1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_memory.h> 20 #include <rte_memcpy.h> 21 #include <rte_eal.h> 22 #include <rte_launch.h> 23 #include <rte_cycles.h> 24 #include <rte_prefetch.h> 25 #include <rte_lcore.h> 26 #include <rte_per_lcore.h> 27 #include <rte_branch_prediction.h> 28 #include <rte_interrupts.h> 29 #include <rte_random.h> 30 #include <rte_debug.h> 31 #include <rte_ether.h> 32 #include <rte_ethdev.h> 33 #include <rte_mempool.h> 34 #include <rte_mbuf.h> 35 #include <rte_malloc.h> 36 #include <rte_fbk_hash.h> 37 #include <rte_ip.h> 38 39 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 40 41 #define MAX_PORTS 16 42 43 #define MCAST_CLONE_PORTS 2 44 #define MCAST_CLONE_SEGS 2 45 46 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 47 #define NB_PKT_MBUF 8192 48 49 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 50 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 51 52 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 53 54 /* allow max jumbo frame 9.5 KB */ 55 #define JUMBO_FRAME_MAX_SIZE 0x2600 56 57 #define MAX_PKT_BURST 32 58 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 59 60 /* Configure how many packets ahead to prefetch, when reading packets */ 61 #define PREFETCH_OFFSET 3 62 63 /* 64 * Construct Ethernet multicast address from IPv4 multicast address. 65 * Citing RFC 1112, section 6.4: 66 * "An IP host group address is mapped to an Ethernet multicast address 67 * by placing the low-order 23-bits of the IP address into the low-order 68 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 69 */ 70 71 /* Construct Ethernet multicast address from IPv4 multicast Address. 8< */ 72 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 73 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 74 /* >8 End of Construction of multicast address from IPv4 multicast address. */ 75 76 /* 77 * Configurable number of RX/TX ring descriptors 78 */ 79 #define RTE_TEST_RX_DESC_DEFAULT 1024 80 #define RTE_TEST_TX_DESC_DEFAULT 1024 81 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 82 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 83 84 /* ethernet addresses of ports */ 85 static struct rte_ether_addr ports_eth_addr[MAX_PORTS]; 86 87 /* mask of enabled ports */ 88 static uint32_t enabled_port_mask = 0; 89 90 static uint16_t nb_ports; 91 92 static int rx_queue_per_lcore = 1; 93 94 struct mbuf_table { 95 uint16_t len; 96 struct rte_mbuf *m_table[MAX_PKT_BURST]; 97 }; 98 99 #define MAX_RX_QUEUE_PER_LCORE 16 100 #define MAX_TX_QUEUE_PER_PORT 16 101 struct lcore_queue_conf { 102 uint64_t tx_tsc; 103 uint16_t n_rx_queue; 104 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 105 uint16_t tx_queue_id[MAX_PORTS]; 106 struct mbuf_table tx_mbufs[MAX_PORTS]; 107 } __rte_cache_aligned; 108 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 109 110 static struct rte_eth_conf port_conf = { 111 .rxmode = { 112 .mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN - 113 RTE_ETHER_CRC_LEN, 114 .split_hdr_size = 0, 115 }, 116 .txmode = { 117 .mq_mode = RTE_ETH_MQ_TX_NONE, 118 .offloads = RTE_ETH_TX_OFFLOAD_MULTI_SEGS, 119 }, 120 }; 121 122 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 123 124 125 /* Multicast */ 126 static struct rte_fbk_hash_params mcast_hash_params = { 127 .name = "MCAST_HASH", 128 .entries = 1024, 129 .entries_per_bucket = 4, 130 .socket_id = 0, 131 .hash_func = NULL, 132 .init_val = 0, 133 }; 134 135 struct rte_fbk_hash_table *mcast_hash = NULL; 136 137 struct mcast_group_params { 138 uint32_t ip; 139 uint16_t port_mask; 140 }; 141 142 static struct mcast_group_params mcast_group_table[] = { 143 {RTE_IPV4(224,0,0,101), 0x1}, 144 {RTE_IPV4(224,0,0,102), 0x2}, 145 {RTE_IPV4(224,0,0,103), 0x3}, 146 {RTE_IPV4(224,0,0,104), 0x4}, 147 {RTE_IPV4(224,0,0,105), 0x5}, 148 {RTE_IPV4(224,0,0,106), 0x6}, 149 {RTE_IPV4(224,0,0,107), 0x7}, 150 {RTE_IPV4(224,0,0,108), 0x8}, 151 {RTE_IPV4(224,0,0,109), 