1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_memory.h> 20 #include <rte_memcpy.h> 21 #include <rte_eal.h> 22 #include <rte_launch.h> 23 #include <rte_atomic.h> 24 #include <rte_cycles.h> 25 #include <rte_prefetch.h> 26 #include <rte_lcore.h> 27 #include <rte_per_lcore.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_interrupts.h> 30 #include <rte_random.h> 31 #include <rte_debug.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_mempool.h> 35 #include <rte_mbuf.h> 36 #include <rte_malloc.h> 37 #include <rte_fbk_hash.h> 38 #include <rte_ip.h> 39 40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 41 42 #define MAX_PORTS 16 43 44 #define MCAST_CLONE_PORTS 2 45 #define MCAST_CLONE_SEGS 2 46 47 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 48 #define NB_PKT_MBUF 8192 49 50 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 51 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 52 53 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 54 55 /* allow max jumbo frame 9.5 KB */ 56 #define JUMBO_FRAME_MAX_SIZE 0x2600 57 58 #define MAX_PKT_BURST 32 59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 60 61 /* Configure how many packets ahead to prefetch, when reading packets */ 62 #define PREFETCH_OFFSET 3 63 64 /* 65 * Construct Ethernet multicast address from IPv4 multicast address. 66 * Citing RFC 1112, section 6.4: 67 * "An IP host group address is mapped to an Ethernet multicast address 68 * by placing the low-order 23-bits of the IP address into the low-order 69 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 70 */ 71 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 72 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 73 74 /* 75 * Configurable number of RX/TX ring descriptors 76 */ 77 #define RTE_TEST_RX_DESC_DEFAULT 1024 78 #define RTE_TEST_TX_DESC_DEFAULT 1024 79 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 80 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 81 82 /* ethernet addresses of ports */ 83 static struct ether_addr ports_eth_addr[MAX_PORTS]; 84 85 /* mask of enabled ports */ 86 static uint32_t enabled_port_mask = 0; 87 88 static uint16_t nb_ports; 89 90 static int rx_queue_per_lcore = 1; 91 92 struct mbuf_table { 93 uint16_t len; 94 struct rte_mbuf *m_table[MAX_PKT_BURST]; 95 }; 96 97 #define MAX_RX_QUEUE_PER_LCORE 16 98 #define MAX_TX_QUEUE_PER_PORT 16 99 struct lcore_queue_conf { 100 uint64_t tx_tsc; 101 uint16_t n_rx_queue; 102 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 103 uint16_t tx_queue_id[MAX_PORTS]; 104 struct mbuf_table tx_mbufs[MAX_PORTS]; 105 } __rte_cache_aligned; 106 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 107 108 static struct rte_eth_conf port_conf = { 109 .rxmode = { 110 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 111 .split_hdr_size = 0, 112 .offloads = DEV_RX_OFFLOAD_JUMBO_FRAME, 113 }, 114 .txmode = { 115 .mq_mode = ETH_MQ_TX_NONE, 116 .offloads = DEV_TX_OFFLOAD_MULTI_SEGS, 117 }, 118 }; 119 120 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 121 122 123 /* Multicast */ 124 static struct rte_fbk_hash_params mcast_hash_params = { 125 .name = "MCAST_HASH", 126 .entries = 1024, 127 .entries_per_bucket = 4, 128 .socket_id = 0, 129 .hash_func = NULL, 130 .init_val = 0, 131 }; 132 133 struct rte_fbk_hash_table *mcast_hash = NULL; 134 135 struct mcast_group_params { 136 uint32_t ip; 137 uint16_t port_mask; 138 }; 139 140 static struct mcast_group_params mcast_group_table[] = { 141 {IPv4(224,0,0,101), 0x1}, 142 {IPv4(224,0,0,102), 0x2}, 143 {IPv4(224,0,0,103), 0x3}, 144 {IPv4(224,0,0,104), 0x4}, 145 {IPv4(224,0,0,105), 0x5}, 146 {IPv4(224,0,0,106), 0x6}, 147 {IPv4(224,0,0,107), 0x7}, 148 {IPv4(224,0,0,108), 0x8}, 149 {IPv4(224,0,0,109), 0x9}, 150 {IPv4(224,0,0,110), 0xA}, 151 {IPv4(224,0,0,111), 0xB}, 152 {IPv4(224,0,0,112), 0xC}, 153 {IPv4(224,0,0,113), 0xD}, 154 {IPv4(224,0,0,114), 0xE}, 155 {IPv4(224,0,0,115), 0xF}, 156 }; 157 158 #define N_MCAST_GROUPS \ 159 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 160 161 162 /* Send burst of packets on an output interface */ 163 static void 164 send_burst(struct lcore_queue_conf *qconf, uint16_t port) 165 { 166 struct rte_mbuf **m_table; 167 uint16_t n, queueid; 168 int ret; 169 170 queueid = qconf->tx_queue_id[port]; 171 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 172 n = qconf->tx_mbufs[port].len; 173 174 ret = rte_eth_tx_burst(port, queueid, m_table, n); 175 while (unlikely (ret < n)) { 176 rte_pktmbuf_free(m_table[ret]); 177 ret++; 178 } 179 180 qconf->tx_mbufs[port].len = 0; 181 } 182 183 /* Get number of bits set. */ 184 static inline uint32_t 185 bitcnt(uint32_t v) 186 { 187 uint32_t n; 188 189 for (n = 0; v != 0; v &= v - 1, n++) 190 ; 191 192 return n; 193 } 194 195 /** 196 * Create the output multicast packet based on the given input packet. 