1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_log.h> 48 #include <rte_memory.h> 49 #include <rte_memcpy.h> 50 #include <rte_eal.h> 51 #include <rte_launch.h> 52 #include <rte_atomic.h> 53 #include <rte_cycles.h> 54 #include <rte_prefetch.h> 55 #include <rte_lcore.h> 56 #include <rte_per_lcore.h> 57 #include <rte_branch_prediction.h> 58 #include <rte_interrupts.h> 59 #include <rte_pci.h> 60 #include <rte_random.h> 61 #include <rte_debug.h> 62 #include <rte_ether.h> 63 #include <rte_ethdev.h> 64 #include <rte_mempool.h> 65 #include <rte_mbuf.h> 66 #include <rte_malloc.h> 67 #include <rte_fbk_hash.h> 68 #include <rte_ip.h> 69 70 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 71 72 #define MAX_PORTS 16 73 74 #define MCAST_CLONE_PORTS 2 75 #define MCAST_CLONE_SEGS 2 76 77 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 78 #define NB_PKT_MBUF 8192 79 80 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 81 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 82 83 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 84 85 /* allow max jumbo frame 9.5 KB */ 86 #define JUMBO_FRAME_MAX_SIZE 0x2600 87 88 #define MAX_PKT_BURST 32 89 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 90 91 /* Configure how many packets ahead to prefetch, when reading packets */ 92 #define PREFETCH_OFFSET 3 93 94 /* 95 * Construct Ethernet multicast address from IPv4 multicast address. 96 * Citing RFC 1112, section 6.4: 97 * "An IP host group address is mapped to an Ethernet multicast address 98 * by placing the low-order 23-bits of the IP address into the low-order 99 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 100 */ 101 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 102 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 103 104 /* 105 * Configurable number of RX/TX ring descriptors 106 */ 107 #define RTE_TEST_RX_DESC_DEFAULT 128 108 #define RTE_TEST_TX_DESC_DEFAULT 512 109 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 110 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 111 112 /* ethernet addresses of ports */ 113 static struct ether_addr ports_eth_addr[MAX_PORTS]; 114 115 /* mask of enabled ports */ 116 static uint32_t enabled_port_mask = 0; 117 118 static uint16_t nb_ports; 119 120 static int rx_queue_per_lcore = 1; 121 122 struct mbuf_table { 123 uint16_t len; 124 struct rte_mbuf *m_table[MAX_PKT_BURST]; 125 }; 126 127 #define MAX_RX_QUEUE_PER_LCORE 16 128 #define MAX_TX_QUEUE_PER_PORT 16 129 struct lcore_queue_conf { 130 uint64_t tx_tsc; 131 uint16_t n_rx_queue; 132 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 133 uint16_t tx_queue_id[MAX_PORTS]; 134 struct mbuf_table tx_mbufs[MAX_PORTS]; 135 } __rte_cache_aligned; 136 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 137 138 static struct rte_eth_conf port_conf = { 139 .rxmode = { 140 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 141 .split_hdr_size = 0, 142 .header_split = 0, /**< Header Split disabled */ 143 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 144 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 145 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 146 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 147 }, 148 .txmode = { 149 .mq_mode = ETH_MQ_TX_NONE, 150 }, 151 }; 152 153 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 154 155 156 /* Multicast */ 157 static struct rte_fbk_hash_params mcast_hash_params = { 158 .name = "MCAST_HASH", 159 .entries = 1024, 160 .entries_per_bucket = 4, 161 .socket_id = 0, 162 .hash_func = NULL, 163 .init_val = 0, 164 }; 165 166 struct rte_fbk_hash_table *mcast_hash = NULL; 167 168 struct mcast_group_params { 169 uint32_t ip; 170 uint16_t port_mask; 171 }; 172 173 static struct mcast_group_params mcast_group_table[] = { 174 {IPv4(224,0,0,101), 