0x9}, 152 {RTE_IPV4(224,0,0,110), 0xA}, 153 {RTE_IPV4(224,0,0,111), 0xB}, 154 {RTE_IPV4(224,0,0,112), 0xC}, 155 {RTE_IPV4(224,0,0,113), 0xD}, 156 {RTE_IPV4(224,0,0,114), 0xE}, 157 {RTE_IPV4(224,0,0,115), 0xF}, 158 }; 159 160 /* Send burst of packets on an output interface */ 161 static void 162 send_burst(struct lcore_queue_conf *qconf, uint16_t port) 163 { 164 struct rte_mbuf **m_table; 165 uint16_t n, queueid; 166 int ret; 167 168 queueid = qconf->tx_queue_id[port]; 169 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 170 n = qconf->tx_mbufs[port].len; 171 172 ret = rte_eth_tx_burst(port, queueid, m_table, n); 173 while (unlikely (ret < n)) { 174 rte_pktmbuf_free(m_table[ret]); 175 ret++; 176 } 177 178 qconf->tx_mbufs[port].len = 0; 179 } 180 181 /* Get number of bits set. 8< */ 182 static inline uint32_t 183 bitcnt(uint32_t v) 184 { 185 uint32_t n; 186 187 for (n = 0; v != 0; v &= v - 1, n++) 188 ; 189 190 return n; 191 } 192 /* >8 End of getting number of bits set. */ 193 194 /** 195 * Create the output multicast packet based on the given input packet. 196 * There are two approaches for creating outgoing packet, though both 197 * are based on data zero-copy idea, they differ in few details: 198 * First one creates a clone of the input packet, e.g - walk though all 199 * segments of the input packet, and for each of them create a new packet 200 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 201 * for more details). Then new mbuf is allocated for the packet header 202 * and is prepended to the 'clone' mbuf. 203 * Second approach doesn't make a clone, it just increment refcnt for all 204 * input packet segments. Then it allocates new mbuf for the packet header 205 * and prepends it to the input packet. 206 * Basically first approach reuses only input packet's data, but creates 207 * it's own copy of packet's metadata. Second approach reuses both input's 208 * packet data and metadata. 209 * The advantage of first approach - is that each outgoing packet has it's 210 * own copy of metadata, so we can safely modify data pointer of the 211 * input packet. That allows us to skip creation if the output packet for 212 * the last destination port, but instead modify input packet's header inplace, 213 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 214 * The advantage of second approach - less work for each outgoing packet, 215 * e.g: we skip "clone" operation completely. Though it comes with a price - 216 * input packet's metadata has to be intact. So for N destination ports we 217 * need to invoke mcast_out_pkt N times. 218 * So for small number of outgoing ports (and segments in the input packet) 219 * first approach will be faster. 220 * As number of outgoing ports (and/or input segments) will grow, 221 * second way will become more preferable. 222 * 223 * @param pkt 224 * Input packet mbuf. 225 * @param use_clone 226 * Control which of the two approaches described above should be used: 227 * - 0 - use second approach: 228 * Don't "clone" input packet. 229 * Prepend new header directly to the input packet 230 * - 1 - use first approach: 231 * Make a "clone" of input packet first. 232 * Prepend new header to the clone of the input packet 233 * @return 234 * - The pointer to the new outgoing packet. 235 * - NULL if operation failed. 236 */ 237 238 /* mcast_out_pkt 8< */ 239 static inline struct rte_mbuf * 240 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 241 { 242 struct rte_mbuf *hdr; 243 244 /* Create new mbuf for the header. */ 245 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 246 return NULL; 247 248 /* If requested, then make a new clone packet. */ 249 if (use_clone != 0 && 250 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 251 rte_pktmbuf_free(hdr); 252 return NULL; 253 } 254 255 /* prepend new header */ 256 hdr->next = pkt; 257 258 /* update header's fields */ 259 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 260 hdr->nb_segs = pkt->nb_segs + 1; 261 262 __rte_mbuf_sanity_check(hdr, 1); 263 return hdr; 264 } 265 /* >8 End of mcast_out_kt. */ 266 267 /* 268 * Write new Ethernet header to the outgoing packet, 269 * and put it into the outgoing queue for the given port. 270 */ 271 272 /* Write new Ethernet header to outgoing packets. 