197 * There are two approaches for creating outgoing packet, though both 198 * are based on data zero-copy idea, they differ in few details: 199 * First one creates a clone of the input packet, e.g - walk though all 200 * segments of the input packet, and for each of them create a new packet 201 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 202 * for more details). Then new mbuf is allocated for the packet header 203 * and is prepended to the 'clone' mbuf. 204 * Second approach doesn't make a clone, it just increment refcnt for all 205 * input packet segments. Then it allocates new mbuf for the packet header 206 * and prepends it to the input packet. 207 * Basically first approach reuses only input packet's data, but creates 208 * it's own copy of packet's metadata. Second approach reuses both input's 209 * packet data and metadata. 210 * The advantage of first approach - is that each outgoing packet has it's 211 * own copy of metadata, so we can safely modify data pointer of the 212 * input packet. That allows us to skip creation if the output packet for 213 * the last destination port, but instead modify input packet's header inplace, 214 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 215 * The advantage of second approach - less work for each outgoing packet, 216 * e.g: we skip "clone" operation completely. Though it comes with a price - 217 * input packet's metadata has to be intact. So for N destination ports we 218 * need to invoke mcast_out_pkt N times. 219 * So for small number of outgoing ports (and segments in the input packet) 220 * first approach will be faster. 221 * As number of outgoing ports (and/or input segments) will grow, 222 * second way will become more preferable. 223 * 224 * @param pkt 225 * Input packet mbuf. 226 * @param use_clone 227 * Control which of the two approaches described above should be used: 228 * - 0 - use second approach: 229 * Don't "clone" input packet. 230 * Prepend new header directly to the input packet 231 * - 1 - use first approach: 232 * Make a "clone" of input packet first. 233 * Prepend new header to the clone of the input packet 234 * @return 235 * - The pointer to the new outgoing packet. 236 * - NULL if operation failed. 237 */ 238 static inline struct rte_mbuf * 239 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 240 { 241 struct rte_mbuf *hdr; 242 243 /* Create new mbuf for the header. */ 244 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 245 return NULL; 246 247 /* If requested, then make a new clone packet. */ 248 if (use_clone != 0 && 249 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 250 rte_pktmbuf_free(hdr); 251 return NULL; 252 } 253 254 /* prepend new header */ 255 hdr->next = pkt; 256 257 258 /* update header's fields */ 259 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 260 hdr->nb_segs = pkt->nb_segs + 1; 261 262 /* copy metadata from source packet*/ 263 hdr->port = pkt->port; 264 hdr->vlan_tci = pkt->vlan_tci; 265 hdr->vlan_tci_outer = pkt->vlan_tci_outer; 266 hdr->tx_offload = pkt->tx_offload; 267 hdr->hash = pkt->hash; 268 269 __rte_mbuf_sanity_check(hdr, 1); 270 return hdr; 271 } 272 273 /* 274 * Write new Ethernet header to the outgoing packet, 275 * and put it into the outgoing queue for the given port. 276 */ 277 static inline void 278 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 279 struct lcore_queue_conf *qconf, uint16_t port) 280 { 281 struct ether_hdr *ethdr; 282 uint16_t len; 283 284 /* Construct Ethernet header. */ 285 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 286 RTE_ASSERT(ethdr != NULL); 287 288 ether_addr_copy(dest_addr, ðdr->d_addr); 289 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 290 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 291 292 /* Put new packet into the output queue */ 293 len = qconf->tx_mbufs[port].len; 294 qconf->tx_mbufs[port].m_table[len] = pkt; 295 qconf->tx_mbufs[port].len = ++len; 296 297 /* Transmit packets */ 298 if (unlikely(MAX_PKT_BURST == len)) 299 send_burst(qconf, port); 300 } 301 302 /* Multicast forward