1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_log.h> 48 #include <rte_tailq.h> 49 #include <rte_memory.h> 50 #include <rte_memcpy.h> 51 #include <rte_memzone.h> 52 #include <rte_eal.h> 53 #include <rte_per_lcore.h> 54 #include <rte_launch.h> 55 #include <rte_atomic.h> 56 #include <rte_cycles.h> 57 #include <rte_prefetch.h> 58 #include <rte_lcore.h> 59 #include <rte_per_lcore.h> 60 #include <rte_branch_prediction.h> 61 #include <rte_interrupts.h> 62 #include <rte_pci.h> 63 #include <rte_random.h> 64 #include <rte_debug.h> 65 #include <rte_ether.h> 66 #include <rte_ethdev.h> 67 #include <rte_ring.h> 68 #include <rte_mempool.h> 69 #include <rte_mbuf.h> 70 #include <rte_malloc.h> 71 #include <rte_fbk_hash.h> 72 #include <rte_ip.h> 73 74 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 75 76 #define MAX_PORTS 16 77 78 #define MCAST_CLONE_PORTS 2 79 #define MCAST_CLONE_SEGS 2 80 81 #define PKT_MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM) 82 #define NB_PKT_MBUF 8192 83 84 #define HDR_MBUF_SIZE (sizeof(struct rte_mbuf) + 2 * RTE_PKTMBUF_HEADROOM) 85 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 86 87 #define CLONE_MBUF_SIZE (sizeof(struct rte_mbuf)) 88 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 89 90 /* allow max jumbo frame 9.5 KB */ 91 #define JUMBO_FRAME_MAX_SIZE 0x2600 92 93 #define MAX_PKT_BURST 32 94 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 95 96 /* Configure how many packets ahead to prefetch, when reading packets */ 97 #define PREFETCH_OFFSET 3 98 99 /* 100 * Construct Ethernet multicast address from IPv4 multicast address. 101 * Citing RFC 1112, section 6.4: 102 * "An IP host group address is mapped to an Ethernet multicast address 103 * by placing the low-order 23-bits of the IP address into the low-order 104 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 105 */ 106 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 107 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 108 109 /* 110 * Configurable number of RX/TX ring descriptors 111 */ 112 #define RTE_TEST_RX_DESC_DEFAULT 128 113 #define RTE_TEST_TX_DESC_DEFAULT 512 114 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 115 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 116 117 /* ethernet addresses of ports */ 118 static struct ether_addr ports_eth_addr[MAX_PORTS]; 119 120 /* mask of enabled ports */ 121 static uint32_t enabled_port_mask = 0; 122 123 static uint8_t nb_ports = 0; 124 125 static int rx_queue_per_lcore = 1; 126 127 struct mbuf_table { 128 uint16_t len; 129 struct rte_mbuf *m_table[MAX_PKT_BURST]; 130 }; 131 132 #define MAX_RX_QUEUE_PER_LCORE 16 133 #define MAX_TX_QUEUE_PER_PORT 16 134 struct lcore_queue_conf { 135 uint64_t tx_tsc; 136 uint16_t n_rx_queue; 137 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 138 uint16_t tx_queue_id[MAX_PORTS]; 139 struct mbuf_table tx_mbufs[MAX_PORTS]; 140 } __rte_cache_aligned; 141 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 142 143 static const struct rte_eth_conf port_conf = { 144 .rxmode = { 145 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 146 .split_hdr_size = 0, 147 .header_split = 0, /**< Header Split disabled */ 148 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 149 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 150 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 151 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 152 }, 153 .txmode = { 154 .mq_mode = ETH_MQ_TX_NONE, 155 }, 156 }; 157 158 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 159 160 161 /* Multicast */ 162 static struct rte_fbk_hash_params mcast_hash_params = { 163 .name = "MCAST_HASH", 164 .entries = 1024, 165 .entries_per_bucket = 4, 166 .socket_id = 0, 167 .hash_func = NULL, 168 .init_val = 0, 169 }; 170 171 struct rte_fbk_hash_table *mcast_hash = NULL; 172 173 struct mcast_group_params { 174 uint32_t ip; 175 uint16_t port_mask; 176 }; 177 178 static struct mcast_group_params mcast_group_table[] = { 179 {IPv4(224,0,0,101), 0x1}, 180 {IPv4(224,0,0,102), 0x2}, 181 {IPv4(224,0,0,103), 0x3}, 182 {IPv4(224,0,0,104), 0x4}, 183 {IPv4(224,0,0,105), 0x5}, 184 {IPv4(224,0,0,106), 0x6}, 185 {IPv4(224,0,0,107), 0x7}, 186 {IPv4(224,0,0,108), 0x8}, 187 {IPv4(224,0,0,109), 0x9}, 188 {IPv4(224,0,0,110), 0xA}, 189 {IPv4(224,0,0,111), 0xB}, 190 {IPv4(224,0,0,112), 0xC}, 191 {IPv4(224,0,0,113), 0xD}, 192 {IPv4(224,0,0,114), 0xE}, 193 {IPv4(224,0,0,115), 0xF}, 194 }; 195 196 #define N_MCAST_GROUPS \ 197 