8< */ 273 static inline void 274 mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr, 275 struct lcore_queue_conf *qconf, uint16_t port) 276 { 277 struct rte_ether_hdr *ethdr; 278 uint16_t len; 279 280 /* Construct Ethernet header. */ 281 ethdr = (struct rte_ether_hdr *) 282 rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 283 RTE_ASSERT(ethdr != NULL); 284 285 rte_ether_addr_copy(dest_addr, ðdr->dst_addr); 286 rte_ether_addr_copy(&ports_eth_addr[port], ðdr->src_addr); 287 ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4); 288 289 /* Put new packet into the output queue */ 290 len = qconf->tx_mbufs[port].len; 291 qconf->tx_mbufs[port].m_table[len] = pkt; 292 qconf->tx_mbufs[port].len = ++len; 293 294 /* Transmit packets */ 295 if (unlikely(MAX_PKT_BURST == len)) 296 send_burst(qconf, port); 297 } 298 /* >8 End of writing new Ethernet headers. */ 299 300 /* Multicast forward of the input packet */ 301 static inline void 302 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 303 { 304 struct rte_mbuf *mc; 305 struct rte_ipv4_hdr *iphdr; 306 uint32_t dest_addr, port_mask, port_num, use_clone; 307 int32_t hash; 308 uint16_t port; 309 union { 310 uint64_t as_int; 311 struct rte_ether_addr as_addr; 312 } dst_eth_addr; 313 314 /* Remove the Ethernet header from the input packet. 8< */ 315 iphdr = (struct rte_ipv4_hdr *) 316 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr)); 317 RTE_ASSERT(iphdr != NULL); 318 319 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 320 /* >8 End of removing the Ethernet header from the input packet. */ 321 322 /* 323 * Check that it is a valid multicast address and 324 * we have some active ports assigned to it. 325 */ 326 327 /* Check valid multicast address. 8< */ 328 if (!RTE_IS_IPV4_MCAST(dest_addr) || 329 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 330 (port_mask = hash & enabled_port_mask) == 0) { 331 rte_pktmbuf_free(m); 332 return; 333 } 334 /* >8 End of valid multicast address check. */ 335 336 /* Calculate number of destination ports. */ 337 port_num = bitcnt(port_mask); 338 339 /* Should we use rte_pktmbuf_clone() or not. 8< */ 340 use_clone = (port_num <= MCAST_CLONE_PORTS && 341 m->nb_segs <= MCAST_CLONE_SEGS); 342 /* >8 End of using rte_pktmbuf_clone(). */ 343 344 /* Mark all packet's segments as referenced port_num times */ 345 if (use_clone == 0) 346 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 347 348 /* Construct destination ethernet address. 8< */ 349 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 350 /* >8 End of constructing destination ethernet address. */ 351 352 /* Packets dispatched to destination ports. 8< */ 353 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 354 355 /* Prepare output packet and send it out. */ 356 if ((port_mask & 1) != 0) { 357 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 358 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 359 qconf, port); 360 else if (use_clone == 0) 361 rte_pktmbuf_free(m); 362 } 363 } 364 /* >8 End of packets dispatched to destination ports. */ 365 366 /* 367 * If we making clone packets, then, for the last destination port, 368 * we can overwrite input packet's metadata. 