1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2013 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 */ 34 35 #include <stdio.h> 36 #include <stdlib.h> 37 #include <stdint.h> 38 #include <inttypes.h> 39 #include <sys/types.h> 40 #include <string.h> 41 #include <sys/queue.h> 42 #include <stdarg.h> 43 #include <errno.h> 44 #include <getopt.h> 45 46 #include <rte_common.h> 47 #include <rte_byteorder.h> 48 #include <rte_log.h> 49 #include <rte_tailq.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_eal.h> 54 #include <rte_per_lcore.h> 55 #include <rte_launch.h> 56 #include <rte_atomic.h> 57 #include <rte_cycles.h> 58 #include <rte_prefetch.h> 59 #include <rte_lcore.h> 60 #include <rte_per_lcore.h> 61 #include <rte_branch_prediction.h> 62 #include <rte_interrupts.h> 63 #include <rte_pci.h> 64 #include <rte_random.h> 65 #include <rte_debug.h> 66 #include <rte_ether.h> 67 #include <rte_ethdev.h> 68 #include <rte_ring.h> 69 #include <rte_mempool.h> 70 #include <rte_mbuf.h> 71 #include <rte_malloc.h> 72 #include <rte_fbk_hash.h> 73 #include <rte_ip.h> 74 75 #include "main.h" 76 77 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 78 79 #define MAX_PORTS 16 80 81 #define MCAST_CLONE_PORTS 2 82 #define MCAST_CLONE_SEGS 2 83 84 #define PKT_MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM) 85 #define NB_PKT_MBUF 8192 86 87 #define HDR_MBUF_SIZE (sizeof(struct rte_mbuf) + 2 * RTE_PKTMBUF_HEADROOM) 88 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 89 90 #define CLONE_MBUF_SIZE (sizeof(struct rte_mbuf)) 91 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 92 93 /* allow max jumbo frame 9.5 KB */ 94 #define JUMBO_FRAME_MAX_SIZE 0x2600 95 96 /* 97 * RX and TX Prefetch, Host, and Write-back threshold values should be 98 * carefully set for optimal performance. Consult the network 99 * controller's datasheet and supporting DPDK documentation for guidance 100 * on how these parameters should be set. 101 */ 102 #define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */ 103 #define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */ 104 #define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */ 105 106 /* 107 * These default values are optimized for use with the Intel(R) 82599 10 GbE 108 * Controller and the DPDK ixgbe PMD. Consider using other values for other 109 * network controllers and/or network drivers. 110 */ 111 #define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */ 112 #define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */ 113 #define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */ 114 115 #define MAX_PKT_BURST 32 116 #define BURST_TX_DRAIN 200000ULL /* around 100us at 2 Ghz */ 117 118 #define SOCKET0 0 119 120 /* Configure how many packets ahead to prefetch, when reading packets */ 121 #define PREFETCH_OFFSET 3 122 123 /* 124 * Construct Ethernet multicast address from IPv4 multicast address. 125 * Citing RFC 1112, section 6.4: 126 * "An IP host group address is mapped to an Ethernet multicast address 127 * by placing the low-order 23-bits of the IP address into the low-order 128 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 129 */ 130 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 131 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 132 133 /* 134 * Configurable number of RX/TX ring descriptors 135 */ 136 #define RTE_TEST_RX_DESC_DEFAULT 128 137 #define RTE_TEST_TX_DESC_DEFAULT 512 138 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 139 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 140 141 /* ethernet addresses of ports */ 142 static struct ether_addr ports_eth_addr[MAX_PORTS]; 143 144 /* mask of enabled ports */ 145 static uint32_t enabled_port_mask = 0; 146 147 static uint8_t nb_ports = 0; 148 149 static int rx_queue_per_lcore = 1; 150 151 struct mbuf_table { 152 uint16_t len; 153 struct rte_mbuf *m_table[MAX_PKT_BURST]; 154 }; 155 156 #define MAX_RX_QUEUE_PER_LCORE 16 157 #define MAX_TX_QUEUE_PER_PORT 16 158 struct lcore_queue_conf { 159 uint64_t tx_tsc; 