of the input packet */ 303 static inline void 304 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 305 { 306 struct rte_mbuf *mc; 307 struct ipv4_hdr *iphdr; 308 uint32_t dest_addr, port_mask, port_num, use_clone; 309 int32_t hash; 310 uint16_t port; 311 union { 312 uint64_t as_int; 313 struct ether_addr as_addr; 314 } dst_eth_addr; 315 316 /* Remove the Ethernet header from the input packet */ 317 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 318 RTE_ASSERT(iphdr != NULL); 319 320 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 321 322 /* 323 * Check that it is a valid multicast address and 324 * we have some active ports assigned to it. 325 */ 326 if(!IS_IPV4_MCAST(dest_addr) || 327 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 328 (port_mask = hash & enabled_port_mask) == 0) { 329 rte_pktmbuf_free(m); 330 return; 331 } 332 333 /* Calculate number of destination ports. */ 334 port_num = bitcnt(port_mask); 335 336 /* Should we use rte_pktmbuf_clone() or not. */ 337 use_clone = (port_num <= MCAST_CLONE_PORTS && 338 m->nb_segs <= MCAST_CLONE_SEGS); 339 340 /* Mark all packet's segments as referenced port_num times */ 341 if (use_clone == 0) 342 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 343 344 /* construct destination ethernet address */ 345 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 346 347 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 348 349 /* Prepare output packet and send it out. */ 350 if ((port_mask & 1) != 0) { 351 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 352 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 353 qconf, port); 354 else if (use_clone == 0) 355 rte_pktmbuf_free(m); 356 } 357 } 358 359 /* 360 * If we making clone packets, then, for the last destination port, 361 * we can overwrite input packet's metadata. 362 */ 363 if (use_clone != 0) 364 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 365 else 366 rte_pktmbuf_free(m); 367 } 368 369 /* Send burst of outgoing packet, if timeout expires. */ 370 static inline void 371 send_timeout_burst(struct lcore_queue_conf *qconf) 372 { 373 uint64_t cur_tsc; 374 uint16_t portid; 375 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 376 377 cur_tsc = rte_rdtsc(); 378 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 379 return; 380 381 for (portid = 0; portid < MAX_PORTS; portid++) { 382 if (qconf->tx_mbufs[portid].len != 0) 383 send_burst(qconf, portid); 384 } 385 qconf->tx_tsc = cur_tsc; 386 } 387 388 /* main processing loop */ 389 static int 390 main_loop(__rte_unused void *dummy) 391 { 392 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 393 unsigned lcore_id; 394 int i, j, nb_rx; 395 uint16_t portid; 396 struct lcore_queue_conf *qconf; 397 398 lcore_id = rte_lcore_id(); 399 qconf = &lcore_queue_conf[lcore_id]; 400 401 402 if (qconf->n_rx_queue == 0) { 403 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 404 lcore_id); 405 return 0; 406 } 407 408 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 409 lcore_id); 410 411 for (i = 0; i < qconf->n_rx_queue; i++) { 412 413 portid = qconf->rx_queue_list[i]; 414 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 415 lcore_id, portid); 416 } 417 418 while (1) { 419 420 /* 421 * Read packet from RX queues 422 */ 423 for (i = 0; i < qconf->n_rx_queue; i++) { 424 425 portid = qconf->rx_queue_list[i]; 426 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 427 MAX_PKT_BURST); 428 429 /* Prefetch first packets */ 430 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 431 rte_prefetch0(rte_pktmbuf_mtod( 432 pkts_burst[j], void *)); 433 } 434 435 /* Prefetch and forward already prefetched packets */ 436 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 437 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 438 j + PREFETCH_OFFSET], void *)); 439 mcast_forward(pkts_burst[j], qconf); 440 } 441 442 /* Forward remaining prefetched packets */ 443 for (; j < nb_rx; j++) { 444 mcast_forward(pkts_burst[j], qconf); 445 } 446 } 447 448 /* Send out packets from TX queues */ 449 send_timeout_burst(qconf); 450 } 451 } 452 453 /* display usage */ 454 static void 455 print_usage(const char *prgname) 456 { 457 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 458 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 459 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 460 prgname); 461 } 462 463 static uint32_t 464 parse_portmask(const char *portmask) 465 { 466 char *end = NULL; 467 unsigned long pm; 468 469 /* parse hexadecimal string */ 470 pm = strtoul(portmask, &end, 16); 471 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 472 return 0; 473 474 return (uint32_t)pm; 475 } 476 477 static int 478 parse_nqueue(const char *q_arg) 479 { 480 char *end = NULL; 481 unsigned long n; 482 483 /* parse numerical string */ 484 errno = 0; 485 n = strtoul(q_arg, &end, 0); 486 if (errno != 0 || end == NULL || *end != '\0' || 487 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 488 return -1; 489 490 return n; 491 } 492 493 /* Parse the argument given in the command line of the application */ 494 static int 495 parse_args(int argc, char **argv) 496 { 497 int opt, ret; 498 char **argvopt; 499 int option_index; 500 char *prgname = argv[0]; 501 static struct option lgopts[] = { 502 {NULL, 0, 0, 0} 503 }; 504 505 argvopt = argv; 506 507 while ((opt = getopt_long(argc, argvopt, "p:q:", 508 lgopts, &option_index)) != EOF) { 509 510 switch (opt) { 511 /* portmask */ 512 case 'p': 513 enabled_port_mask = parse_portmask(optarg); 514 if (enabled_port_mask == 0) { 515 printf("invalid portmask\n"); 516 print_usage(prgname); 517 return -1; 518 } 519 break; 520 521 /* nqueue */ 522 case 'q': 523 rx_queue_per_lcore = parse_nqueue(optarg); 524 if (rx_queue_per_lcore < 0) { 525 printf("invalid queue number\n"); 526 print_usage(prgname); 527 return -1; 528 } 529 break; 530 531 default: 532 print_usage(prgname); 533 return -1; 534 } 535 } 536 537 if (optind >= 0) 538 argv[optind-1] = prgname; 539 540 ret = optind-1; 541 optind = 1; /* reset getopt lib */ 542 return ret; 543 } 544 545 static void 546 print_ethaddr(const char *name, struct ether_addr *eth_addr) 547 { 548 char buf[ETHER_ADDR_FMT_SIZE]; 549 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 550 printf("%s%s", name, buf); 551 } 552 553 static int 554 init_mcast_hash(void) 555 { 556 uint32_t i; 557 558 mcast_hash_params.socket_id = rte_socket_id(); 559 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 560 if (mcast_hash == NULL){ 561 return -1; 562 } 563 564 for (i = 0; i < N_MCAST_GROUPS; i ++){ 565 if (rte_fbk_hash_add_key(mcast_hash, 566 mcast_group_table[i].ip, 567 mcast_group_table[i].port_mask) < 0) { 568 return -1; 569 } 570 } 571 572 return 0; 573 } 574 575 /* Check the link status of all ports in up to 9s, and print them finally */ 576 static void 577 check_all_ports_link_status(uint32_t port_mask) 578 { 579 #define CHECK_INTERVAL 100 /* 100ms */ 580 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 581 uint16_t portid; 582 uint8_t count, all_ports_up, print_flag = 0; 583 struct rte_eth_link link; 584 585 printf("\nChecking link status"); 586 fflush(stdout); 587 for (count = 0; count <= MAX_CHECK_TIME; count++) { 588 all_ports_up = 1; 589 RTE_ETH_FOREACH_DEV(portid) { 590 if ((port_mask & (1 << portid)) == 0) 591 continue; 592 memset(&link, 0, sizeof(link)); 593 rte_eth_link_get_nowait(portid, &link); 594 /* print link status if flag set */ 595 if (print_flag == 1) { 596 if (link.link_status) 597 printf( 598 "Port%d Link Up. Speed %u Mbps - %s\n", 599 portid, link.link_speed, 600 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 601 ("full-duplex") : ("half-duplex\n")); 602 else 603 printf("Port %d Link Down\n", portid); 604 continue; 605 } 606 /* clear all_ports_up flag if any link down */ 607 if (link.link_status == ETH_LINK_DOWN) { 608 all_ports_up = 0; 609 break; 610 } 611 } 612 /* after finally printing all link status, get out */ 613 if (print_flag == 1) 614 break; 615 616 if (all_ports_up == 0) { 617 printf("."); 618 fflush(stdout); 619 rte_delay_ms(CHECK_INTERVAL); 620 } 621 622 /* set the print_flag if all ports up or timeout */ 623 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 624 print_flag = 1; 625 printf("done\n"); 626 } 627 } 628 } 629 630 int 631 main(int argc, char **argv) 632 { 633 struct lcore_queue_conf *qconf; 634 struct rte_eth_dev_info dev_info; 635 struct rte_eth_txconf *txconf; 636 int ret; 637 uint16_t queueid; 638 unsigned lcore_id = 0, rx_lcore_id = 0; 639 uint32_t n_tx_queue, nb_lcores; 640 uint16_t portid; 641 642 /* init EAL */ 643 ret = rte_eal_init(argc, argv); 644 if (ret < 0) 645 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 646 argc -= ret; 647 argv += ret; 648 649 /* parse application arguments (after the EAL ones) */ 650 ret = parse_args(argc, argv); 651 if (ret < 0) 652 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 