369 */ 370 if (use_clone != 0) 371 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 372 else 373 rte_pktmbuf_free(m); 374 } 375 376 /* Send burst of outgoing packet, if timeout expires. */ 377 static inline void 378 send_timeout_burst(struct lcore_queue_conf *qconf) 379 { 380 uint64_t cur_tsc; 381 uint16_t portid; 382 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 383 384 cur_tsc = rte_rdtsc(); 385 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 386 return; 387 388 for (portid = 0; portid < MAX_PORTS; portid++) { 389 if (qconf->tx_mbufs[portid].len != 0) 390 send_burst(qconf, portid); 391 } 392 qconf->tx_tsc = cur_tsc; 393 } 394 395 /* main processing loop */ 396 static int 397 main_loop(__rte_unused void *dummy) 398 { 399 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 400 unsigned lcore_id; 401 int i, j, nb_rx; 402 uint16_t portid; 403 struct lcore_queue_conf *qconf; 404 405 lcore_id = rte_lcore_id(); 406 qconf = &lcore_queue_conf[lcore_id]; 407 408 409 if (qconf->n_rx_queue == 0) { 410 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 411 lcore_id); 412 return 0; 413 } 414 415 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 416 lcore_id); 417 418 for (i = 0; i < qconf->n_rx_queue; i++) { 419 420 portid = qconf->rx_queue_list[i]; 421 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 422 lcore_id, portid); 423 } 424 425 while (1) { 426 427 /* 428 * Read packet from RX queues 429 */ 430 for (i = 0; i < qconf->n_rx_queue; i++) { 431 432 portid = qconf->rx_queue_list[i]; 433 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 434 MAX_PKT_BURST); 435 436 /* Prefetch first packets */ 437 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 438 rte_prefetch0(rte_pktmbuf_mtod( 439 pkts_burst[j], void *)); 440 } 441 442 /* Prefetch and forward already prefetched packets */ 443 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 444 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 445 j + PREFETCH_OFFSET], void *)); 446 mcast_forward(pkts_burst[j], qconf); 447 } 448 449 /* Forward remaining prefetched packets */ 450 for (; j < nb_rx; j++) { 451 mcast_forward(pkts_burst[j], qconf); 452 } 453 } 454 455 /* Send out packets from TX queues */ 456 send_timeout_burst(qconf); 457 } 458 } 459 460 /* display usage */ 461 static void 462 print_usage(const char *prgname) 463 { 464 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 465 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 466 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 467 prgname); 468 } 469 470 static uint32_t 471 parse_portmask(const char *portmask) 472 { 473 char *end = NULL; 474 unsigned long pm; 475 476 /* parse hexadecimal string */ 477 pm = strtoul(portmask, &end, 16); 478 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 479 return 0; 480 481 return (uint32_t)pm; 482 } 483 484 static int 485 parse_nqueue(const char *q_arg) 486 { 487 char *end = NULL; 488 unsigned long n; 489 490 /* parse numerical string */ 491 errno = 0; 492 n = strtoul(q_arg, &end, 0); 493 if (errno != 0 || end == NULL || *end != '\0' || 494 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 495 return -1; 496 497 return n; 498 } 499 500 /* Parse the argument given in the command line of the application */ 501 static int 502 parse_args(int argc, char **argv) 503 { 504 int opt, ret; 505 char **argvopt; 506 int option_index; 507 char *prgname = argv[0]; 508 static struct option lgopts[] = { 509 {NULL, 0, 0, 0} 510 }; 511 512 argvopt = argv; 513 514 while ((opt = getopt_long(argc, argvopt, "p:q:", 515 lgopts, &option_index)) != EOF) { 516 517 switch (opt) { 518 /* portmask */ 519 case 'p': 520 enabled_port_mask = parse_portmask(optarg); 521 if (enabled_port_mask == 0) { 522 printf("invalid portmask\n"); 523 print_usage(prgname); 524 return -1; 525 } 526 break; 527 528 /* nqueue */ 529 case 'q': 530 rx_queue_per_lcore = parse_nqueue(optarg); 531 if (rx_queue_per_lcore < 0) { 532 printf("invalid queue number\n"); 533 print_usage(prgname); 534 return -1; 535 } 536 break; 537 538 default: 539 print_usage(prgname); 540 return -1; 541 } 542 } 543 544 if (optind >= 0) 545 argv[optind-1] = prgname; 546 547 ret = optind-1; 548 optind = 1; /* reset getopt lib */ 549 return ret; 550 } 551 552 static void 553 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 554 { 555 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 556 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 557 printf("%s%s", name, buf); 558 } 559 560 /* Hash object is created and loaded. 