1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_log.h> 48 #include <rte_memory.h> 49 #include <rte_memcpy.h> 50 #include <rte_memzone.h> 51 #include <rte_eal.h> 52 #include <rte_per_lcore.h> 53 #include <rte_launch.h> 54 #include <rte_atomic.h> 55 #include <rte_cycles.h> 56 #include <rte_prefetch.h> 57 #include <rte_lcore.h> 58 #include <rte_per_lcore.h> 59 #include <rte_branch_prediction.h> 60 #include <rte_interrupts.h> 61 #include <rte_pci.h> 62 #include <rte_random.h> 63 #include <rte_debug.h> 64 #include <rte_ether.h> 65 #include <rte_ethdev.h> 66 #include <rte_ring.h> 67 #include <rte_mempool.h> 68 #include <rte_mbuf.h> 69 #include <rte_malloc.h> 70 #include <rte_fbk_hash.h> 71 #include <rte_ip.h> 72 73 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 74 75 #define MAX_PORTS 16 76 77 #define MCAST_CLONE_PORTS 2 78 #define MCAST_CLONE_SEGS 2 79 80 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 81 #define NB_PKT_MBUF 8192 82 83 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 84 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 85 86 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 87 88 /* allow max jumbo frame 9.5 KB */ 89 #define JUMBO_FRAME_MAX_SIZE 0x2600 90 91 #define MAX_PKT_BURST 32 92 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 93 94 /* Configure how many packets ahead to prefetch, when reading packets */ 95 #define PREFETCH_OFFSET 3 96 97 /* 98 * Construct Ethernet multicast address from IPv4 multicast address. 99 * Citing RFC 1112, section 6.4: 100 * "An IP host group address is mapped to an Ethernet multicast address 101 * by placing the low-order 23-bits of the IP address into the low-order 102 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 103 */ 104 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 105 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 106 107 /* 108 * Configurable number of RX/TX ring descriptors 109 */ 110 #define RTE_TEST_RX_DESC_DEFAULT 128 111 #define RTE_TEST_TX_DESC_DEFAULT 512 112 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 113 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 114 115 /* ethernet addresses of ports */ 116 static struct ether_addr ports_eth_addr[MAX_PORTS]; 117 118 /* mask of enabled ports */ 119 static uint32_t enabled_port_mask = 0; 120 121 static uint8_t nb_ports = 0; 122 123 static int rx_queue_per_lcore = 1; 124 125 struct mbuf_table { 126 uint16_t len; 127 struct rte_mbuf *m_table[MAX_PKT_BURST]; 128 }; 129 130 #define MAX_RX_QUEUE_PER_LCORE 16 131 #define MAX_TX_QUEUE_PER_PORT 16 132 struct lcore_queue_conf { 133 uint64_t tx_tsc; 134 uint16_t n_rx_queue; 135 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 136 uint16_t tx_queue_id[MAX_PORTS]; 137 struct mbuf_table tx_mbufs[MAX_PORTS]; 138 } __rte_cache_aligned; 139 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 140 141 static const struct rte_eth_conf port_conf = { 142 .rxmode = { 143 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 144 .split_hdr_size = 0, 145 .header_split = 0, /**< Header Split disabled */ 146 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 147 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 148 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 149 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 150 }, 151 .txmode = { 152 .mq_mode = ETH_MQ_TX_NONE, 153 }, 154 }; 155 156 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 157 158 159 /* Multicast */ 160 static struct rte_fbk_hash_params mcast_hash_params = { 161 .name = "MCAST_HASH", 162 .entries = 1024, 163 .entries_per_bucket = 4, 164 .socket_id = 0, 165 .hash_func = NULL, 166 .init_val = 0, 167 }; 168 169 struct rte_fbk_hash_table *mcast_hash = NULL; 170 171 struct mcast_group_params { 172 uint32_t ip; 173 uint16_t port_mask; 174 }; 175 176 static struct mcast_group_params mcast_group_table[] = { 177 {IPv4(224,0,0,101), 0x1}, 178 {IPv4(224,0,0,102), 0x2}, 179 {IPv4(224,0,0,103), 0x3}, 180 {IPv4(224,0,0,104), 0x4}, 181 {IPv4(224,0,0,105), 0x5}, 182 {IPv4(224,0,0,106), 0x6}, 183 {IPv4(224,0,0,107), 0x7}, 184 {IPv4(224,0,0,108), 0x8}, 185 {IPv4(224,0,0,109), 0x9}, 186 {IPv4(224,0,0,110), 0xA}, 187 {IPv4(224,0,0,111), 0xB}, 188 {IPv4(224,0,0,112), 0xC}, 189 {IPv4(224,0,0,113), 0xD}, 190 {IPv4(224,0,0,114), 0xE}, 191 {IPv4(224,0,0,115), 0xF}, 192 }; 193 194 #define N_MCAST_GROUPS \ 195 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 196 197 