160 uint16_t n_rx_queue; 161 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 162 uint16_t tx_queue_id[MAX_PORTS]; 163 struct mbuf_table tx_mbufs[MAX_PORTS]; 164 } __rte_cache_aligned; 165 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 166 167 static const struct rte_eth_conf port_conf = { 168 .rxmode = { 169 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 170 .split_hdr_size = 0, 171 .header_split = 0, /**< Header Split disabled */ 172 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 173 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 174 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 175 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 176 }, 177 .txmode = { 178 .mq_mode = ETH_DCB_NONE, 179 }, 180 }; 181 182 static const struct rte_eth_rxconf rx_conf = { 183 .rx_thresh = { 184 .pthresh = RX_PTHRESH, 185 .hthresh = RX_HTHRESH, 186 .wthresh = RX_WTHRESH, 187 }, 188 }; 189 190 static const struct rte_eth_txconf tx_conf = { 191 .tx_thresh = { 192 .pthresh = TX_PTHRESH, 193 .hthresh = TX_HTHRESH, 194 .wthresh = TX_WTHRESH, 195 }, 196 .tx_free_thresh = 0, /* Use PMD default values */ 197 .tx_rs_thresh = 0, /* Use PMD default values */ 198 }; 199 200 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 201 202 203 /* Multicast */ 204 static struct rte_fbk_hash_params mcast_hash_params = { 205 .name = "MCAST_HASH", 206 .entries = 1024, 207 .entries_per_bucket = 4, 208 .socket_id = SOCKET0, 209 .hash_func = NULL, 210 .init_val = 0, 211 }; 212 213 struct rte_fbk_hash_table *mcast_hash = NULL; 214 215 struct mcast_group_params { 216 uint32_t ip; 217 uint16_t port_mask; 218 }; 219 220 static struct mcast_group_params mcast_group_table[] = { 221 {IPv4(224,0,0,101), 0x1}, 222 {IPv4(224,0,0,102), 0x2}, 223 {IPv4(224,0,0,103), 0x3}, 224 {IPv4(224,0,0,104), 0x4}, 225 {IPv4(224,0,0,105), 0x5}, 226 {IPv4(224,0,0,106), 0x6}, 227 {IPv4(224,0,0,107), 0x7}, 228 {IPv4(224,0,0,108), 0x8}, 229 {IPv4(224,0,0,109), 0x9}, 230 {IPv4(224,0,0,110), 0xA}, 231 {IPv4(224,0,0,111), 0xB}, 232 {IPv4(224,0,0,112), 0xC}, 233 {IPv4(224,0,0,113), 0xD}, 234 {IPv4(224,0,0,114), 0xE}, 235 {IPv4(224,0,0,115), 0xF}, 236 }; 237 238 #define N_MCAST_GROUPS \ 239 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 240 241 242 /* Send burst of packets on an output interface */ 243 static void 244 send_burst(struct lcore_queue_conf *qconf, uint8_t port) 245 { 246 struct rte_mbuf **m_table; 247 uint16_t n, queueid; 248 int ret; 249 250 queueid = qconf->tx_queue_id[port]; 251 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 252 n = qconf->tx_mbufs[port].len; 253 254 ret = rte_eth_tx_burst(port, queueid, m_table, n); 255 while (unlikely (ret < n)) { 256 rte_pktmbuf_free(m_table[ret]); 257 ret++; 258 } 259 260 qconf->tx_mbufs[port].len = 0; 261 } 262 263 /* Get number of bits set. */ 264 static inline uint32_t 265 bitcnt(uint32_t v) 266 { 267 uint32_t n; 268 269 for (n = 0; v != 0; v &= v - 1, n++) 270 ; 271 272 return (n); 273 } 274 275 /** 276 * Create the output multicast packet based on the given input packet. 277 * There are two approaches for creating outgoing packet, though both 278 * are based on data zero-copy idea, they differ in few details: 279 * First one creates a clone of the input packet, e.g - walk though all 280 * segments of the input packet, and for each of them create a new packet 281 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 282 * for more details). Then new mbuf is allocated for the packet header 283 * and is prepended to the 'clone' mbuf. 284 * Second approach doesn't make a clone, it just increment refcnt for all 285 * input packet segments. Then it allocates new mbuf for the packet header 286 * and prepends it to the input packet. 287 * Basically first approach reuses only input packet's data, but creates 288 * it's own copy of packet's metadata. Second approach reuses both input's 289 * packet data and metadata. 