8< */ 561 static int 562 init_mcast_hash(void) 563 { 564 uint32_t i; 565 566 mcast_hash_params.socket_id = rte_socket_id(); 567 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 568 if (mcast_hash == NULL){ 569 return -1; 570 } 571 572 for (i = 0; i < RTE_DIM(mcast_group_table); i++) { 573 if (rte_fbk_hash_add_key(mcast_hash, 574 mcast_group_table[i].ip, 575 mcast_group_table[i].port_mask) < 0) { 576 return -1; 577 } 578 } 579 580 return 0; 581 } 582 /* >8 End of hash object is created and loaded. */ 583 584 /* Check the link status of all ports in up to 9s, and print them finally */ 585 static void 586 check_all_ports_link_status(uint32_t port_mask) 587 { 588 #define CHECK_INTERVAL 100 /* 100ms */ 589 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 590 uint16_t portid; 591 uint8_t count, all_ports_up, print_flag = 0; 592 struct rte_eth_link link; 593 int ret; 594 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN]; 595 596 printf("\nChecking link status"); 597 fflush(stdout); 598 for (count = 0; count <= MAX_CHECK_TIME; count++) { 599 all_ports_up = 1; 600 RTE_ETH_FOREACH_DEV(portid) { 601 if ((port_mask & (1 << portid)) == 0) 602 continue; 603 memset(&link, 0, sizeof(link)); 604 ret = rte_eth_link_get_nowait(portid, &link); 605 if (ret < 0) { 606 all_ports_up = 0; 607 if (print_flag == 1) 608 printf("Port %u link get failed: %s\n", 609 portid, rte_strerror(-ret)); 610 continue; 611 } 612 /* print link status if flag set */ 613 if (print_flag == 1) { 614 rte_eth_link_to_str(link_status_text, 615 sizeof(link_status_text), 616 &link); 617 printf("Port %d %s\n", portid, 618 link_status_text); 619 continue; 620 } 621 /* clear all_ports_up flag if any link down */ 622 if (link.link_status == RTE_ETH_LINK_DOWN) { 623 all_ports_up = 0; 624 break; 625 } 626 } 627 /* after finally printing all link status, get out */ 628 if (print_flag == 1) 629 break; 630 631 if (all_ports_up == 0) { 632 printf("."); 633 fflush(stdout); 634 rte_delay_ms(CHECK_INTERVAL); 635 } 636 637 /* set the print_flag if all ports up or timeout */ 638 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 639 print_flag = 1; 640 printf("done\n"); 641 } 642 } 643 } 644 645 int 646 main(int argc, char **argv) 647 { 648 struct lcore_queue_conf *qconf; 649 struct rte_eth_dev_info dev_info; 650 struct rte_eth_txconf *txconf; 651 int ret; 652 uint16_t queueid; 653 unsigned lcore_id = 0, rx_lcore_id = 0; 654 uint32_t n_tx_queue, nb_lcores; 655 uint16_t portid; 656 657 /* init EAL */ 658 ret = rte_eal_init(argc, argv); 659 if (ret < 0) 660 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 661 argc -= ret; 662 argv += ret; 663 664 /* parse application arguments (after the EAL ones) */ 665 ret = parse_args(argc, argv); 666 if (ret < 0) 667 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 668 669 /* Create the mbuf pools. 8< */ 670 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 671 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 672 673 if (packet_pool == NULL) 674 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 675 676 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 677 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 678 679 if (header_pool == NULL) 680 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 681 682 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 683 0, 0, rte_socket_id()); 684 685 if (clone_pool == NULL) 686 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 687 /* >8 End of create mbuf pools. */ 688 689 nb_ports = rte_eth_dev_count_avail(); 690 if (nb_ports == 0) 691 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 692 if (nb_ports > MAX_PORTS) 693 nb_ports = MAX_PORTS; 694 695 nb_lcores = rte_lcore_count(); 696 697 /* initialize all ports */ 698 