1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_log.h> 48 #include <rte_memory.h> 49 #include <rte_memcpy.h> 50 #include <rte_memzone.h> 51 #include <rte_eal.h> 52 #include <rte_per_lcore.h> 53 #include <rte_launch.h> 54 #include <rte_atomic.h> 55 #include <rte_cycles.h> 56 #include <rte_prefetch.h> 57 #include <rte_lcore.h> 58 #include <rte_per_lcore.h> 59 #include <rte_branch_prediction.h> 60 #include <rte_interrupts.h> 61 #include <rte_pci.h> 62 #include <rte_random.h> 63 #include <rte_debug.h> 64 #include <rte_ether.h> 65 #include <rte_ethdev.h> 66 #include <rte_mempool.h> 67 #include <rte_mbuf.h> 68 #include <rte_malloc.h> 69 #include <rte_fbk_hash.h> 70 #include <rte_ip.h> 71 72 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 73 74 #define MAX_PORTS 16 75 76 #define MCAST_CLONE_PORTS 2 77 #define MCAST_CLONE_SEGS 2 78 79 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 80 #define NB_PKT_MBUF 8192 81 82 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 83 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 84 85 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 86 87 /* allow max jumbo frame 9.5 KB */ 88 #define JUMBO_FRAME_MAX_SIZE 0x2600 89 90 #define MAX_PKT_BURST 32 91 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 92 93 /* Configure how many packets ahead to prefetch, when reading packets */ 94 #define PREFETCH_OFFSET 3 95 96 /* 97 * Construct Ethernet multicast address from IPv4 multicast address. 98 * Citing RFC 1112, section 6.4: 99 * "An IP host group address is mapped to an Ethernet multicast address 100 * by placing the low-order 23-bits of the IP address into the low-order 101 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 102 */ 103 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 104 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 105 106 /* 107 * Configurable number of RX/TX ring descriptors 108 */ 109 #define RTE_TEST_RX_DESC_DEFAULT 128 110 #define RTE_TEST_TX_DESC_DEFAULT 512 111 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 112 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 113 114 /* ethernet addresses of ports */ 115 static struct ether_addr ports_eth_addr[MAX_PORTS]; 116 117 /* mask of enabled ports */ 118 static uint32_t enabled_port_mask = 0; 119 120 static uint8_t nb_ports = 0; 121 122 static int rx_queue_per_lcore = 1; 123 124 struct mbuf_table { 125 uint16_t len; 126 struct rte_mbuf *m_table[MAX_PKT_BURST]; 127 }; 128 129 #define MAX_RX_QUEUE_PER_LCORE 16 130 #define MAX_TX_QUEUE_PER_PORT 16 131 struct lcore_queue_conf { 132 uint64_t tx_tsc; 133 uint16_t n_rx_queue; 134 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 135 uint16_t tx_queue_id[MAX_PORTS]; 136 struct mbuf_table tx_mbufs[MAX_PORTS]; 137 } __rte_cache_aligned; 138 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 139 140 static const struct rte_eth_conf port_conf = { 141 .rxmode = { 142 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 143 .split_hdr_size = 0, 144 .header_split = 0, /**< Header Split disabled */ 145 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 146 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 147 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 148 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 149 }, 150 .txmode = { 151 .mq_mode = ETH_MQ_TX_NONE, 152 }, 153 }; 154 155 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 156 157 158 /* Multicast */ 159 static struct rte_fbk_hash_params mcast_hash_params = { 160 .name = "MCAST_HASH", 161 .entries = 1024, 162 .entries_per_bucket = 4, 163 .socket_id = 0, 164 .hash_func = NULL, 165 .init_val = 0, 166 }; 167 168 struct rte_fbk_hash_table *mcast_hash = NULL; 169 170 struct mcast_group_params { 171 uint32_t ip; 172 uint16_t port_mask; 173 }; 174 175 static struct mcast_group_params mcast_group_table[] = { 176 {IPv4(224,0,0,101), 0x1}, 177 {IPv4(224,0,0,102), 0x2}, 178 {IPv4(224,0,0,103), 0x3}, 179 {IPv4(224,0,0,104), 0x4}, 180 {IPv4(224,0,0,105), 0x5}, 181 {IPv4(224,0,0,106), 0x6}, 182 {IPv4(224,0,0,107), 0x7}, 183 {IPv4(224,0,0,108), 0x8}, 184 {IPv4(224,0,0,109), 0x9}, 185 {IPv4(224,0,0,110), 0xA}, 186 {IPv4(224,0,0,111), 0xB}, 187 {IPv4(224,0,0,112), 0xC}, 188 {IPv4(224,0,0,113), 0xD}, 189 {IPv4(224,0,0,114), 0xE}, 190 {IPv4(224,0,0,115), 0xF}, 191 }; 192 193 #define N_MCAST_GROUPS \ 194 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 195 196 197 /* Send burst of