290 * The advantage of first approach - is that each outgoing packet has it's 291 * own copy of metadata, so we can safely modify data pointer of the 292 * input packet. That allows us to skip creation if the output packet for 293 * the last destination port, but instead modify input packet's header inplace, 294 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 295 * The advantage of second approach - less work for each outgoing packet, 296 * e.g: we skip "clone" operation completely. Though it comes with a price - 297 * input packet's metadata has to be intact. So for N destination ports we 298 * need to invoke mcast_out_pkt N times. 299 * So for small number of outgoing ports (and segments in the input packet) 300 * first approach will be faster. 301 * As number of outgoing ports (and/or input segments) will grow, 302 * second way will become more preferable. 303 * 304 * @param pkt 305 * Input packet mbuf. 306 * @param use_clone 307 * Control which of the two approaches described above should be used: 308 * - 0 - use second approach: 309 * Don't "clone" input packet. 310 * Prepend new header directly to the input packet 311 * - 1 - use first approach: 312 * Make a "clone" of input packet first. 313 * Prepend new header to the clone of the input packet 314 * @return 315 * - The pointer to the new outgoing packet. 316 * - NULL if operation failed. 317 */ 318 static inline struct rte_mbuf * 319 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 320 { 321 struct rte_mbuf *hdr; 322 323 /* Create new mbuf for the header. */ 324 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 325 return (NULL); 326 327 /* If requested, then make a new clone packet. */ 328 if (use_clone != 0 && 329 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 330 rte_pktmbuf_free(hdr); 331 return (NULL); 332 } 333 334 /* prepend new header */ 335 hdr->pkt.next = pkt; 336 337 338 /* update header's fields */ 339 hdr->pkt.pkt_len = (uint16_t)(hdr->pkt.data_len + pkt->pkt.pkt_len); 340 hdr->pkt.nb_segs = (uint8_t)(pkt->pkt.nb_segs + 1); 341 342 /* copy metadata from source packet*/ 343 hdr->pkt.in_port = pkt->pkt.in_port; 344 hdr->pkt.vlan_macip = pkt->pkt.vlan_macip; 345 hdr->pkt.hash = pkt->pkt.hash; 346 347 hdr->ol_flags = pkt->ol_flags; 348 349 __rte_mbuf_sanity_check(hdr, RTE_MBUF_PKT, 1); 350 return (hdr); 351 } 352 353 /* 354 * Write new Ethernet header to the outgoing packet, 355 * and put it into the outgoing queue for the given port. 356 */ 357 static inline void 358 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 359 struct lcore_queue_conf *qconf, uint8_t port) 360 { 361 struct ether_hdr *ethdr; 362 uint16_t len; 363 364 /* Construct Ethernet header. */ 365 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 366 RTE_MBUF_ASSERT(ethdr != NULL); 367 368 ether_addr_copy(dest_addr, ðdr->d_addr); 369 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 370 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 371 372 /* Put new packet into the output queue */ 373 len = qconf->tx_mbufs[port].len; 374 qconf->tx_mbufs[port].m_table[len] = pkt; 375 qconf->tx_mbufs[port].len = ++len; 376 377 /* Transmit packets */ 378 if (unlikely(MAX_PKT_BURST == len)) 379 send_burst(qconf, port); 380 } 381 382 /* Multicast forward of the input packet */ 383 static inline void 384 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 385 { 386 struct rte_mbuf *mc; 387 struct ipv4_hdr *iphdr; 388 uint32_t dest_addr, port_mask, port_num, use_clone; 389 int32_t hash; 390 uint8_t port; 391 union { 392 uint64_t as_int; 393 struct ether_addr as_addr; 394 } dst_eth_addr; 395 396 /* Remove the Ethernet header from the input packet */ 397 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 398 RTE_MBUF_ASSERT(iphdr != NULL); 399 400 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 401 402 /* 403 * Check that it is a valid multicast address and 404 * we have some active ports assigned to it. 405 */ 406 if(!IS_IPV4_MCAST(dest_addr) || 407 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 408 (port_mask = hash & enabled_port_mask) == 0) { 409 rte_pktmbuf_free(m); 410 return; 411 } 