1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_eal.h>
22 #include <rte_launch.h>
23 #include <rte_cycles.h>
24 #include <rte_prefetch.h>
25 #include <rte_lcore.h>
26 #include <rte_per_lcore.h>
27 #include <rte_branch_prediction.h>
28 #include <rte_interrupts.h>
29 #include <rte_random.h>
30 #include <rte_debug.h>
31 #include <rte_ether.h>
32 #include <rte_ethdev.h>
33 #include <rte_mempool.h>
34 #include <rte_mbuf.h>
35 #include <rte_malloc.h>
36 #include <rte_fbk_hash.h>
37 #include <rte_ip.h>
38
39 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
40
41 #define MAX_PORTS 16
42
43 #define MCAST_CLONE_PORTS 2
44 #define MCAST_CLONE_SEGS 2
45
46 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
47 #define NB_PKT_MBUF 8192
48
49 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM)
50 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS)
51
52 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
53
54 /* allow max jumbo frame 9.5 KB */
55 #define JUMBO_FRAME_MAX_SIZE 0x2600
56
57 #define MAX_PKT_BURST 32
58 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
59
60 /* Configure how many packets ahead to prefetch, when reading packets */
61 #define PREFETCH_OFFSET 3
62
63 /*
64 * Construct Ethernet multicast address from IPv4 multicast address.
65 * Citing RFC 1112, section 6.4:
66 * "An IP host group address is mapped to an Ethernet multicast address
67 * by placing the low-order 23-bits of the IP address into the low-order
68 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
69 */
70
71 /* Construct Ethernet multicast address from IPv4 multicast Address. 8< */
72 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \
73 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
74 /* >8 End of Construction of multicast address from IPv4 multicast address. */
75
76 /*
77 * Configurable number of RX/TX ring descriptors
78 */
79 #define RX_DESC_DEFAULT 1024
80 #define TX_DESC_DEFAULT 1024
81 static uint16_t nb_rxd = RX_DESC_DEFAULT;
82 static uint16_t nb_txd = TX_DESC_DEFAULT;
83
84 /* ethernet addresses of ports */
85 static struct rte_ether_addr ports_eth_addr[MAX_PORTS];
86
87 /* mask of enabled ports */
88 static uint32_t enabled_port_mask = 0;
89
90 static uint16_t nb_ports;
91
92 static int rx_queue_per_lcore = 1;
93
94 struct mbuf_table {
95 uint16_t len;
96 struct rte_mbuf *m_table[MAX_PKT_BURST];
97 };
98
99 #define MAX_RX_QUEUE_PER_LCORE 16
100 #define MAX_TX_QUEUE_PER_PORT 16
101 struct __rte_cache_aligned lcore_queue_conf {
102 uint64_t tx_tsc;
103 uint16_t n_rx_queue;
104 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
105 uint16_t tx_queue_id[MAX_PORTS];
106 struct mbuf_table tx_mbufs[MAX_PORTS];
107 };
108 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
109
110 static struct rte_eth_conf port_conf = {
111 .rxmode = {
112 .mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN -
113 RTE_ETHER_CRC_LEN,
114 },
115 .txmode = {
116 .mq_mode = RTE_ETH_MQ_TX_NONE,
117 .offloads = RTE_ETH_TX_OFFLOAD_MULTI_SEGS,
118 },
119 };
120
121 static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
122
123
124 /* Multicast */
125 static struct rte_fbk_hash_params mcast_hash_params = {
126 .name = "MCAST_HASH",
127 .entries = 1024,
128 .entries_per_bucket = 4,
129 .socket_id = 0,
130 .hash_func = NULL,
131 .init_val = 0,
132 };
133
134 struct rte_fbk_hash_table *mcast_hash = NULL;
135
136 struct mcast_group_params {
137 uint32_t ip;
138 uint16_t port_mask;
139 };
140
141 static struct mcast_group_params mcast_group_table[] = {
142 {RTE_IPV4(224,0,0,101), 0x1},
143 {RTE_IPV4(224,0,0,102), 0x2},
144 {RTE_IPV4(224,0,0,103), 0x3},
145 {RTE_IPV4(224,0,0,104), 0x4},
146 {RTE_IPV4(224,0,0,105), 0x5},
147 {RTE_IPV4(224,0,0,106), 0x6},
148 {RTE_IPV4(224,0,0,107), 0x7},
149 {RTE_IPV4(224,0,0,108), 0x8},
150 {RTE_IPV4(224,0,0,109), 0x9},
151 {RTE_IPV4(224,0,0,110), 0xA},
152 {RTE_IPV4(224,0,0,111), 0xB},
153 {RTE_IPV4(224,0,0,112), 0xC},
154 {RTE_IPV4(224,0,0,113), 0xD},
155 {RTE_IPV4(224,0,0,114), 0xE},
156 {RTE_IPV4(224,0,0,115), 0xF},
157 };
158
159 /* Send burst of packets on an output interface */