198 /* Send burst of packets on an output interface */ 199 static void 200 send_burst(struct lcore_queue_conf *qconf, uint8_t port) 201 { 202 struct rte_mbuf **m_table; 203 uint16_t n, queueid; 204 int ret; 205 206 queueid = qconf->tx_queue_id[port]; 207 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 208 n = qconf->tx_mbufs[port].len; 209 210 ret = rte_eth_tx_burst(port, queueid, m_table, n); 211 while (unlikely (ret < n)) { 212 rte_pktmbuf_free(m_table[ret]); 213 ret++; 214 } 215 216 qconf->tx_mbufs[port].len = 0; 217 } 218 219 /* Get number of bits set. */ 220 static inline uint32_t 221 bitcnt(uint32_t v) 222 { 223 uint32_t n; 224 225 for (n = 0; v != 0; v &= v - 1, n++) 226 ; 227 228 return n; 229 } 230 231 /** 232 * Create the output multicast packet based on the given input packet. 233 * There are two approaches for creating outgoing packet, though both 234 * are based on data zero-copy idea, they differ in few details: 235 * First one creates a clone of the input packet, e.g - walk though all 236 * segments of the input packet, and for each of them create a new packet 237 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 238 * for more details). Then new mbuf is allocated for the packet header 239 * and is prepended to the 'clone' mbuf. 240 * Second approach doesn't make a clone, it just increment refcnt for all 241 * input packet segments. Then it allocates new mbuf for the packet header 242 * and prepends it to the input packet. 243 * Basically first approach reuses only input packet's data, but creates 244 * it's own copy of packet's metadata. Second approach reuses both input's 245 * packet data and metadata. 246 * The advantage of first approach - is that each outgoing packet has it's 247 * own copy of metadata, so we can safely modify data pointer of the 248 * input packet. That allows us to skip creation if the output packet for 249 * the last destination port, but instead modify input packet's header inplace, 250 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 251 * The advantage of second approach - less work for each outgoing packet, 252 * e.g: we skip "clone" operation completely. Though it comes with a price - 253 * input packet's metadata has to be intact. So for N destination ports we 254 * need to invoke mcast_out_pkt N times. 255 * So for small number of outgoing ports (and segments in the input packet) 256 * first approach will be faster. 257 * As number of outgoing ports (and/or input segments) will grow, 258 * second way will become more preferable. 259 * 260 * @param pkt 261 * Input packet mbuf. 262 * @param use_clone 263 * Control which of the two approaches described above should be used: 264 * - 0 - use second approach: 265 * Don't "clone" input packet. 266 * Prepend new header directly to the input packet 267 * - 1 - use first approach: 268 * Make a "clone" of input packet first. 269 * Prepend new header to the clone of the input packet 270 * @return 271 * - The pointer to the new outgoing packet. 272 * - NULL if operation failed. 273 */ 274 static inline struct rte_mbuf * 275 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 276 { 277 struct rte_mbuf *hdr; 278 279 /* Create new mbuf for the header. */ 280 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 281 return NULL; 282 283 /* If requested, then make a new clone packet. */ 284 if (use_clone != 0 && 285 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 286 rte_pktmbuf_free(hdr); 287 return NULL; 288 } 289 290 /* prepend new header */ 291 hdr->next = pkt; 292 293 294 /* update header's fields */ 295 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 296 hdr->nb_segs = (uint8_t)(pkt->nb_segs + 1); 297 298 /* copy metadata from source packet*/ 299 hdr->port = pkt->port; 300 hdr->vlan_tci = pkt->vlan_tci; 301 hdr->vlan_tci_outer = pkt->vlan_tci_outer; 302 hdr->tx_offload = pkt->tx_offload; 303 hdr->hash = pkt->hash; 304 305 hdr->ol_flags = pkt->ol_flags; 306 307 __rte_mbuf_sanity_check(hdr, 1); 308 return hdr; 309 } 310 311 /* 312 * Write new Ethernet header to the outgoing packet, 313 * and put it into the outgoing queue for the given port. 314 */ 315 static inline void 316 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 317 struct lcore_queue_conf *qconf, uint8_t port) 318 { 319 struct ether_hdr *ethdr; 320 uint16_t len; 321 322 /* Construct Ethernet header. */ 323 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 324 