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 198 199 200 /* Send burst of packets on an output interface */ 201 static void 202 send_burst(struct lcore_queue_conf *qconf, uint8_t port) 203 { 204 struct rte_mbuf **m_table; 205 uint16_t n, queueid; 206 int ret; 207 208 queueid = qconf->tx_queue_id[port]; 209 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 210 n = qconf->tx_mbufs[port].len; 211 212 ret = rte_eth_tx_burst(port, queueid, m_table, n); 213 while (unlikely (ret < n)) { 214 rte_pktmbuf_free(m_table[ret]); 215 ret++; 216 } 217 218 qconf->tx_mbufs[port].len = 0; 219 } 220 221 /* Get number of bits set. */ 222 static inline uint32_t 223 bitcnt(uint32_t v) 224 { 225 uint32_t n; 226 227 for (n = 0; v != 0; v &= v - 1, n++) 228 ; 229 230 return (n); 231 } 232 233 /** 234 * Create the output multicast packet based on the given input packet. 235 * There are two approaches for creating outgoing packet, though both 236 * are based on data zero-copy idea, they differ in few details: 237 * First one creates a clone of the input packet, e.g - walk though all 238 * segments of the input packet, and for each of them create a new packet 239 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 240 * for more details). Then new mbuf is allocated for the packet header 241 * and is prepended to the 'clone' mbuf. 242 * Second approach doesn't make a clone, it just increment refcnt for all 243 * input packet segments. Then it allocates new mbuf for the packet header 244 * and prepends it to the input packet. 245 * Basically first approach reuses only input packet's data, but creates 246 * it's own copy of packet's metadata. Second approach reuses both input's 247 * packet data and metadata. 248 * The advantage of first approach - is that each outgoing packet has it's 249 * own copy of metadata, so we can safely modify data pointer of the 250 * input packet. That allows us to skip creation if the output packet for 251 * the last destination port, but instead modify input packet's header inplace, 252 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 253 * The advantage of second approach - less work for each outgoing packet, 254 * e.g: we skip "clone" operation completely. Though it comes with a price - 255 * input packet's metadata has to be intact. So for N destination ports we 256 * need to invoke mcast_out_pkt N times. 257 * So for small number of outgoing ports (and segments in the input packet) 258 * first approach will be faster. 259 * As number of outgoing ports (and/or input segments) will grow, 260 * second way will become more preferable. 261 * 262 * @param pkt 263 * Input packet mbuf. 264 * @param use_clone 265 * Control which of the two approaches described above should be used: 266 * - 0 - use second approach: 267 * Don't "clone" input packet. 268 * Prepend new header directly to the input packet 269 * - 1 - use first approach: 270 * Make a "clone" of input packet first. 271 * Prepend new header to the clone of the input packet 272 * @return 273 * - The pointer to the new outgoing packet. 274 * - NULL if operation failed. 275 */ 276 static inline struct rte_mbuf * 277 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 278 { 279 struct rte_mbuf *hdr; 280 281 /* Create new mbuf for the header. */ 282 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 283 return (NULL); 284 285 /* If requested, then make a new clone packet. */ 286 if (use_clone != 0 && 287 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 288 rte_pktmbuf_free(hdr); 289 return (NULL); 290 } 291 292 /* prepend new header */ 293 hdr->next = pkt; 294 295 296 /* update header's fields */ 297 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 298 hdr->nb_segs = (uint8_t)(pkt->nb_segs + 1); 299 300 /* copy metadata from source packet*/ 301 hdr->port = pkt->port; 302 hdr->vlan_tci = pkt->vlan_tci; 303 hdr->tx_offload = pkt->tx_offload; 304 hdr->hash = pkt->hash; 305 306 hdr->ol_flags = pkt->ol_flags; 307 308 __rte_mbuf_sanity_check(hdr, 1); 309 return (hdr); 310 } 311 312 /* 313 * Write new Ethernet header to the outgoing packet, 314 * and put it into the outgoing queue for the given port. 315 */ 316 static inline void 317 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 318 struct lcore_queue_conf *qconf, uint8_t port) 319 { 320 struct ether_hdr *ethdr; 321 uint16_t len; 322 323 /* Construct Ethernet header. */ 324 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 325 RTE_MBUF_ASSERT(ethdr != NULL); 326 