160 static void
send_burst(struct lcore_queue_conf * qconf,uint16_t port)161 send_burst(struct lcore_queue_conf *qconf, uint16_t port)
162 {
163 struct rte_mbuf **m_table;
164 uint16_t n, queueid;
165 int ret;
166
167 queueid = qconf->tx_queue_id[port];
168 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
169 n = qconf->tx_mbufs[port].len;
170
171 ret = rte_eth_tx_burst(port, queueid, m_table, n);
172 while (unlikely (ret < n)) {
173 rte_pktmbuf_free(m_table[ret]);
174 ret++;
175 }
176
177 qconf->tx_mbufs[port].len = 0;
178 }
179
180 /* Get number of bits set. 8< */
181 static inline uint32_t
bitcnt(uint32_t v)182 bitcnt(uint32_t v)
183 {
184 uint32_t n;
185
186 for (n = 0; v != 0; v &= v - 1, n++)
187 ;
188
189 return n;
190 }
191 /* >8 End of getting number of bits set. */
192
193 /**
194 * Create the output multicast packet based on the given input packet.
195 * There are two approaches for creating outgoing packet, though both
196 * are based on data zero-copy idea, they differ in few details:
197 * First one creates a clone of the input packet, e.g - walk though all
198 * segments of the input packet, and for each of them create a new packet
199 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
200 * for more details). Then new mbuf is allocated for the packet header
201 * and is prepended to the 'clone' mbuf.
202 * Second approach doesn't make a clone, it just increment refcnt for all
203 * input packet segments. Then it allocates new mbuf for the packet header
204 * and prepends it to the input packet.
205 * Basically first approach reuses only input packet's data, but creates
206 * it's own copy of packet's metadata. Second approach reuses both input's
207 * packet data and metadata.
208 * The advantage of first approach - is that each outgoing packet has it's
209 * own copy of metadata, so we can safely modify data pointer of the
210 * input packet. That allows us to skip creation if the output packet for
211 * the last destination port, but instead modify input packet's header inplace,
212 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
213 * The advantage of second approach - less work for each outgoing packet,
214 * e.g: we skip "clone" operation completely. Though it comes with a price -
215 * input packet's metadata has to be intact. So for N destination ports we
216 * need to invoke mcast_out_pkt N times.
217 * So for small number of outgoing ports (and segments in the input packet)
218 * first approach will be faster.
219 * As number of outgoing ports (and/or input segments) will grow,
220 * second way will become more preferable.
221 *
222 * @param pkt
223 * Input packet mbuf.
224 * @param use_clone
225 * Control which of the two approaches described above should be used:
226 * - 0 - use second approach:
227 * Don't "clone" input packet.
228 * Prepend new header directly to the input packet
229 * - 1 - use first approach:
230 * Make a "clone" of input packet first.
231 * Prepend new header to the clone of the input packet
232 * @return
233 * - The pointer to the new outgoing packet.
234 * - NULL if operation failed.
235 */
236
237 /* mcast_out_pkt 8< */
238 static inline struct rte_mbuf *
mcast_out_pkt(struct rte_mbuf * pkt,int use_clone)239 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
240 {
241 struct rte_mbuf *hdr;
242
243 /* Create new mbuf for the header. */
244 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
245 return NULL;
246
247 /* If requested, then make a new clone packet. */
248 if (use_clone != 0 &&
249 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
250 rte_pktmbuf_free(hdr);
251 return NULL;
252 }
253
254 /* prepend new header */
255 hdr->next = pkt;
256
257 /* update header's fields */
258 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
259 hdr->nb_segs = pkt->nb_segs + 1;
260
261 __rte_mbuf_sanity_check(hdr, 1);
262 return hdr;
263 }
264 /* >8 End of mcast_out_kt. */
265
266 /*
267 * Write new Ethernet header to the outgoing packet,
268 * and put it into the outgoing queue for the given port.