412 413 /* Calculate number of destination ports. */ 414 port_num = bitcnt(port_mask); 415 416 /* Should we use rte_pktmbuf_clone() or not. */ 417 use_clone = (port_num <= MCAST_CLONE_PORTS && 418 m->pkt.nb_segs <= MCAST_CLONE_SEGS); 419 420 /* Mark all packet's segments as referenced port_num times */ 421 if (use_clone == 0) 422 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 423 424 /* construct destination ethernet address */ 425 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 426 427 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 428 429 /* Prepare output packet and send it out. */ 430 if ((port_mask & 1) != 0) { 431 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 432 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 433 qconf, port); 434 else if (use_clone == 0) 435 rte_pktmbuf_free(m); 436 } 437 } 438 439 /* 440 * If we making clone packets, then, for the last destination port, 441 * we can overwrite input packet's metadata. 442 */ 443 if (use_clone != 0) 444 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 445 else 446 rte_pktmbuf_free(m); 447 } 448 449 /* Send burst of outgoing packet, if timeout expires. */ 450 static inline void 451 send_timeout_burst(struct lcore_queue_conf *qconf) 452 { 453 uint64_t cur_tsc; 454 uint8_t portid; 455 456 cur_tsc = rte_rdtsc(); 457 if (likely (cur_tsc < qconf->tx_tsc + BURST_TX_DRAIN)) 458 return; 459 460 for (portid = 0; portid < MAX_PORTS; portid++) { 461 if (qconf->tx_mbufs[portid].len != 0) 462 send_burst(qconf, portid); 463 } 464 qconf->tx_tsc = cur_tsc; 465 } 466 467 /* main processing loop */ 468 static __attribute__((noreturn)) int 469 main_loop(__rte_unused void *dummy) 470 { 471 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 472 unsigned lcore_id; 473 int i, j, nb_rx; 474 uint8_t portid; 475 struct lcore_queue_conf *qconf; 476 477 lcore_id = rte_lcore_id(); 478 qconf = &lcore_queue_conf[lcore_id]; 479 480 481 if (qconf->n_rx_queue == 0) { 482 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 483 lcore_id); 484 while(1); 485 } 486 487 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 488 lcore_id); 489 490 for (i = 0; i < qconf->n_rx_queue; i++) { 491 492 portid = qconf->rx_queue_list[i]; 493 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 494 lcore_id, (int) portid); 495 } 496 497 while (1) { 498 499 /* 500 * Read packet from RX queues 501 */ 502 for (i = 0; i < qconf->n_rx_queue; i++) { 503 504 portid = qconf->rx_queue_list[i]; 505 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 506 MAX_PKT_BURST); 507 508 /* Prefetch first packets */ 509 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 510 rte_prefetch0(rte_pktmbuf_mtod( 511 pkts_burst[j], void *)); 512 } 513 514 /* Prefetch and forward already prefetched packets */ 515 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 516 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 517 j + PREFETCH_OFFSET], void *)); 518 mcast_forward(pkts_burst[j], qconf); 519 } 520 521 /* Forward remaining prefetched packets */ 522 for (; j < nb_rx; j++) { 523 mcast_forward(pkts_burst[j], qconf); 524 } 525 } 526 527 /* Send out packets from TX queues */ 528 send_timeout_burst(qconf); 529 } 530 } 531 532 /* display usage */ 533 static void 534 print_usage(const char *prgname) 535 { 536 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 537 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 538 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 539 prgname); 540 } 541 542 static uint32_t 543 parse_portmask(const char *portmask) 544 { 545 char *end = NULL; 546 unsigned long pm; 547 548 /* parse hexadecimal string */ 549 pm = strtoul(portmask, &end, 16); 550 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 551 return 0; 552 553 return ((uint32_t)pm); 554 } 555 556 static int 557 parse_nqueue(const char *q_arg) 558 { 559 char *end = NULL; 560 unsigned long n; 561 562 /* parse numerical string */ 563 errno = 0; 564 n = strtoul(q_arg, &end, 0); 565 if (errno != 0 || end == NULL || *end != '\0' || 