packets on an output interface */ 198 static void 199 send_burst(struct lcore_queue_conf *qconf, uint8_t port) 200 { 201 struct rte_mbuf **m_table; 202 uint16_t n, queueid; 203 int ret; 204 205 queueid = qconf->tx_queue_id[port]; 206 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 207 n = qconf->tx_mbufs[port].len; 208 209 ret = rte_eth_tx_burst(port, queueid, m_table, n); 210 while (unlikely (ret < n)) { 211 rte_pktmbuf_free(m_table[ret]); 212 ret++; 213 } 214 215 qconf->tx_mbufs[port].len = 0; 216 } 217 218 /* Get number of bits set. */ 219 static inline uint32_t 220 bitcnt(uint32_t v) 221 { 222 uint32_t n; 223 224 for (n = 0; v != 0; v &= v - 1, n++) 225 ; 226 227 return n; 228 } 229 230 /** 231 * Create the output multicast packet based on the given input packet. 232 * There are two approaches for creating outgoing packet, though both 233 * are based on data zero-copy idea, they differ in few details: 234 * First one creates a clone of the input packet, e.g - walk though all 235 * segments of the input packet, and for each of them create a new packet 236 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 237 * for more details). Then new mbuf is allocated for the packet header 238 * and is prepended to the 'clone' mbuf. 239 * Second approach doesn't make a clone, it just increment refcnt for all 240 * input packet segments. Then it allocates new mbuf for the packet header 241 * and prepends it to the input packet. 242 * Basically first approach reuses only input packet's data, but creates 243 * it's own copy of packet's metadata. Second approach reuses both input's 244 * packet data and metadata. 245 * The advantage of first approach - is that each outgoing packet has it's 246 * own copy of metadata, so we can safely modify data pointer of the 247 * input packet. That allows us to skip creation if the output packet for 248 * the last destination port, but instead modify input packet's header inplace, 249 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 250 * The advantage of second approach - less work for each outgoing packet, 251 * e.g: we skip "clone" operation completely. Though it comes with a price - 252 * input packet's metadata has to be intact. So for N destination ports we 253 * need to invoke mcast_out_pkt N times. 254 * So for small number of outgoing ports (and segments in the input packet) 255 * first approach will be faster. 256 * As number of outgoing ports (and/or input segments) will grow, 257 * second way will become more preferable. 258 * 259 * @param pkt 260 * Input packet mbuf. 261 * @param use_clone 262 * Control which of the two approaches described above should be used: 263 * - 0 - use second approach: 264 * Don't "clone" input packet. 265 * Prepend new header directly to the input packet 266 * - 1 - use first approach: 267 * Make a "clone" of input packet first. 268 * Prepend new header to the clone of the input packet 269 * @return 270 * - The pointer to the new outgoing packet. 271 * - NULL if operation failed. 272 */ 273 static inline struct rte_mbuf * 274 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 275 { 276 struct rte_mbuf *hdr; 277 278 /* Create new mbuf for the header. */ 279 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 280 return NULL; 281 282 /* If requested, then make a new clone packet. */ 283 if (use_clone != 0 && 284 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 285 rte_pktmbuf_free(hdr); 286 return NULL; 287 } 288 289 /* prepend new header */ 290 hdr->next = pkt; 291 292 293 /* update header's fields */ 294 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 295 hdr->nb_segs = (uint8_t)(pkt->nb_segs + 1); 296 297 /* copy metadata from source packet*/ 298 hdr->port = pkt->port; 299 hdr->vlan_tci = pkt->vlan_tci; 300 hdr->vlan_tci_outer = pkt->vlan_tci_outer; 301 hdr->tx_offload = pkt->tx_offload; 302 hdr->hash = pkt->hash; 303 304 hdr->ol_flags = pkt->ol_flags; 305 306 __rte_mbuf_sanity_check(hdr, 1); 307 return hdr; 308 } 309 310 /* 311 * Write new Ethernet header to the outgoing packet, 312 * and put it into the outgoing queue for the given port. 313 */ 314 static inline void 315 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 316 struct lcore_queue_conf *qconf, uint8_t port) 317 { 318 struct ether_hdr *ethdr; 319 uint16_t len; 320 321 /* Construct Ethernet header. */ 322 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 323 RTE_ASSERT(ethdr != NULL); 324 325 ether_addr_copy(dest_addr, ðdr->d_addr); 326 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 327 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 328 329 /* Put new packet into the output queue */ 330 len = qconf->tx_mbufs[port].len; 331 qconf->tx_mbufs[port].m_table[len] = pkt; 332 qconf->tx_mbufs[port].len = ++len; 333 334 /* Transmit packets */ 335 if (unlikely(MAX_PKT_BURST == len)) 336 send_burst(qconf, port); 337 } 338 339 /* Multicast forward of the input packet */ 340 static inline void 341 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 342 { 343 struct rte_mbuf *mc; 344 struct ipv4_hdr *iphdr; 345 uint32_t dest_addr, port_mask, port_num, use_clone; 346 int32_t hash; 347 uint8_t port; 348 union { 349 uint64_t as_int; 350 struct ether_addr as_addr; 351 } dst_eth_addr; 352 353 /* Remove the Ethernet header from the input packet */ 354 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 355 RTE_ASSERT(iphdr != NULL); 356 357 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 358 359 /* 360 * Check that it is a valid multicast address and 361 * we have some active ports assigned to it. 362 */ 363 if(!IS_IPV4_MCAST(dest_addr) || 364 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 365 (port_mask = hash & enabled_port_mask) == 0) { 366 rte_pktmbuf_free(m); 367 return; 368 } 369 370 /* Calculate number of destination ports. */ 371 port_num = bitcnt(port_mask); 372 373 /* Should we use rte_pktmbuf_clone() or not. */ 374 use_clone = (port_num <= MCAST_CLONE_PORTS && 375 m->nb_segs <= MCAST_CLONE_SEGS); 376 377 /* Mark all packet's segments as referenced port_num times */ 378 if (use_clone == 0) 379 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 380 381 /* construct destination ethernet address */ 382 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 383 384 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 385 386 /* Prepare output packet and send it out. */ 387 if ((port_mask & 1) != 0) { 388 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 389 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 390 qconf, port); 391 else if (use_clone == 0) 392 rte_pktmbuf_free(m); 393 } 394 } 395 396 /* 397 * If we making clone packets, then, for the last destination port, 398 * we can overwrite input packet's metadata. 399 */ 400 if (use_clone != 0) 401 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 402 else 403 rte_pktmbuf_free(m); 404 } 405 406 /* Send burst of outgoing packet, if timeout expires. */ 407 static inline void 408 send_timeout_burst(struct lcore_queue_conf *qconf) 409 { 410 uint64_t cur_tsc; 411 uint8_t portid; 412 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 413 414 cur_tsc = rte_rdtsc(); 415 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 416 return; 417 418 for (portid = 0; portid < MAX_PORTS; portid++) { 419 if (qconf->tx_mbufs[portid].len != 0) 420 send_burst(qconf, portid); 421 } 422 qconf->tx_tsc = cur_tsc; 423 } 424 425 /* main processing loop */ 426 static int 427 main_loop(__rte_unused void *dummy) 428 { 429 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 430 unsigned lcore_id; 431 int i, j, nb_rx; 432 uint8_t portid; 433 struct lcore_queue_conf *qconf; 434 435 lcore_id = rte_lcore_id(); 436 qconf = &lcore_queue_conf[lcore_id]; 437 438 439 if (qconf->n_rx_queue == 0) { 440 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 441 lcore_id); 442 return 0; 443 } 444 445 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 446 lcore_id); 447 448 for (i = 0; i < qconf->n_rx_queue; i++) { 449 450 portid = qconf->rx_queue_list[i]; 451 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 452 lcore_id, (int) portid); 453 } 454 455 while (1) { 456 457 /* 458 * Read packet from RX queues 459 */ 460 for (i = 0; i < qconf->n_rx_queue; i++) { 461 462 portid = qconf->rx_queue_list[i]; 463 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 464 MAX_PKT_BURST); 465 466 /* Prefetch first packets */ 467 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 468 rte_prefetch0(rte_pktmbuf_mtod( 469 pkts_burst[j], void *)); 470 } 471 472 /* Prefetch and forward already prefetched packets */ 473 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 474 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 475 j + PREFETCH_OFFSET], void *)); 476 mcast_forward(pkts_burst[j], qconf); 477 } 478 479 /* Forward remaining prefetched packets */ 480 for (; j < nb_rx; j++) { 481 mcast_forward(pkts_burst[j], qconf); 482 } 483 } 484 485 /* Send out packets from TX queues */ 486 send_timeout_burst(qconf); 487 } 488 } 489 490 /* display usage */ 491 static void 492 print_usage(const char *prgname) 493 { 494 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 495 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 496 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 497 prgname); 498 } 499 500 static uint32_t 501 parse_portmask(const char *portmask) 502 { 503 char *end = NULL; 504 unsigned long pm; 505 506 /* parse hexadecimal string */ 507 pm = strtoul(portmask, &end, 16); 508 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 509 return 0; 510 511 return (uint32_t)pm; 512 } 513 514 static int 515 parse_nqueue(const char *q_arg) 516 { 517 char *end = NULL; 518 unsigned long n; 519 520 /* parse numerical string */ 521 errno = 0; 522 n = strtoul(q_arg, &end, 0); 523 if (errno != 0 || end == NULL || *end != '\0' || 524 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 525 return -1; 526 527 return n; 528 } 529 530 /* Parse the argument given in the command line of the application */ 531 static int 532 parse_args(int argc, char **argv) 533 { 534 int opt, ret; 535 char **argvopt; 536 int option_index; 537 char *prgname = argv[0]; 538 static struct option lgopts[] = { 539 {NULL, 0, 0, 0} 540 }; 541 542 argvopt = argv; 543 544 while ((opt = getopt_long(argc, argvopt, "p:q:", 545 lgopts, &option_index)) != EOF) { 546 547 switch (opt) { 548 /* portmask */ 549 case 'p': 550 enabled_port_mask = parse_portmask(optarg); 551 if (enabled_port_mask == 0) { 552 printf("invalid portmask\n"); 553 print_usage(prgname); 554 return -1; 555 } 556 break; 557 558 /* nqueue */ 559 case 'q': 560 rx_queue_per_lcore = parse_nqueue(optarg); 561 if (rx_queue_per_lcore < 0) { 562 printf("invalid queue number\n"); 563 print_usage(prgname); 564 return -1; 565 } 566 break; 567 568 default: 569 print_usage(prgname); 570 return -1; 571 } 572 } 573 574 if (optind >= 0) 575 argv[optind-1] = prgname; 576 577 ret = optind-1; 578 optind = 1; /* reset getopt lib */ 579 return ret; 580 } 581 582 static void 583 print_ethaddr(const char *name, struct ether_addr *eth_addr) 584 { 585 char buf[ETHER_ADDR_FMT_SIZE]; 586 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 587 printf("%s%s", name, buf); 588 } 589 590 static int 591 init_mcast_hash(void) 592 { 593 uint32_t i; 594 595 mcast_hash_params.socket_id = rte_socket_id(); 596 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 597 if (mcast_hash == NULL){ 598 return -1; 599 } 600 601 for (i = 0; i < N_MCAST_GROUPS; i ++){ 602 if (rte_fbk_hash_add_key(mcast_hash, 603 mcast_group_table[i].ip, 604 mcast_group_table[i].port_mask) < 0) { 605 return -1; 606 } 607 } 608 609 return 0; 610 } 611 612 /* Check the link status of all ports in up to 9s, and print them finally */ 613 static void 614 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 615 { 616 #define CHECK_INTERVAL 100 /* 100ms */ 617 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 618 uint8_t portid, count, all_ports_up, print_flag = 0; 619 struct rte_eth_link link; 620 621 printf("\nChecking link status"); 622 fflush(stdout); 623 for (count = 0; count <= MAX_CHECK_TIME; count++) { 624 all_ports_up = 1; 625 for (portid = 0; portid < port_num; portid++) { 626 if ((port_mask & (1 << portid)) == 0) 627 continue; 628 memset(&link, 0, sizeof(link)); 629 rte_eth_link_get_nowait(portid, &link); 630 /* print link status if flag set */ 631 if (print_flag == 1) { 632 if (link.link_status) 633 printf("Port %d Link Up - speed %u " 634 "Mbps - %s\n", (uint8_t)portid, 635 (unsigned)link.link_speed, 636 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 637 ("full-duplex") : ("half-duplex\n")); 638 else 639 printf("Port %d Link Down\n", 640 (uint8_t)portid); 641 continue; 642 } 643 /* clear all_ports_up flag if any link down */ 644 if (link.link_status == ETH_LINK_DOWN) { 645 all_ports_up = 0; 646 break; 647 } 648 } 649 /* after finally printing all link status, get out */ 650 if (print_flag == 1) 651 break; 652 653 if (all_ports_up == 0) { 654 printf("."); 655 fflush(stdout); 656 rte_delay_ms(CHECK_INTERVAL); 657 } 658 659 /* set the print_flag if all ports up or timeout */ 660 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 661 print_flag = 1; 662 printf("done\n"); 663 } 664 } 665 } 666 667 int 668 