269 */
270
271 /* Write new Ethernet header to outgoing packets. 8< */
272 static inline void
mcast_send_pkt(struct rte_mbuf * pkt,struct rte_ether_addr * dest_addr,struct lcore_queue_conf * qconf,uint16_t port)273 mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr,
274 struct lcore_queue_conf *qconf, uint16_t port)
275 {
276 struct rte_ether_hdr *ethdr;
277 uint16_t len;
278
279 /* Construct Ethernet header. */
280 ethdr = (struct rte_ether_hdr *)
281 rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
282 RTE_ASSERT(ethdr != NULL);
283
284 rte_ether_addr_copy(dest_addr, ðdr->dst_addr);
285 rte_ether_addr_copy(&ports_eth_addr[port], ðdr->src_addr);
286 ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);
287
288 /* Put new packet into the output queue */
289 len = qconf->tx_mbufs[port].len;
290 qconf->tx_mbufs[port].m_table[len] = pkt;
291 qconf->tx_mbufs[port].len = ++len;
292
293 /* Transmit packets */
294 if (unlikely(MAX_PKT_BURST == len))
295 send_burst(qconf, port);
296 }
297 /* >8 End of writing new Ethernet headers. */
298
299 /* Multicast forward of the input packet */
300 static inline void
mcast_forward(struct rte_mbuf * m,struct lcore_queue_conf * qconf)301 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
302 {
303 struct rte_mbuf *mc;
304 struct rte_ipv4_hdr *iphdr;
305 uint32_t dest_addr, port_mask, port_num, use_clone;
306 int32_t hash;
307 uint16_t port;
308 union {
309 uint64_t as_int;
310 struct rte_ether_addr as_addr;
311 } dst_eth_addr;
312
313 /* Remove the Ethernet header from the input packet. 8< */
314 iphdr = (struct rte_ipv4_hdr *)
315 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
316 RTE_ASSERT(iphdr != NULL);
317
318 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
319 /* >8 End of removing the Ethernet header from the input packet. */
320
321 /*
322 * Check that it is a valid multicast address and
323 * we have some active ports assigned to it.
324 */
325
326 /* Check valid multicast address. 8< */
327 if (!RTE_IS_IPV4_MCAST(dest_addr) ||
328 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
329 (port_mask = hash & enabled_port_mask) == 0) {
330 rte_pktmbuf_free(m);
331 return;
332 }
333 /* >8 End of valid multicast address check. */
334
335 /* Calculate number of destination ports. */
336 port_num = bitcnt(port_mask);
337
338 /* Should we use rte_pktmbuf_clone() or not. 8< */
339 use_clone = (port_num <= MCAST_CLONE_PORTS &&
340 m->nb_segs <= MCAST_CLONE_SEGS);
341 /* >8 End of using rte_pktmbuf_clone(). */
342
343 /* Mark all packet's segments as referenced port_num times */
344 if (use_clone == 0)
345 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
346
347 /* Construct destination ethernet address. 8< */
348 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
349 /* >8 End of constructing destination ethernet address. */
350
351 /* Packets dispatched to destination ports. 8< */
352 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
353
354 /* Prepare output packet and send it out. */
355 if ((port_mask & 1) != 0) {
356 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
357 mcast_send_pkt(mc, &dst_eth_addr.as_addr,
358 qconf, port);
359 else if (use_clone == 0)
360 rte_pktmbuf_free(m);
361 }
362 }
363 /* >8 End of packets dispatched to destination ports. */
364
365 /*
366 * If we making clone packets, then, for the last destination port,
367 * we can overwrite input packet's metadata.