327 ether_addr_copy(dest_addr, ðdr->d_addr); 328 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 329 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 330 331 /* Put new packet into the output queue */ 332 len = qconf->tx_mbufs[port].len; 333 qconf->tx_mbufs[port].m_table[len] = pkt; 334 qconf->tx_mbufs[port].len = ++len; 335 336 /* Transmit packets */ 337 if (unlikely(MAX_PKT_BURST == len)) 338 send_burst(qconf, port); 339 } 340 341 /* Multicast forward of the input packet */ 342 static inline void 343 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 344 { 345 struct rte_mbuf *mc; 346 struct ipv4_hdr *iphdr; 347 uint32_t dest_addr, port_mask, port_num, use_clone; 348 int32_t hash; 349 uint8_t port; 350 union { 351 uint64_t as_int; 352 struct ether_addr as_addr; 353 } dst_eth_addr; 354 355 /* Remove the Ethernet header from the input packet */ 356 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 357 RTE_MBUF_ASSERT(iphdr != NULL); 358 359 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 360 361 /* 362 * Check that it is a valid multicast address and 363 * we have some active ports assigned to it. 364 */ 365 if(!IS_IPV4_MCAST(dest_addr) || 366 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 367 (port_mask = hash & enabled_port_mask) == 0) { 368 rte_pktmbuf_free(m); 369 return; 370 } 371 372 /* Calculate number of destination ports. */ 373 port_num = bitcnt(port_mask); 374 375 /* Should we use rte_pktmbuf_clone() or not. */ 376 use_clone = (port_num <= MCAST_CLONE_PORTS && 377 m->nb_segs <= MCAST_CLONE_SEGS); 378 379 /* Mark all packet's segments as referenced port_num times */ 380 if (use_clone == 0) 381 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 382 383 /* construct destination ethernet address */ 384 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 385 386 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 387 388 /* Prepare output packet and send it out. */ 389 if ((port_mask & 1) != 0) { 390 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 391 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 392 qconf, port); 393 else if (use_clone == 0) 394 rte_pktmbuf_free(m); 395 } 396 } 397 398 /* 399 * If we making clone packets, then, for the last destination port, 400 * we can overwrite input packet's metadata. 401 */ 402 if (use_clone != 0) 403 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 404 else 405 rte_pktmbuf_free(m); 406 } 407 408 /* Send burst of outgoing packet, if timeout expires. */ 409 static inline void 410 send_timeout_burst(struct lcore_queue_conf *qconf) 411 { 412 uint64_t cur_tsc; 413 uint8_t portid; 414 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 415 416 cur_tsc = rte_rdtsc(); 417 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 418 return; 419 420 for (portid = 0; portid < MAX_PORTS; portid++) { 421 if (qconf->tx_mbufs[portid].len != 0) 422 send_burst(qconf, portid); 423 } 424 qconf->tx_tsc = cur_tsc; 425 } 426 427 /* main processing loop */ 428 static int 429 main_loop(__rte_unused void *dummy) 430 { 431 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 432 unsigned lcore_id; 433 int i, j, nb_rx; 434 uint8_t portid; 435 struct lcore_queue_conf *qconf; 436 437 lcore_id = rte_lcore_id(); 438 qconf = &lcore_queue_conf[lcore_id]; 439 440 441 if (qconf->n_rx_queue == 0) { 442 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 443 lcore_id); 444 return 0; 445 } 446 447 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 448 lcore_id); 449 450 for (i = 0; i < qconf->n_rx_queue; i++) { 451 452 portid = qconf->rx_queue_list[i]; 453 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 454 lcore_id, (int) portid); 455 } 456 457 while (1) { 458 459 /* 460 * Read packet from RX queues 461 */ 462 for (i = 0; i < qconf->n_rx_queue; i++) { 463 464 portid = qconf->rx_queue_list[i]; 465 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 466 MAX_PKT_BURST); 467 468 /* Prefetch first packets */ 469 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 470 rte_prefetch0(rte_pktmbuf_mtod( 471 pkts_burst[j], void *)); 472 } 473 474 /* Prefetch and forward already prefetched packets */ 475 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 476 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 477 j + PREFETCH_OFFSET], void *)); 478 mcast_forward(pkts_burst[j], qconf); 479 } 480 481 /* Forward remaining prefetched packets */ 482 for (; j < nb_rx; j++) { 483 mcast_forward(pkts_burst[j], qconf); 484 } 485 } 