0x1}, 175 {IPv4(224,0,0,102), 0x2}, 176 {IPv4(224,0,0,103), 0x3}, 177 {IPv4(224,0,0,104), 0x4}, 178 {IPv4(224,0,0,105), 0x5}, 179 {IPv4(224,0,0,106), 0x6}, 180 {IPv4(224,0,0,107), 0x7}, 181 {IPv4(224,0,0,108), 0x8}, 182 {IPv4(224,0,0,109), 0x9}, 183 {IPv4(224,0,0,110), 0xA}, 184 {IPv4(224,0,0,111), 0xB}, 185 {IPv4(224,0,0,112), 0xC}, 186 {IPv4(224,0,0,113), 0xD}, 187 {IPv4(224,0,0,114), 0xE}, 188 {IPv4(224,0,0,115), 0xF}, 189 }; 190 191 #define N_MCAST_GROUPS \ 192 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 193 194 195 /* Send burst of packets on an output interface */ 196 static void 197 send_burst(struct lcore_queue_conf *qconf, uint16_t port) 198 { 199 struct rte_mbuf **m_table; 200 uint16_t n, queueid; 201 int ret; 202 203 queueid = qconf->tx_queue_id[port]; 204 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 205 n = qconf->tx_mbufs[port].len; 206 207 ret = rte_eth_tx_burst(port, queueid, m_table, n); 208 while (unlikely (ret < n)) { 209 rte_pktmbuf_free(m_table[ret]); 210 ret++; 211 } 212 213 qconf->tx_mbufs[port].len = 0; 214 } 215 216 /* Get number of bits set. */ 217 static inline uint32_t 218 bitcnt(uint32_t v) 219 { 220 uint32_t n; 221 222 for (n = 0; v != 0; v &= v - 1, n++) 223 ; 224 225 return n; 226 } 227 228 /** 229 * Create the output multicast packet based on the given input packet. 230 * There are two approaches for creating outgoing packet, though both 231 * are based on data zero-copy idea, they differ in few details: 232 * First one creates a clone of the input packet, e.g - walk though all 233 * segments of the input packet, and for each of them create a new packet 234 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 235 * for more details). Then new mbuf is allocated for the packet header 236 * and is prepended to the 'clone' mbuf. 237 * Second approach doesn't make a clone, it just increment refcnt for all 238 * input packet segments. Then it allocates new mbuf for the packet header 239 * and prepends it to the input packet. 240 * Basically first approach reuses only input packet's data, but creates 241 * it's own copy of packet's metadata. Second approach reuses both input's 242 * packet data and metadata. 243 * The advantage of first approach - is that each outgoing packet has it's 244 * own copy of metadata, so we can safely modify data pointer of the 245 * input packet. That allows us to skip creation if the output packet for 246 * the last destination port, but instead modify input packet's header inplace, 247 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 248 * The advantage of second approach - less work for each outgoing packet, 249 * e.g: we skip "clone" operation completely. Though it comes with a price - 250 * input packet's metadata has to be intact. So for N destination ports we 251 * need to invoke mcast_out_pkt N times. 252 * So for small number of outgoing ports (and segments in the input packet) 253 * first approach will be faster. 254 * As number of outgoing ports (and/or input segments) will grow, 255 * second way will become more preferable. 256 * 257 * @param pkt 258 * Input packet mbuf. 259 * @param use_clone 260 * Control which of the two approaches described above should be used: 261 * - 0 - use second approach: 262 * Don't "clone" input packet. 263 * Prepend new header directly to the input packet 264 * - 1 - use first approach: 265 * Make a "clone" of input packet first. 266 * Prepend new header to the clone of the input packet 267 * @return 268 * - The pointer to the new outgoing packet. 269 * - NULL if operation failed. 