RTE_MBUF_ASSERT(ethdr != NULL); 325 326 ether_addr_copy(dest_addr, ðdr->d_addr); 327 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 328 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 329 330 /* Put new packet into the output queue */ 331 len = qconf->tx_mbufs[port].len; 332 qconf->tx_mbufs[port].m_table[len] = pkt; 333 qconf->tx_mbufs[port].len = ++len; 334 335 /* Transmit packets */ 336 if (unlikely(MAX_PKT_BURST == len)) 337 send_burst(qconf, port); 338 } 339 340 /* Multicast forward of the input packet */ 341 static inline void 342 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 343 { 344 struct rte_mbuf *mc; 345 struct ipv4_hdr *iphdr; 346 uint32_t dest_addr, port_mask, port_num, use_clone; 347 int32_t hash; 348 uint8_t port; 349 union { 350 uint64_t as_int; 351 struct ether_addr as_addr; 352 } dst_eth_addr; 353 354 /* Remove the Ethernet header from the input packet */ 355 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 356 RTE_MBUF_ASSERT(iphdr != NULL); 357 358 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 359 360 /* 361 * Check that it is a valid multicast address and 362 * we have some active ports assigned to it. 363 */ 364 if(!IS_IPV4_MCAST(dest_addr) || 365 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 366 (port_mask = hash & enabled_port_mask) == 0) { 367 rte_pktmbuf_free(m); 368 return; 369 } 370 371 /* Calculate number of destination ports. */ 372 port_num = bitcnt(port_mask); 373 374 /* Should we use rte_pktmbuf_clone() or not. */ 375 use_clone = (port_num <= MCAST_CLONE_PORTS && 376 m->nb_segs <= MCAST_CLONE_SEGS); 377 378 /* Mark all packet's segments as referenced port_num times */ 379 if (use_clone == 0) 380 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 381 382 /* construct destination ethernet address */ 383 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 384 385 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 386 387 /* Prepare output packet and send it out. */ 388 if ((port_mask & 1) != 0) { 389 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 390 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 391 qconf, port); 392 else if (use_clone == 0) 393 rte_pktmbuf_free(m); 394 } 395 } 396 397 /* 398 * If we making clone packets, then, for the last destination port, 399 * we can overwrite input packet's metadata. 400 */ 401 if (use_clone != 0) 402 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 403 else 404 rte_pktmbuf_free(m); 405 } 406 407 /* Send burst of outgoing packet, if timeout expires. */ 408 static inline void 409 send_timeout_burst(struct lcore_queue_conf *qconf) 410 { 411 uint64_t cur_tsc; 412 uint8_t portid; 413 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 414 415 cur_tsc = rte_rdtsc(); 416 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 417 return; 418 419 for (portid = 0; portid < MAX_PORTS; portid++) { 420 if (qconf->tx_mbufs[portid].len != 0) 421 send_burst(qconf, portid); 422 } 423 qconf->tx_tsc = cur_tsc; 424 } 425 426 /* main processing loop */ 427 static int 428 main_loop(__rte_unused void *dummy) 429 { 430 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 431 unsigned lcore_id; 432 int i, j, nb_rx; 433 uint8_t portid; 434 struct lcore_queue_conf *qconf; 435 436 lcore_id = rte_lcore_id(); 437 qconf = &lcore_queue_conf[lcore_id]; 438 439 440 if (qconf->n_rx_queue == 0) { 441 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 442 lcore_id); 443 return 0; 444 } 445 446 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 447 lcore_id); 448 449 for (i = 0; i < qconf->n_rx_queue; i++) { 450 451 portid = qconf->rx_queue_list[i]; 452 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 453 lcore_id, (int) portid); 454 } 455 456 while (1) { 457 458 /* 459 * Read packet from RX queues 460 */ 461 for (i = 0; i < qconf->n_rx_queue; i++) { 462 463 portid = qconf->rx_queue_list[i]; 464 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 465 MAX_PKT_BURST); 466 467 /* Prefetch first packets */ 468 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 469 rte_prefetch0(rte_pktmbuf_mtod( 470 pkts_burst[j], void *)); 471 } 472 473 /* Prefetch and forward already prefetched packets */ 474 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 475 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 476 j + PREFETCH_OFFSET], void *)); 477 mcast_forward(pkts_burst[j], qconf); 478 } 479 480 /* Forward remaining prefetched