486 487 /* Send out packets from TX queues */ 488 send_timeout_burst(qconf); 489 } 490 } 491 492 /* display usage */ 493 static void 494 print_usage(const char *prgname) 495 { 496 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 497 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 498 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 499 prgname); 500 } 501 502 static uint32_t 503 parse_portmask(const char *portmask) 504 { 505 char *end = NULL; 506 unsigned long pm; 507 508 /* parse hexadecimal string */ 509 pm = strtoul(portmask, &end, 16); 510 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 511 return 0; 512 513 return ((uint32_t)pm); 514 } 515 516 static int 517 parse_nqueue(const char *q_arg) 518 { 519 char *end = NULL; 520 unsigned long n; 521 522 /* parse numerical string */ 523 errno = 0; 524 n = strtoul(q_arg, &end, 0); 525 if (errno != 0 || end == NULL || *end != '\0' || 526 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 527 return (-1); 528 529 return (n); 530 } 531 532 /* Parse the argument given in the command line of the application */ 533 static int 534 parse_args(int argc, char **argv) 535 { 536 int opt, ret; 537 char **argvopt; 538 int option_index; 539 char *prgname = argv[0]; 540 static struct option lgopts[] = { 541 {NULL, 0, 0, 0} 542 }; 543 544 argvopt = argv; 545 546 while ((opt = getopt_long(argc, argvopt, "p:q:", 547 lgopts, &option_index)) != EOF) { 548 549 switch (opt) { 550 /* portmask */ 551 case 'p': 552 enabled_port_mask = parse_portmask(optarg); 553 if (enabled_port_mask == 0) { 554 printf("invalid portmask\n"); 555 print_usage(prgname); 556 return -1; 557 } 558 break; 559 560 /* nqueue */ 561 case 'q': 562 rx_queue_per_lcore = parse_nqueue(optarg); 563 if (rx_queue_per_lcore < 0) { 564 printf("invalid queue number\n"); 565 print_usage(prgname); 566 return -1; 567 } 568 break; 569 570 default: 571 print_usage(prgname); 572 return -1; 573 } 574 } 575 576 if (optind >= 0) 577 argv[optind-1] = prgname; 578 579 ret = optind-1; 580 optind = 0; /* reset getopt lib */ 581 return ret; 582 } 583 584 static void 585 print_ethaddr(const char *name, struct ether_addr *eth_addr) 586 { 587 char buf[ETHER_ADDR_FMT_SIZE]; 588 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 589 printf("%s%s", name, buf); 590 } 591 592 static int 593 init_mcast_hash(void) 594 { 595 uint32_t i; 596 597 mcast_hash_params.socket_id = rte_socket_id(); 598 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 599 if (mcast_hash == NULL){ 600 return -1; 601 } 602 603 for (i = 0; i < N_MCAST_GROUPS; i ++){ 604 if (rte_fbk_hash_add_key(mcast_hash, 605 mcast_group_table[i].ip, 606 mcast_group_table[i].port_mask) < 0) { 607 return -1; 608 } 609 } 610 611 return 0; 612 } 613 614 /* Check the link status of all ports in up to 9s, and print them finally */ 615 static void 616 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 617 { 618 #define CHECK_INTERVAL 100 /* 100ms */ 619 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 620 uint8_t portid, count, all_ports_up, print_flag = 0; 621 struct rte_eth_link link; 622 623 printf("\nChecking link status"); 624 fflush(stdout); 625 for (count = 0; count <= MAX_CHECK_TIME; count++) { 626 all_ports_up = 1; 627 for (portid = 0; portid < port_num; portid++) { 628 if ((port_mask & (1 << portid)) == 0) 629 continue; 630 memset(&link, 0, sizeof(link)); 631 rte_eth_link_get_nowait(portid, &link); 632 /* print link status if flag set */ 633 if (print_flag == 1) { 634 if (link.link_status) 635 printf("Port %d Link Up - speed %u " 636 "Mbps - %s\n", (uint8_t)portid, 637 (unsigned)link.link_speed, 638 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 639 ("full-duplex") : ("half-duplex\n")); 640 else 641 printf("Port %d Link Down\n", 642 (uint8_t)portid); 643 continue; 644 } 645 /* clear all_ports_up flag if any link down */ 646 if (link.link_status == 0) { 647 all_ports_up = 0; 648 break; 649 } 650 } 651 /* after finally printing all link status, get out */ 652 if (print_flag == 1) 653 break; 654 655 if (all_ports_up == 0) { 656 printf("."); 657 fflush(stdout); 658 rte_delay_ms(CHECK_INTERVAL); 659 } 660 661 /* set the print_flag if all ports up or timeout */ 662 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 663 print_flag = 1; 664 printf("done\n"); 665 } 666 } 667 } 668 669 int 670 main(int argc, char **argv) 671 { 672 struct lcore_queue_conf *qconf; 673 struct rte_eth_dev_info dev_info; 674 struct rte_eth_txconf *txconf; 675 int