270 */ 271 static inline struct rte_mbuf * 272 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 273 { 274 struct rte_mbuf *hdr; 275 276 /* Create new mbuf for the header. */ 277 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 278 return NULL; 279 280 /* If requested, then make a new clone packet. */ 281 if (use_clone != 0 && 282 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 283 rte_pktmbuf_free(hdr); 284 return NULL; 285 } 286 287 /* prepend new header */ 288 hdr->next = pkt; 289 290 291 /* update header's fields */ 292 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 293 hdr->nb_segs = (uint8_t)(pkt->nb_segs + 1); 294 295 /* copy metadata from source packet*/ 296 hdr->port = pkt->port; 297 hdr->vlan_tci = pkt->vlan_tci; 298 hdr->vlan_tci_outer = pkt->vlan_tci_outer; 299 hdr->tx_offload = pkt->tx_offload; 300 hdr->hash = pkt->hash; 301 302 hdr->ol_flags = pkt->ol_flags; 303 304 __rte_mbuf_sanity_check(hdr, 1); 305 return hdr; 306 } 307 308 /* 309 * Write new Ethernet header to the outgoing packet, 310 * and put it into the outgoing queue for the given port. 311 */ 312 static inline void 313 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 314 struct lcore_queue_conf *qconf, uint16_t port) 315 { 316 struct ether_hdr *ethdr; 317 uint16_t len; 318 319 /* Construct Ethernet header. */ 320 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 321 RTE_ASSERT(ethdr != NULL); 322 323 ether_addr_copy(dest_addr, ðdr->d_addr); 324 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 325 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 326 327 /* Put new packet into the output queue */ 328 len = qconf->tx_mbufs[port].len; 329 qconf->tx_mbufs[port].m_table[len] = pkt; 330 qconf->tx_mbufs[port].len = ++len; 331 332 /* Transmit packets */ 333 if (unlikely(MAX_PKT_BURST == len)) 334 send_burst(qconf, port); 335 } 336 337 /* Multicast forward of the input packet */ 338 static inline void 339 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 340 { 341 struct rte_mbuf *mc; 342 struct ipv4_hdr *iphdr; 343 uint32_t dest_addr, port_mask, port_num, use_clone; 344 int32_t hash; 345 uint16_t port; 346 union { 347 uint64_t as_int; 348 struct ether_addr as_addr; 349 } dst_eth_addr; 350 351 /* Remove the Ethernet header from the input packet */ 352 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 353 RTE_ASSERT(iphdr != NULL); 354 355 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 356 357 /* 358 * Check that it is a valid multicast address and 359 * we have some active ports assigned to it. 360 */ 361 if(!IS_IPV4_MCAST(dest_addr) || 362 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 363 (port_mask = hash & enabled_port_mask) == 0) { 364 rte_pktmbuf_free(m); 365 return; 366 } 367 368 /* Calculate number of destination ports. */ 369 port_num = bitcnt(port_mask); 370 371 /* Should we use rte_pktmbuf_clone() or not. */ 372 use_clone = (port_num <= MCAST_CLONE_PORTS && 373 m->nb_segs <= MCAST_CLONE_SEGS); 374 375 /* Mark all packet's segments as referenced port_num times */ 376 if (use_clone == 0) 377 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 378 379 /* construct destination ethernet address */ 380 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 381 382 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 383 384 /* Prepare output packet and send it out. */ 385 if ((port_mask & 1) != 0) { 386 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 387 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 388 qconf, port); 389 else if (use_clone == 0) 390 rte_pktmbuf_free(m); 391 } 392 } 393 394 /* 395 * If we making clone packets, then, for the last destination port, 396 * we can overwrite input packet's metadata. 