_conf *qconf; 663 struct rte_eth_link link; 664 int ret; 665 uint16_t queueid; 666 unsigned lcore_id = 0, rx_lcore_id = 0;; 667 uint32_t n_tx_queue, nb_lcores; 668 uint8_t portid; 669 670 /* init EAL */ 671 ret = rte_eal_init(argc, argv); 672 if (ret < 0) 673 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 674 argc -= ret; 675 argv += ret; 676 677 /* parse application arguments (after the EAL ones) */ 678 ret = parse_args(argc, argv); 679 if (ret < 0) 680 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 681 682 /* create the mbuf pools */ 683 packet_pool = rte_mempool_create("packet_pool", NB_PKT_MBUF, 684 PKT_MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private), 685 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, 686 SOCKET0, 0); 687 688 if (packet_pool == NULL) 689 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 690 691 header_pool = rte_mempool_create("header_pool", NB_HDR_MBUF, 692 HDR_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, 693 SOCKET0, 0); 694 695 if (header_pool == NULL) 696 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 697 698 clone_pool = rte_mempool_create("clone_pool", NB_CLONE_MBUF, 699 CLONE_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, 700 SOCKET0, 0); 701 702 if (clone_pool == NULL) 703 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 704 705 /* init driver */ 706 #ifdef RTE_LIBRTE_IGB_PMD 707 if (rte_igb_pmd_init() < 0) 708 rte_exit(EXIT_FAILURE, "Cannot init igb pmd\n"); 709 #endif 710 #ifdef RTE_LIBRTE_IXGBE_PMD 711 if (rte_ixgbe_pmd_init() < 0) 712 rte_exit(EXIT_FAILURE, "Cannot init ixgbe pmd\n"); 713 #endif 714 715 if (rte_eal_pci_probe() < 0) 716 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 717 718 nb_ports = rte_eth_dev_count(); 719 if (nb_ports == 0) 720 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 721 if (nb_ports > MAX_PORTS) 722 nb_ports = MAX_PORTS; 723 724 nb_lcores = rte_lcore_count(); 725 726 /* initialize all ports */ 727 for (portid = 0; portid < nb_ports; portid++) { 728 /* skip ports that are not enabled */ 729 if ((enabled_port_mask & (1 << portid)) == 0) { 730 printf("Skipping disabled port %d\n", portid); 731 continue; 732 } 733 734 qconf = &lcore_queue_conf[rx_lcore_id]; 735 736 /* get the lcore_id for this port */ 737 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 738 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 739 740 rx_lcore_id ++; 741 qconf = &lcore_queue_conf[rx_lcore_id]; 742 743 if (rx_lcore_id >= RTE_MAX_LCORE) 744 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 745 } 746 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 747 qconf->n_rx_queue++; 748 749 /* init port */ 750 printf("Initializing port %d on lcore %u... ", portid, 751 rx_lcore_id); 752 fflush(stdout); 753 754 n_tx_queue = nb_lcores; 755 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 756 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 757 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 758 &port_conf); 759 if (ret < 0) 760 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 761 ret, portid); 762 763 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 764 print_ethaddr(" Address:", &ports_eth_addr[portid]); 765 printf(", "); 766 767 /* init one RX queue */ 768 queueid = 0; 769 printf("rxq=%hu ", queueid); 770 fflush(stdout); 771 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 772 SOCKET0, &rx_conf, 773 packet_pool); 774 if (ret < 0) 775 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 776 ret, portid); 777 778 /* init one TX queue per couple (lcore,port) */ 779 queueid = 0; 780 781 RTE_LCORE_FOREACH(lcore_id) { 782 if (rte_lcore_is_enabled(lcore_id) == 0) 783 continue; 784 printf("txq=%u,%hu ", lcore_id, queueid); 785 fflush(stdout); 786 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 787 SOCKET0, &tx_conf); 788 if (ret < 0) 789 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 790 "port=%d\n", ret, portid); 791 792 qconf = &lcore_queue_conf[lcore_id]; 793 qconf->tx_queue_id[portid] = queueid; 794 queueid++; 795 } 796 797 /* Start device */ 798 ret = rte_eth_dev_start(portid); 799 if (ret < 0) 800 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 801 ret, portid); 802 803 printf("done: "); 804 805 /* get link status */ 806 rte_eth_link_get(portid, &link); 807 if (link.link_status) { 808 printf(" Link Up - speed %u Mbps - %s\n", 809 (uint32_t) link.link_speed, 810 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 811 ("full-duplex") : ("half-duplex\n")); 812 rte_eth_promiscuous_enable(portid); 813 rte_eth_allmulticast_enable(portid); 814 } else { 815 printf(" Link Down\n"); 816 } 817 } 818 819 820 /* initialize the multicast hash */ 821 int retval = init_mcast_hash(); 822 if (retval != 0) 823 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 824 825 /* launch per-lcore init on every lcore */ 826 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 827 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 828 if (rte_eal_wait_lcore(lcore_id) < 0) 829 return -1; 830 } 831 832 return 0; 833 } 834