368 */
369 if (use_clone != 0)
370 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
371 else
372 rte_pktmbuf_free(m);
373 }
374
375 /* Send burst of outgoing packet, if timeout expires. */
376 static inline void
send_timeout_burst(struct lcore_queue_conf * qconf)377 send_timeout_burst(struct lcore_queue_conf *qconf)
378 {
379 uint64_t cur_tsc;
380 uint16_t portid;
381 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
382
383 cur_tsc = rte_rdtsc();
384 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
385 return;
386
387 for (portid = 0; portid < MAX_PORTS; portid++) {
388 if (qconf->tx_mbufs[portid].len != 0)
389 send_burst(qconf, portid);
390 }
391 qconf->tx_tsc = cur_tsc;
392 }
393
394 /* main processing loop */
395 static int
main_loop(__rte_unused void * dummy)396 main_loop(__rte_unused void *dummy)
397 {
398 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
399 unsigned lcore_id;
400 int i, j, nb_rx;
401 uint16_t portid;
402 struct lcore_queue_conf *qconf;
403
404 lcore_id = rte_lcore_id();
405 qconf = &lcore_queue_conf[lcore_id];
406
407
408 if (qconf->n_rx_queue == 0) {
409 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
410 lcore_id);
411 return 0;
412 }
413
414 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
415 lcore_id);
416
417 for (i = 0; i < qconf->n_rx_queue; i++) {
418
419 portid = qconf->rx_queue_list[i];
420 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
421 lcore_id, portid);
422 }
423
424 while (1) {
425
426 /*
427 * Read packet from RX queues
428 */
429 for (i = 0; i < qconf->n_rx_queue; i++) {
430
431 portid = qconf->rx_queue_list[i];
432 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
433 MAX_PKT_BURST);
434
435 /* Prefetch first packets */
436 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
437 rte_prefetch0(rte_pktmbuf_mtod(
438 pkts_burst[j], void *));
439 }
440
441 /* Prefetch and forward already prefetched packets */
442 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
443 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
444 j + PREFETCH_OFFSET], void *));
445 mcast_forward(pkts_burst[j], qconf);
446 }
447
448 /* Forward remaining prefetched packets */
449 for (; j < nb_rx; j++) {
450 mcast_forward(pkts_burst[j], qconf);
451 }
452 }
453
454 /* Send out packets from TX queues */
455 send_timeout_burst(qconf);
456 }
457 }
458
459 /* display usage */
460 static void
print_usage(const char * prgname)461 print_usage(const char *prgname)
462 {
463 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
464 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
465 " -q NQ: number of queue (=ports) per lcore (default is 1)\n",
466 prgname);
467 }
468
469 static uint32_t
parse_portmask(const char * portmask)470 parse_portmask(const char *portmask)
471 {
472 char *end = NULL;
473 unsigned long pm;
474
475 /* parse hexadecimal string */
476 pm = strtoul(portmask, &end, 16);
477 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
478 return 0;
479
480 return (uint32_t)pm;
481 }
482
483 static int
parse_nqueue(const char * q_arg)484 parse_nqueue(const char *q_arg)
485 {
486 char *end = NULL;
487 unsigned long n;
488
489 /* parse numerical string */
490 errno = 0;
491 n = strtoul(q_arg, &end, 0);
492 if (errno != 0 || end == NULL || *end != '\0' ||
493 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
494 return -1;
495
496 return n;
497 }
498
499 /* Parse the argument given in the command line of the application */
500 static int
parse_args(int argc,char ** argv)501 parse_args(int argc, char **argv)
502 {
503 int opt, ret;
504 char **argvopt;
505 int option_index;
506 char *prgname = argv[0];
507 static struct option lgopts[] = {
508 {NULL, 0, 0, 0}
509 };
510
511 argvopt = argv;
512
513 while ((opt = getopt_long(argc, argvopt, "p:q:",
514 lgopts, &option_index)) != EOF) {
515
516 switch (opt) {
517 /* portmask */
518 case 'p':
519 enabled_port_mask = parse_portmask(optarg);
520 if (enabled_port_mask == 0) {
521 printf("invalid portmask\n");
522 print_usage(prgname);
523 return -1;
524 }
525 break;
526
527 /* nqueue */
528 case 'q':
529 rx_queue_per_lcore = parse_nqueue(optarg);
530 if (rx_queue_per_lcore < 0) {