566 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 567 return (-1); 568 569 return (n); 570 } 571 572 /* Parse the argument given in the command line of the application */ 573 static int 574 parse_args(int argc, char **argv) 575 { 576 int opt, ret; 577 char **argvopt; 578 int option_index; 579 char *prgname = argv[0]; 580 static struct option lgopts[] = { 581 {NULL, 0, 0, 0} 582 }; 583 584 argvopt = argv; 585 586 while ((opt = getopt_long(argc, argvopt, "p:q:", 587 lgopts, &option_index)) != EOF) { 588 589 switch (opt) { 590 /* portmask */ 591 case 'p': 592 enabled_port_mask = parse_portmask(optarg); 593 if (enabled_port_mask == 0) { 594 printf("invalid portmask\n"); 595 print_usage(prgname); 596 return -1; 597 } 598 break; 599 600 /* nqueue */ 601 case 'q': 602 rx_queue_per_lcore = parse_nqueue(optarg); 603 if (rx_queue_per_lcore < 0) { 604 printf("invalid queue number\n"); 605 print_usage(prgname); 606 return -1; 607 } 608 break; 609 610 default: 611 print_usage(prgname); 612 return -1; 613 } 614 } 615 616 if (optind >= 0) 617 argv[optind-1] = prgname; 618 619 ret = optind-1; 620 optind = 0; /* reset getopt lib */ 621 return ret; 622 } 623 624 static void 625 print_ethaddr(const char *name, struct ether_addr *eth_addr) 626 { 627 printf("%s%02X:%02X:%02X:%02X:%02X:%02X", name, 628 eth_addr->addr_bytes[0], 629 eth_addr->addr_bytes[1], 630 eth_addr->addr_bytes[2], 631 eth_addr->addr_bytes[3], 632 eth_addr->addr_bytes[4], 633 eth_addr->addr_bytes[5]); 634 } 635 636 static int 637 init_mcast_hash(void) 638 { 639 uint32_t i; 640 641 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 642 if (mcast_hash == NULL){ 643 return -1; 644 } 645 646 for (i = 0; i < N_MCAST_GROUPS; i ++){ 647 if (rte_fbk_hash_add_key(mcast_hash, 648 mcast_group_table[i].ip, 649 mcast_group_table[i].port_mask) < 0) { 650 return -1; 651 } 652 } 653 654 return 0; 655 } 656 657 /* Check the link status of all ports in up to 9s, and print them finally */ 658 static void 659 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 660 { 661 #define CHECK_INTERVAL 100 /* 100ms */ 662 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 663 uint8_t portid, count, all_ports_up, print_flag = 0; 664 struct rte_eth_link link; 665 666 printf("\nChecking link status"); 667 fflush(stdout); 668 for (count = 0; count <= MAX_CHECK_TIME; count++) { 669 all_ports_up = 1; 670 for (portid = 0; portid < port_num; portid++) { 671 if ((port_mask & (1 << portid)) == 0) 672 continue; 673 memset(&link, 0, sizeof(link)); 674 rte_eth_link_get_nowait(portid, &link); 675 /* print link status if flag set */ 676 if (print_flag == 1) { 677 if (link.link_status) 678 printf("Port %d Link Up - speed %u " 679 "Mbps - %s\n", (uint8_t)portid, 680 (unsigned)link.link_speed, 681 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 682 ("full-duplex") : ("half-duplex\n")); 683 else 684 printf("Port %d Link Down\n", 685 (uint8_t)portid); 686 continue; 687 } 688 /* clear all_ports_up flag if any link down */ 689 if (link.link_status == 0) { 690 all_ports_up = 0; 691 break; 692 } 693 } 694 /* after finally printing all link status, get out */ 695 if (print_flag == 1) 696 break; 697 698 if (all_ports_up == 0) { 699 printf("."); 700 fflush(stdout); 701 rte_delay_ms(CHECK_INTERVAL); 702 } 703 704 /* set the print_flag if all ports up or timeout */ 705 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 706 print_flag = 1; 707 printf("done\n"); 708 } 709 } 710 } 711 712 int 713 MAIN(int argc, char **argv) 714 { 715 struct lcore_queue_conf *qconf; 716 int ret; 717 uint16_t queueid; 718 unsigned lcore_id = 0, rx_lcore_id = 0;; 719 uint32_t n_tx_queue, nb_lcores; 720 uint8_t portid; 721 722 /* init EAL */ 723 ret = rte_eal_init(argc, argv); 724 if (ret < 0) 725 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 726 argc -= ret; 727 argv += ret; 728 729 /* parse application arguments (after the EAL ones) */ 730 ret = parse_args(argc, argv); 731 if (ret < 0) 732 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 733 