ret; 676 uint16_t queueid; 677 unsigned lcore_id = 0, rx_lcore_id = 0; 678 uint32_t n_tx_queue, nb_lcores; 679 uint8_t portid; 680 681 /* init EAL */ 682 ret = rte_eal_init(argc, argv); 683 if (ret < 0) 684 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 685 argc -= ret; 686 argv += ret; 687 688 /* parse application arguments (after the EAL ones) */ 689 ret = parse_args(argc, argv); 690 if (ret < 0) 691 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 692 693 /* create the mbuf pools */ 694 packet_pool = rte_mempool_create("packet_pool", NB_PKT_MBUF, 695 PKT_MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private), 696 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, 697 rte_socket_id(), 0); 698 699 if (packet_pool == NULL) 700 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 701 702 header_pool = rte_mempool_create("header_pool", NB_HDR_MBUF, 703 HDR_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, 704 rte_socket_id(), 0); 705 706 if (header_pool == NULL) 707 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 708 709 clone_pool = rte_mempool_create("clone_pool", NB_CLONE_MBUF, 710 CLONE_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, 711 rte_socket_id(), 0); 712 713 if (clone_pool == NULL) 714 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 715 716 nb_ports = rte_eth_dev_count(); 717 if (nb_ports == 0) 718 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 719 if (nb_ports > MAX_PORTS) 720 nb_ports = MAX_PORTS; 721 722 nb_lcores = rte_lcore_count(); 723 724 /* initialize all ports */ 725 for (portid = 0; portid < nb_ports; portid++) { 726 /* skip ports that are not enabled */ 727 if ((enabled_port_mask & (1 << portid)) == 0) { 728 printf("Skipping disabled port %d\n", portid); 729 continue; 730 } 731 732 qconf = &lcore_queue_conf[rx_lcore_id]; 733 734 /* get the lcore_id for this port */ 735 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 736 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 737 738 rx_lcore_id ++; 739 qconf = &lcore_queue_conf[rx_lcore_id]; 740 741 if (rx_lcore_id >= RTE_MAX_LCORE) 742 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 743 } 744 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 745 qconf->n_rx_queue++; 746 747 /* init port */ 748 printf("Initializing port %d on lcore %u... ", portid, 749 rx_lcore_id); 750 fflush(stdout); 751 752 n_tx_queue = nb_lcores; 753 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 754 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 755 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 756 &port_conf); 757 if (ret < 0) 758 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 759 ret, portid); 760 761 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 762 print_ethaddr(" Address:", &ports_eth_addr[portid]); 763 printf(", "); 764 765 /* init one RX queue */ 766 queueid = 0; 767 printf("rxq=%hu ", queueid); 768 fflush(stdout); 769 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 770 rte_eth_dev_socket_id(portid), 771 NULL, 772 packet_pool); 773 if (ret < 0) 774 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 775 ret, portid); 776 777 /* init one TX queue per couple (lcore,port) */ 778 queueid = 0; 779 780 RTE_LCORE_FOREACH(lcore_id) { 781 if (rte_lcore_is_enabled(lcore_id) == 0) 782 continue; 783 printf("txq=%u,%hu ", lcore_id, queueid); 784 fflush(stdout); 785 786 rte_eth_dev_info_get(portid, &dev_info); 787 txconf = &dev_info.default_txconf; 788 txconf->txq_flags = 0; 789 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 790 rte_lcore_to_socket_id(lcore_id), txconf); 791 if (ret < 0) 792 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 793 "port=%d\n", ret, portid); 794 795 qconf = &lcore_queue_conf[lcore_id]; 796 qconf->tx_queue_id[portid] = queueid; 797 queueid++; 798 } 799 800 /* Start device */ 801 ret = rte_eth_dev_start(portid); 802 if (ret < 0) 803 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 804 ret, portid); 805 806 printf("done:\n"); 807 } 808 809 check_all_ports_link_status(nb_ports, enabled_port_mask); 810 811 /* initialize the multicast hash */ 812 int retval = init_mcast_hash(); 813 if (retval != 0) 814 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 815 816 /* launch per-lcore init on every lcore */ 817 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 818 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 819 if (rte_eal_wait_lcore(lcore_id) < 0) 820 return -1; 821 } 822 823 return 0; 824 } 825