531 printf("invalid queue number\n");
532 print_usage(prgname);
533 return -1;
534 }
535 break;
536
537 default:
538 print_usage(prgname);
539 return -1;
540 }
541 }
542
543 if (optind >= 0)
544 argv[optind-1] = prgname;
545
546 ret = optind-1;
547 optind = 1; /* reset getopt lib */
548 return ret;
549 }
550
551 static void
print_ethaddr(const char * name,struct rte_ether_addr * eth_addr)552 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
553 {
554 char buf[RTE_ETHER_ADDR_FMT_SIZE];
555 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
556 printf("%s%s", name, buf);
557 }
558
559 /* Hash object is created and loaded. 8< */
560 static int
init_mcast_hash(void)561 init_mcast_hash(void)
562 {
563 uint32_t i;
564
565 mcast_hash_params.socket_id = rte_socket_id();
566 mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
567 if (mcast_hash == NULL){
568 return -1;
569 }
570
571 for (i = 0; i < RTE_DIM(mcast_group_table); i++) {
572 if (rte_fbk_hash_add_key(mcast_hash,
573 mcast_group_table[i].ip,
574 mcast_group_table[i].port_mask) < 0) {
575 return -1;
576 }
577 }
578
579 return 0;
580 }
581 /* >8 End of hash object is created and loaded. */
582
583 /* Check the link status of all ports in up to 9s, and print them finally */
584 static void
check_all_ports_link_status(uint32_t port_mask)585 check_all_ports_link_status(uint32_t port_mask)
586 {
587 #define CHECK_INTERVAL 100 /* 100ms */
588 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
589 uint16_t portid;
590 uint8_t count, all_ports_up, print_flag = 0;
591 struct rte_eth_link link;
592 int ret;
593 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
594
595 printf("\nChecking link status");
596 fflush(stdout);
597 for (count = 0; count <= MAX_CHECK_TIME; count++) {
598 all_ports_up = 1;
599 RTE_ETH_FOREACH_DEV(portid) {
600 if ((port_mask & (1 << portid)) == 0)
601 continue;
602 memset(&link, 0, sizeof(link));
603 ret = rte_eth_link_get_nowait(portid, &link);
604 if (ret < 0) {
605 all_ports_up = 0;
606 if (print_flag == 1)
607 printf("Port %u link get failed: %s\n",
608 portid, rte_strerror(-ret));
609 continue;
610 }
611 /* print link status if flag set */
612 if (print_flag == 1) {
613 rte_eth_link_to_str(link_status_text,
614 sizeof(link_status_text),
615 &link);
616 printf("Port %d %s\n", portid,
617 link_status_text);
618 continue;
619 }
620 /* clear all_ports_up flag if any link down */
621 if (link.link_status == RTE_ETH_LINK_DOWN) {
622 all_ports_up = 0;
623 break;
624 }
625 }
626 /* after finally printing all link status, get out */
627 if (print_flag == 1)
628 break;
629
630 if (all_ports_up == 0) {
631 printf(".");
632 fflush(stdout);
633 rte_delay_ms(CHECK_INTERVAL);
634 }
635
636 /* set the print_flag if all ports up or timeout */
637 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
638 print_flag = 1;
639 printf("done\n");
640 }
641 }
642 }
643
644 int
main(int argc,char ** argv)645 main(int argc, char **argv)
646 {
647 struct lcore_queue_conf *qconf;
648 struct rte_eth_dev_info dev_info;
649 struct rte_eth_txconf *txconf;
650 int ret;
651 uint16_t queueid;
652 unsigned lcore_id = 0, rx_lcore_id = 0;
653 uint32_t n_tx_queue, nb_lcores;
654 uint16_t portid;
655
656 /* init EAL */
657 ret = rte_eal_init(argc, argv);
658 if (ret < 0)
659 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
660 argc -= ret;
661 argv += ret;
662
663 /* parse application arguments (after the EAL ones) */
664 ret = parse_args(argc, argv);
665 if (ret < 0)
666 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
667
668 /* Create the mbuf pools. 8< */
669 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
670 0, PKT_MBUF_DATA_SIZE, rte_socket_id());
671
672 if (packet_pool == NULL)
673 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
674
675 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
676 0, HDR_MBUF_DATA_SIZE, rte_socket_id());
677
678 if (header_pool == NULL)
679 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
680
681 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
682 0, 0, rte_socket_id());
683
684 if (clone_pool == NULL)
685 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
686 /* >8 End of create mbuf pools. */