RTE_ETH_FOREACH_DEV(portid) { 699 struct rte_eth_rxconf rxq_conf; 700 struct rte_eth_conf local_port_conf = port_conf; 701 702 /* skip ports that are not enabled */ 703 if ((enabled_port_mask & (1 << portid)) == 0) { 704 printf("Skipping disabled port %d\n", portid); 705 continue; 706 } 707 708 qconf = &lcore_queue_conf[rx_lcore_id]; 709 710 /* limit the frame size to the maximum supported by NIC */ 711 ret = rte_eth_dev_info_get(portid, &dev_info); 712 if (ret != 0) 713 rte_exit(EXIT_FAILURE, 714 "Error during getting device (port %u) info: %s\n", 715 portid, strerror(-ret)); 716 717 local_port_conf.rxmode.mtu = RTE_MIN( 718 dev_info.max_mtu, 719 local_port_conf.rxmode.mtu); 720 721 /* get the lcore_id for this port */ 722 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 723 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 724 725 rx_lcore_id ++; 726 qconf = &lcore_queue_conf[rx_lcore_id]; 727 728 if (rx_lcore_id >= RTE_MAX_LCORE) 729 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 730 } 731 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 732 qconf->n_rx_queue++; 733 734 /* init port */ 735 printf("Initializing port %d on lcore %u... ", portid, 736 rx_lcore_id); 737 fflush(stdout); 738 739 n_tx_queue = nb_lcores; 740 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 741 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 742 743 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 744 &local_port_conf); 745 if (ret < 0) 746 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 747 ret, portid); 748 749 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 750 &nb_txd); 751 if (ret < 0) 752 rte_exit(EXIT_FAILURE, 753 "Cannot adjust number of descriptors: err=%d, port=%d\n", 754 ret, portid); 755 756 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 757 if (ret < 0) 758 rte_exit(EXIT_FAILURE, 759 "Cannot get MAC address: err=%d, port=%d\n", 760 ret, portid); 761 762 print_ethaddr(" Address:", &ports_eth_addr[portid]); 763 printf(", "); 764 765 /* init one RX queue */ 766 queueid = 0; 767 printf("rxq=%hu ", queueid); 768 fflush(stdout); 769 rxq_conf = dev_info.default_rxconf; 770 rxq_conf.offloads = local_port_conf.rxmode.offloads; 771 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 772 rte_eth_dev_socket_id(portid), 773 &rxq_conf, 774 packet_pool); 775 if (ret < 0) 776 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 777 ret, portid); 778 779 /* init one TX queue per couple (lcore,port) */ 780 queueid = 0; 781 782 RTE_LCORE_FOREACH(lcore_id) { 783 if (rte_lcore_is_enabled(lcore_id) == 0) 784 continue; 785 printf("txq=%u,%hu ", lcore_id, queueid); 786 fflush(stdout); 787 788 txconf = &dev_info.default_txconf; 789 txconf->offloads = local_port_conf.txmode.offloads; 790 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 791 rte_lcore_to_socket_id(lcore_id), txconf); 792 if (ret < 0) 793 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 794 "port=%d\n", ret, portid); 795 796 qconf = &lcore_queue_conf[lcore_id]; 797 qconf->tx_queue_id[portid] = queueid; 798 queueid++; 799 } 800 ret = rte_eth_allmulticast_enable(portid); 801 if (ret < 0) 802 rte_exit(EXIT_FAILURE, 803 "rte_eth_allmulticast_enable: err=%d, port=%d\n", 804 ret, portid); 805 /* Start device */ 806 ret = rte_eth_dev_start(portid); 807 if (ret < 0) 808 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 809 ret, portid); 810 811 printf("done:\n"); 812 } 813 814 check_all_ports_link_status(enabled_port_mask); 815 816 /* initialize the multicast hash */ 817 int retval = init_mcast_hash(); 818 if (retval != 0) 819 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 820 821 /* launch per-lcore init on every lcore */ 822 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN); 823 RTE_LCORE_FOREACH_WORKER(lcore_id) { 824 if (rte_eal_wait_lcore(lcore_id) < 0) 825 return -1; 826 } 827 828 /* clean up the EAL */ 829 rte_eal_cleanup(); 830 831 return 0; 832 } 833