397 */ 398 if (use_clone != 0) 399 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 400 else 401 rte_pktmbuf_free(m); 402 } 403 404 /* Send burst of outgoing packet, if timeout expires. */ 405 static inline void 406 send_timeout_burst(struct lcore_queue_conf *qconf) 407 { 408 uint64_t cur_tsc; 409 uint16_t portid; 410 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 411 412 cur_tsc = rte_rdtsc(); 413 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 414 return; 415 416 for (portid = 0; portid < MAX_PORTS; portid++) { 417 if (qconf->tx_mbufs[portid].len != 0) 418 send_burst(qconf, portid); 419 } 420 qconf->tx_tsc = cur_tsc; 421 } 422 423 /* main processing loop */ 424 static int 425 main_loop(__rte_unused void *dummy) 426 { 427 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 428 unsigned lcore_id; 429 int i, j, nb_rx; 430 uint16_t portid; 431 struct lcore_queue_conf *qconf; 432 433 lcore_id = rte_lcore_id(); 434 qconf = &lcore_queue_conf[lcore_id]; 435 436 437 if (qconf->n_rx_queue == 0) { 438 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 439 lcore_id); 440 return 0; 441 } 442 443 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 444 lcore_id); 445 446 for (i = 0; i < qconf->n_rx_queue; i++) { 447 448 portid = qconf->rx_queue_list[i]; 449 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 450 lcore_id, portid); 451 } 452 453 while (1) { 454 455 /* 456 * Read packet from RX queues 457 */ 458 for (i = 0; i < qconf->n_rx_queue; i++) { 459 460 portid = qconf->rx_queue_list[i]; 461 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 462 MAX_PKT_BURST); 463 464 /* Prefetch first packets */ 465 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 466 rte_prefetch0(rte_pktmbuf_mtod( 467 pkts_burst[j], void *)); 468 } 469 470 /* Prefetch and forward already prefetched packets */ 471 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 472 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 473 j + PREFETCH_OFFSET], void *)); 474 mcast_forward(pkts_burst[j], qconf); 475 } 476 477 /* Forward remaining prefetched packets */ 478 for (; j < nb_rx; j++) { 479 mcast_forward(pkts_burst[j], qconf); 480 } 481 } 482 483 /* Send out packets from TX queues */ 484 send_timeout_burst(qconf); 485 } 486 } 487 488 /* display usage */ 489 static void 490 print_usage(const char *prgname) 491 { 492 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 493 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 494 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 495 prgname); 496 } 497 498 static uint32_t 499 parse_portmask(const char *portmask) 500 { 501 char *end = NULL; 502 unsigned long pm; 503 504 /* parse hexadecimal string */ 505 pm = strtoul(portmask, &end, 16); 506 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 507 return 0; 508 509 return (uint32_t)pm; 510 } 511 512 static int 513 parse_nqueue(const char *q_arg) 514 { 515 char *end = NULL; 516 unsigned long n; 517 518 /* parse numerical string */ 519 errno = 0; 520 n = strtoul(q_arg, &end, 0); 521 if (errno != 0 || end == NULL || *end != '\0' || 522 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 523 return -1; 524 525 return n; 526 } 527 528 /* Parse the argument given in the command line of the application */ 529 static int 530 parse_args(int argc, char **argv) 531 { 532 int opt, ret; 533 char **argvopt; 534 int option_index; 535 char *prgname = argv[0]; 536 static struct option lgopts[] = { 537 {NULL, 0, 0, 0} 538 }; 539 540 argvopt = argv; 541 542 while ((opt = getopt_long(argc, argvopt, "p:q:", 543 lgopts, &option_index)) != EOF) { 544 545 switch (opt) { 546 /* portmask */ 547 case 'p': 548 enabled_port_mask = parse_portmask(optarg); 549 if (enabled_port_mask == 0) { 550 printf("invalid portmask\n"); 551 print_usage(prgname); 552 return -1; 553 } 554 break; 555 556 /* nqueue */ 557 case 'q': 558 rx_queue_per_lcore = parse_nqueue(optarg); 559 if (rx_queue_per_lcore < 0) { 560 printf("invalid queue number\n"); 561 print_usage(prgname); 562 return -1; 563 } 564 break; 565 566 default: 567 print_usage(prgname); 