687
688 nb_ports = rte_eth_dev_count_avail();
689 if (nb_ports == 0)
690 rte_exit(EXIT_FAILURE, "No physical ports!\n");
691 if (nb_ports > MAX_PORTS)
692 nb_ports = MAX_PORTS;
693
694 nb_lcores = rte_lcore_count();
695
696 /* initialize all ports */
697 RTE_ETH_FOREACH_DEV(portid) {
698 struct rte_eth_rxconf rxq_conf;
699 struct rte_eth_conf local_port_conf = port_conf;
700
701 /* skip ports that are not enabled */
702 if ((enabled_port_mask & (1 << portid)) == 0) {
703 printf("Skipping disabled port %d\n", portid);
704 continue;
705 }
706
707 qconf = &lcore_queue_conf[rx_lcore_id];
708
709 /* limit the frame size to the maximum supported by NIC */
710 ret = rte_eth_dev_info_get(portid, &dev_info);
711 if (ret != 0)
712 rte_exit(EXIT_FAILURE,
713 "Error during getting device (port %u) info: %s\n",
714 portid, strerror(-ret));
715
716 local_port_conf.rxmode.mtu = RTE_MIN(
717 dev_info.max_mtu,
718 local_port_conf.rxmode.mtu);
719
720 /* get the lcore_id for this port */
721 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
722 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
723
724 rx_lcore_id ++;
725 qconf = &lcore_queue_conf[rx_lcore_id];
726
727 if (rx_lcore_id >= RTE_MAX_LCORE)
728 rte_exit(EXIT_FAILURE, "Not enough cores\n");
729 }
730 qconf->rx_queue_list[qconf->n_rx_queue] = portid;
731 qconf->n_rx_queue++;
732
733 /* init port */
734 printf("Initializing port %d on lcore %u... ", portid,
735 rx_lcore_id);
736 fflush(stdout);
737
738 n_tx_queue = nb_lcores;
739 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
740 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
741
742 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
743 &local_port_conf);
744 if (ret < 0)
745 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
746 ret, portid);
747
748 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
749 &nb_txd);
750 if (ret < 0)
751 rte_exit(EXIT_FAILURE,
752 "Cannot adjust number of descriptors: err=%d, port=%d\n",
753 ret, portid);
754
755 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
756 if (ret < 0)
757 rte_exit(EXIT_FAILURE,
758 "Cannot get MAC address: err=%d, port=%d\n",
759 ret, portid);
760
761 print_ethaddr(" Address:", &ports_eth_addr[portid]);
762 printf(", ");
763
764 /* init one RX queue */
765 queueid = 0;
766 printf("rxq=%hu ", queueid);
767 fflush(stdout);
768 rxq_conf = dev_info.default_rxconf;
769 rxq_conf.offloads = local_port_conf.rxmode.offloads;
770 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
771 rte_eth_dev_socket_id(portid),
772 &rxq_conf,
773 packet_pool);
774 if (ret < 0)
775 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
776 ret, portid);
777
778 /* init one TX queue per couple (lcore,port) */
779 queueid = 0;
780
781 RTE_LCORE_FOREACH(lcore_id) {
782 if (rte_lcore_is_enabled(lcore_id) == 0)
783 continue;
784 printf("txq=%u,%hu ", lcore_id, queueid);
785 fflush(stdout);
786
787 txconf = &dev_info.default_txconf;
788 txconf->offloads = local_port_conf.txmode.offloads;
789 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
790 rte_lcore_to_socket_id(lcore_id), txconf);
791 if (ret < 0)
792 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
793 "port=%d\n", ret, portid);
794
795 qconf = &lcore_queue_conf[lcore_id];
796 qconf->tx_queue_id[portid] = queueid;
797 queueid++;
798 }
799 ret = rte_eth_allmulticast_enable(portid);
800 if (ret < 0)
801 rte_exit(EXIT_FAILURE,
802 "rte_eth_allmulticast_enable: err=%d, port=%d\n",
803 ret, portid);
804 /* Start device */
805 ret = rte_eth_dev_start(portid);
806 if (ret < 0)
807 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
808 ret, portid);
809
810 printf("done:\n");
811 }
812
813 check_all_ports_link_status(enabled_port_mask);
814
815 /* initialize the multicast hash */
816 int retval = init_mcast_hash();
817 if (retval != 0)
818 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
819
820 /* launch per-lcore init on every lcore */
821 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
822 RTE_LCORE_FOREACH_WORKER(lcore_id) {
823 if (rte_eal_wait_lcore(lcore_id) < 0)
824 return -1;
825 }
826
827 /* clean up the EAL */
828 rte_eal_cleanup();
829
830 return 0;
831 }
832