main(int argc, char **argv) 669 { 670 struct lcore_queue_conf *qconf; 671 struct rte_eth_dev_info dev_info; 672 struct rte_eth_txconf *txconf; 673 int ret; 674 uint16_t queueid; 675 unsigned lcore_id = 0, rx_lcore_id = 0; 676 uint32_t n_tx_queue, nb_lcores; 677 uint8_t portid; 678 679 /* init EAL */ 680 ret = rte_eal_init(argc, argv); 681 if (ret < 0) 682 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 683 argc -= ret; 684 argv += ret; 685 686 /* parse application arguments (after the EAL ones) */ 687 ret = parse_args(argc, argv); 688 if (ret < 0) 689 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 690 691 /* create the mbuf pools */ 692 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 693 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 694 695 if (packet_pool == NULL) 696 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 697 698 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 699 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 700 701 if (header_pool == NULL) 702 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 703 704 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 705 0, 0, rte_socket_id()); 706 707 if (clone_pool == NULL) 708 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 709 710 nb_ports = rte_eth_dev_count(); 711 if (nb_ports == 0) 712 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 713 if (nb_ports > MAX_PORTS) 714 nb_ports = MAX_PORTS; 715 716 nb_lcores = rte_lcore_count(); 717 718 /* initialize all ports */ 719 for (portid = 0; portid < nb_ports; portid++) { 720 /* skip ports that are not enabled */ 721 if ((enabled_port_mask & (1 << portid)) == 0) { 722 printf("Skipping disabled port %d\n", portid); 723 continue; 724 } 725 726 qconf = &lcore_queue_conf[rx_lcore_id]; 727 728 /* get the lcore_id for this port */ 729 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 730 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 731 732 rx_lcore_id ++; 733 qconf = &lcore_queue_conf[rx_lcore_id]; 734 735 if (rx_lcore_id >= RTE_MAX_LCORE) 736 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 737 } 738 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 739 qconf->n_rx_queue++; 740 741 /* init port */ 742 printf("Initializing port %d on lcore %u... ", portid, 743 rx_lcore_id); 744 fflush(stdout); 745 746 n_tx_queue = nb_lcores; 747 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 748 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 749 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 750 &port_conf); 751 if (ret < 0) 752 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 753 ret, portid); 754 755 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 756 print_ethaddr(" Address:", &ports_eth_addr[portid]); 757 printf(", "); 758 759 /* init one RX queue */ 760 queueid = 0; 761 printf("rxq=%hu ", queueid); 762 fflush(stdout); 763 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 764 rte_eth_dev_socket_id(portid), 765 NULL, 766 packet_pool); 767 if (ret < 0) 768 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 769 ret, portid); 770 771 /* init one TX queue per couple (lcore,port) */ 772 queueid = 0; 773 774 RTE_LCORE_FOREACH(lcore_id) { 775 if (rte_lcore_is_enabled(lcore_id) == 0) 776 continue; 777 printf("txq=%u,%hu ", lcore_id, queueid); 778 fflush(stdout); 779 780 rte_eth_dev_info_get(portid, &dev_info); 781 txconf = &dev_info.default_txconf; 782 txconf->txq_flags = 0; 783 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 784 rte_lcore_to_socket_id(lcore_id), txconf); 785 if (ret < 0) 786 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 787 "port=%d\n", ret, portid); 788 789 qconf = &lcore_queue_conf[lcore_id]; 790 qconf->tx_queue_id[portid] = queueid; 791 queueid++; 792 } 793 794 /* Start device */ 795 ret = rte_eth_dev_start(portid); 796 if (ret < 0) 797 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 798 ret, portid); 799 800 printf("done:\n"); 801 } 802 803 check_all_ports_link_status(nb_ports, enabled_port_mask); 804 805 /* initialize the multicast hash */ 806 int retval = init_mcast_hash(); 807 if (retval != 0) 808 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 809 810 /* launch per-lcore init on every lcore */ 811 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 812 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 813 if (rte_eal_wait_lcore(lcore_id) < 0) 814 return -1; 815 } 816 817 return 0; 818 } 819