734 /* create the mbuf pools */ 735 packet_pool = rte_mempool_create("packet_pool", NB_PKT_MBUF, 736 PKT_MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private), 737 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, 738 SOCKET0, 0); 739 740 if (packet_pool == NULL) 741 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 742 743 header_pool = rte_mempool_create("header_pool", NB_HDR_MBUF, 744 HDR_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, 745 SOCKET0, 0); 746 747 if (header_pool == NULL) 748 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 749 750 clone_pool = rte_mempool_create("clone_pool", NB_CLONE_MBUF, 751 CLONE_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, 752 SOCKET0, 0); 753 754 if (clone_pool == NULL) 755 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 756 757 /* init driver */ 758 if (rte_pmd_init_all() < 0) 759 rte_exit(EXIT_FAILURE, "Cannot init pmd\n"); 760 761 if (rte_eal_pci_probe() < 0) 762 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 763 764 nb_ports = rte_eth_dev_count(); 765 if (nb_ports == 0) 766 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 767 if (nb_ports > MAX_PORTS) 768 nb_ports = MAX_PORTS; 769 770 nb_lcores = rte_lcore_count(); 771 772 /* initialize all ports */ 773 for (portid = 0; portid < nb_ports; portid++) { 774 /* skip ports that are not enabled */ 775 if ((enabled_port_mask & (1 << portid)) == 0) { 776 printf("Skipping disabled port %d\n", portid); 777 continue; 778 } 779 780 qconf = &lcore_queue_conf[rx_lcore_id]; 781 782 /* get the lcore_id for this port */ 783 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 784 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 785 786 rx_lcore_id ++; 787 qconf = &lcore_queue_conf[rx_lcore_id]; 788 789 if (rx_lcore_id >= RTE_MAX_LCORE) 790 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 791 } 792 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 793 qconf->n_rx_queue++; 794 795 /* init port */ 796 printf("Initializing port %d on lcore %u... ", portid, 797 rx_lcore_id); 798 fflush(stdout); 799 800 n_tx_queue = nb_lcores; 801 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 802 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 803 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 804 &port_conf); 805 if (ret < 0) 806 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 807 ret, portid); 808 809 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 810 print_ethaddr(" Address:", &ports_eth_addr[portid]); 811 printf(", "); 812 813 /* init one RX queue */ 814 queueid = 0; 815 printf("rxq=%hu ", queueid); 816 fflush(stdout); 817 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 818 SOCKET0, &rx_conf, 819 packet_pool); 820 if (ret < 0) 821 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 822 ret, portid); 823 824 /* init one TX queue per couple (lcore,port) */ 825 queueid = 0; 826 827 RTE_LCORE_FOREACH(lcore_id) { 828 if (rte_lcore_is_enabled(lcore_id) == 0) 829 continue; 830 printf("txq=%u,%hu ", lcore_id, queueid); 831 fflush(stdout); 832 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 833 SOCKET0, &tx_conf); 834 if (ret < 0) 835 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 836 "port=%d\n", ret, portid); 837 838 qconf = &lcore_queue_conf[lcore_id]; 839 qconf->tx_queue_id[portid] = queueid; 840 queueid++; 841 } 842 843 /* Start device */ 844 ret = rte_eth_dev_start(portid); 845 if (ret < 0) 846 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 847 ret, portid); 848 849 printf("done:\n"); 850 } 851 852 check_all_ports_link_status(nb_ports, enabled_port_mask); 853 854 /* initialize the multicast hash */ 855 int retval = init_mcast_hash(); 856 if (retval != 0) 857 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 858 859 /* launch per-lcore init on every lcore */ 860 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 861 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 862 if (rte_eal_wait_lcore(lcore_id) < 0) 863 return -1; 864 } 865 866 return 0; 867 } 868