653 654 /* create the mbuf pools */ 655 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 656 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 657 658 if (packet_pool == NULL) 659 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 660 661 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 662 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 663 664 if (header_pool == NULL) 665 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 666 667 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 668 0, 0, rte_socket_id()); 669 670 if (clone_pool == NULL) 671 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 672 673 nb_ports = rte_eth_dev_count_avail(); 674 if (nb_ports == 0) 675 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 676 if (nb_ports > MAX_PORTS) 677 nb_ports = MAX_PORTS; 678 679 nb_lcores = rte_lcore_count(); 680 681 /* initialize all ports */ 682 RTE_ETH_FOREACH_DEV(portid) { 683 struct rte_eth_rxconf rxq_conf; 684 struct rte_eth_conf local_port_conf = port_conf; 685 686 /* skip ports that are not enabled */ 687 if ((enabled_port_mask & (1 << portid)) == 0) { 688 printf("Skipping disabled port %d\n", portid); 689 continue; 690 } 691 692 qconf = &lcore_queue_conf[rx_lcore_id]; 693 694 /* limit the frame size to the maximum supported by NIC */ 695 rte_eth_dev_info_get(portid, &dev_info); 696 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 697 dev_info.max_rx_pktlen, 698 local_port_conf.rxmode.max_rx_pkt_len); 699 700 /* get the lcore_id for this port */ 701 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 702 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 703 704 rx_lcore_id ++; 705 qconf = &lcore_queue_conf[rx_lcore_id]; 706 707 if (rx_lcore_id >= RTE_MAX_LCORE) 708 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 709 } 710 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 711 qconf->n_rx_queue++; 712 713 /* init port */ 714 printf("Initializing port %d on lcore %u... ", portid, 715 rx_lcore_id); 716 fflush(stdout); 717 718 n_tx_queue = nb_lcores; 719 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 720 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 721 722 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 723 &local_port_conf); 724 if (ret < 0) 725 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 726 ret, portid); 727 728 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 729 &nb_txd); 730 if (ret < 0) 731 rte_exit(EXIT_FAILURE, 732 "Cannot adjust number of descriptors: err=%d, port=%d\n", 733 ret, portid); 734 735 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 736 print_ethaddr(" Address:", &ports_eth_addr[portid]); 737 printf(", "); 738 739 /* init one RX queue */ 740 queueid = 0; 741 printf("rxq=%hu ", queueid); 742 fflush(stdout); 743 rxq_conf = dev_info.default_rxconf; 744 rxq_conf.offloads = local_port_conf.rxmode.offloads; 745 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 746 rte_eth_dev_socket_id(portid), 747 &rxq_conf, 748 packet_pool); 749 if (ret < 0) 750 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 751 ret, portid); 752 753 /* init one TX queue per couple (lcore,port) */ 754 queueid = 0; 755 756 RTE_LCORE_FOREACH(lcore_id) { 757 if (rte_lcore_is_enabled(lcore_id) == 0) 758 continue; 759 printf("txq=%u,%hu ", lcore_id, queueid); 760 fflush(stdout); 761 762 txconf = &dev_info.default_txconf; 763 txconf->offloads = local_port_conf.txmode.offloads; 764 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 765 rte_lcore_to_socket_id(lcore_id), txconf); 766 if (ret < 0) 767 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 768 "port=%d\n", ret, portid); 769 770 qconf = &lcore_queue_conf[lcore_id]; 771 qconf->tx_queue_id[portid] = queueid; 772 queueid++; 773 } 774 rte_eth_allmulticast_enable(portid); 775 /* Start device */ 776 ret = rte_eth_dev_start(portid); 777 if (ret < 0) 778 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 779 ret, portid); 780 781 printf("done:\n"); 782 } 783 784 check_all_ports_link_status(enabled_port_mask); 785 786 /* initialize the multicast hash */ 787 int retval = init_mcast_hash(); 788 if (retval != 0) 789 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 790 791 /* launch per-lcore init on every lcore */ 792 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 793 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 794 if (rte_eal_wait_lcore(lcore_id) < 0) 795 return -1; 796 } 797 798 return 0; 799 } 800