packets */ 481 for (; j < nb_rx; j++) { 482 mcast_forward(pkts_burst[j], qconf); 483 } 484 } 485 486 /* Send out packets from TX queues */ 487 send_timeout_burst(qconf); 488 } 489 } 490 491 /* display usage */ 492 static void 493 print_usage(const char *prgname) 494 { 495 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 496 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 497 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 498 prgname); 499 } 500 501 static uint32_t 502 parse_portmask(const char *portmask) 503 { 504 char *end = NULL; 505 unsigned long pm; 506 507 /* parse hexadecimal string */ 508 pm = strtoul(portmask, &end, 16); 509 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 510 return 0; 511 512 return (uint32_t)pm; 513 } 514 515 static int 516 parse_nqueue(const char *q_arg) 517 { 518 char *end = NULL; 519 unsigned long n; 520 521 /* parse numerical string */ 522 errno = 0; 523 n = strtoul(q_arg, &end, 0); 524 if (errno != 0 || end == NULL || *end != '\0' || 525 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 526 return -1; 527 528 return n; 529 } 530 531 /* Parse the argument given in the command line of the application */ 532 static int 533 parse_args(int argc, char **argv) 534 { 535 int opt, ret; 536 char **argvopt; 537 int option_index; 538 char *prgname = argv[0]; 539 static struct option lgopts[] = { 540 {NULL, 0, 0, 0} 541 }; 542 543 argvopt = argv; 544 545 while ((opt = getopt_long(argc, argvopt, "p:q:", 546 lgopts, &option_index)) != EOF) { 547 548 switch (opt) { 549 /* portmask */ 550 case 'p': 551 enabled_port_mask = parse_portmask(optarg); 552 if (enabled_port_mask == 0) { 553 printf("invalid portmask\n"); 554 print_usage(prgname); 555 return -1; 556 } 557 break; 558 559 /* nqueue */ 560 case 'q': 561 rx_queue_per_lcore = parse_nqueue(optarg); 562 if (rx_queue_per_lcore < 0) { 563 printf("invalid queue number\n"); 564 print_usage(prgname); 565 return -1; 566 } 567 break; 568 569 default: 570 print_usage(prgname); 571 return -1; 572 } 573 } 574 575 if (optind >= 0) 576 argv[optind-1] = prgname; 577 578 ret = optind-1; 579 optind = 0; /* reset getopt lib */ 580 return ret; 581 } 582 583 static void 584 print_ethaddr(const char *name, struct ether_addr *eth_addr) 585 { 586 char buf[ETHER_ADDR_FMT_SIZE]; 587 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 588 printf("%s%s", name, buf); 589 } 590 591 static int 592 init_mcast_hash(void) 593 { 594 uint32_t i; 595 596 mcast_hash_params.socket_id = rte_socket_id(); 597 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 598 if (mcast_hash == NULL){ 599 return -1; 600 } 601 602 for (i = 0; i < N_MCAST_GROUPS; i ++){ 603 if (rte_fbk_hash_add_key(mcast_hash, 604 mcast_group_table[i].ip, 605 mcast_group_table[i].port_mask) < 0) { 606 return -1; 607 } 608 } 609 610 return 0; 611 } 612 613 /* Check the link status of all ports in up to 9s, and print them finally */ 614 static void 615 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 616 { 617 #define CHECK_INTERVAL 100 /* 100ms */ 618 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 619 uint8_t portid, count, all_ports_up, print_flag = 0; 620 struct rte_eth_link link; 621 622 printf("\nChecking link status"); 623 fflush(stdout); 624 for (count = 0; count <= MAX_CHECK_TIME; count++) { 625 all_ports_up = 1; 626 for (portid = 0; portid < port_num; portid++) { 627 if ((port_mask & (1 << portid)) == 0) 628 continue; 629 memset(&link, 0, sizeof(link)); 630 rte_eth_link_get_nowait(portid, &link); 631 /* print link status if flag set */ 632 if (print_flag == 1) { 633 if (link.link_status) 634 printf("Port %d Link Up - speed %u " 635 "Mbps - %s\n", (uint8_t)portid, 636 (unsigned)link.link_speed, 637 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 638 ("full-duplex") : ("half-duplex\n")); 639 else 640 printf("Port %d Link Down\n", 641 (uint8_t)portid); 642 continue; 643 } 644 /* clear all_ports_up flag if any link down */ 645 if (link.link_status == ETH_LINK_DOWN) { 646 all_ports_up = 0; 647 break; 648 } 649 } 650 /* after finally printing all link status, get out */ 651 if (print_flag == 1) 652 break; 653 654 if (all_ports_up == 0) { 655 printf("."); 656 fflush(stdout); 657 rte_delay_ms(CHECK_INTERVAL); 658 } 659 660 /* set the print_flag if all ports up or timeout */ 661 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 662 print_flag = 1; 663 printf("done\n"); 664 } 665 } 666 } 667 668 int 669 main(int argc, char **argv) 670 { 671 struct lcore_queue_conf *qconf; 672 struct rte_eth_dev_info dev_info; 673 struct rte_eth_txconf *txconf; 674 int ret; 675 uint16_t queueid; 676 unsigned lcore_id = 0, rx_lcore_id = 0; 677 uint32_t n_tx_queue, nb_lcores; 678 uint8_t portid; 679 680 /* init EAL */ 681 ret = rte_eal_init(argc, argv); 682 if (ret < 0) 683 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 684 argc -= ret; 685 argv += ret; 686 687 /* parse application arguments (after the EAL ones) */ 688 ret = parse_args(argc, argv); 689 if (ret < 0) 690 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 691 692 /* create the mbuf pools */ 693 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 694 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 695 696 if (packet_pool == NULL) 697 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 698 699 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 700 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 701 702 if (header_pool == NULL) 703 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 704 705 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 706 0, 0, rte_socket_id()); 707 708 if (clone_pool == NULL) 709 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 710 711 nb_ports = rte_eth_dev_count(); 712 if (nb_ports == 0) 713 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 714 if (nb_ports > MAX_PORTS) 715 nb_ports = MAX_PORTS; 716 717 nb_lcores = rte_lcore_count(); 718 719 /* initialize all ports */ 720 for (portid = 0; portid < nb_ports; portid++) { 721 /* skip ports that are not enabled */ 722 if ((enabled_port_mask & (1 << portid)) == 0) { 723 printf("Skipping disabled port %d\n", portid); 724 continue; 725 } 726 727 qconf = &lcore_queue_conf[rx_lcore_id]; 728 729 /* get the lcore_id for this port */ 730 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 731 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 732 733 rx_lcore_id ++; 734 qconf = &lcore_queue_conf[rx_lcore_id]; 735 736 if (rx_lcore_id >= RTE_MAX_LCORE) 737 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 738 } 739 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 740 qconf->n_rx_queue++; 741 742 /* init port */ 743 printf("Initializing port %d on lcore %u... ", portid, 744 rx_lcore_id); 745 fflush(stdout); 746 747 n_tx_queue = nb_lcores; 748 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 749 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 750 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 751 &port_conf); 752 if (ret < 0) 753 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 754 ret, portid); 755 756 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 757 print_ethaddr(" Address:", &ports_eth_addr[portid]); 758 printf(", "); 759 760 /* init one RX queue */ 761 queueid = 0; 762 printf("rxq=%hu ", queueid); 763 fflush(stdout); 764 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 765 rte_eth_dev_socket_id(portid), 766 NULL, 767 packet_pool); 768 if (ret < 0) 769 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 770 ret, portid); 771 772 /* init one TX queue per couple (lcore,port) */ 773 queueid = 0; 774 775 RTE_LCORE_FOREACH(lcore_id) { 776 if (rte_lcore_is_enabled(lcore_id) == 0) 777 continue; 778 printf("txq=%u,%hu ", lcore_id, queueid); 779 fflush(stdout); 780 781 rte_eth_dev_info_get(portid, &dev_info); 782 txconf = &dev_info.default_txconf; 783 txconf->txq_flags = 0; 784 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 785 rte_lcore_to_socket_id(lcore_id), txconf); 786 if (ret < 0) 787 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 788 "port=%d\n", ret, portid); 789 790 qconf = &lcore_queue_conf[lcore_id]; 791 qconf->tx_queue_id[portid] = queueid; 792 queueid++; 793 } 794 795 /* Start device */ 796 ret = rte_eth_dev_start(portid); 797 if (ret < 0) 798 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 799 ret, portid); 800 801 printf("done:\n"); 802 } 803 804 check_all_ports_link_status(nb_ports, enabled_port_mask); 805 806 /* initialize the multicast hash */ 807 int retval = init_mcast_hash(); 808 if (retval != 0) 809 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 810 811 /* launch per-lcore init on every lcore */ 812 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 813 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 814 if (rte_eal_wait_lcore(lcore_id) < 0) 815 return -1; 816 } 817 818 return 0; 819 } 820