568 return -1; 569 } 570 } 571 572 if (optind >= 0) 573 argv[optind-1] = prgname; 574 575 ret = optind-1; 576 optind = 1; /* reset getopt lib */ 577 return ret; 578 } 579 580 static void 581 print_ethaddr(const char *name, struct ether_addr *eth_addr) 582 { 583 char buf[ETHER_ADDR_FMT_SIZE]; 584 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 585 printf("%s%s", name, buf); 586 } 587 588 static int 589 init_mcast_hash(void) 590 { 591 uint32_t i; 592 593 mcast_hash_params.socket_id = rte_socket_id(); 594 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 595 if (mcast_hash == NULL){ 596 return -1; 597 } 598 599 for (i = 0; i < N_MCAST_GROUPS; i ++){ 600 if (rte_fbk_hash_add_key(mcast_hash, 601 mcast_group_table[i].ip, 602 mcast_group_table[i].port_mask) < 0) { 603 return -1; 604 } 605 } 606 607 return 0; 608 } 609 610 /* Check the link status of all ports in up to 9s, and print them finally */ 611 static void 612 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) 613 { 614 #define CHECK_INTERVAL 100 /* 100ms */ 615 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 616 uint16_t portid; 617 uint8_t count, all_ports_up, print_flag = 0; 618 struct rte_eth_link link; 619 620 printf("\nChecking link status"); 621 fflush(stdout); 622 for (count = 0; count <= MAX_CHECK_TIME; count++) { 623 all_ports_up = 1; 624 for (portid = 0; portid < port_num; portid++) { 625 if ((port_mask & (1 << portid)) == 0) 626 continue; 627 memset(&link, 0, sizeof(link)); 628 rte_eth_link_get_nowait(portid, &link); 629 /* print link status if flag set */ 630 if (print_flag == 1) { 631 if (link.link_status) 632 printf( 633 "Port%d Link Up. Speed %u Mbps - %s\n", 634 portid, link.link_speed, 635 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 636 ("full-duplex") : ("half-duplex\n")); 637 else 638 printf("Port %d Link Down\n", portid); 639 continue; 640 } 641 /* clear all_ports_up flag if any link down */ 642 if (link.link_status == ETH_LINK_DOWN) { 643 all_ports_up = 0; 644 break; 645 } 646 } 647 /* after finally printing all link status, get out */ 648 if (print_flag == 1) 649 break; 650 651 if (all_ports_up == 0) { 652 printf("."); 653 fflush(stdout); 654 rte_delay_ms(CHECK_INTERVAL); 655 } 656 657 /* set the print_flag if all ports up or timeout */ 658 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 659 print_flag = 1; 660 printf("done\n"); 661 } 662 } 663 } 664 665 int 666 main(int argc, char **argv) 667 { 668 struct lcore_queue_conf *qconf; 669 struct rte_eth_dev_info dev_info; 670 struct rte_eth_txconf *txconf; 671 int ret; 672 uint16_t queueid; 673 unsigned lcore_id = 0, rx_lcore_id = 0; 674 uint32_t n_tx_queue, nb_lcores; 675 uint16_t portid; 676 677 /* init EAL */ 678 ret = rte_eal_init(argc, argv); 679 if (ret < 0) 680 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 681 argc -= ret; 682 argv += ret; 683 684 /* parse application arguments (after the EAL ones) */ 685 ret = parse_args(argc, argv); 686 if (ret < 0) 687 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 688 689 /* create the mbuf pools */ 690 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 691 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 692 693 if (packet_pool == NULL) 694 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 695 696 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 697 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 698 699 if (header_pool == NULL) 700 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 701 702 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 703 0, 0, rte_socket_id()); 704 705 if (clone_pool == NULL) 706 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 707 708 nb_ports = rte_eth_dev_count(); 709 if (nb_ports == 0) 710 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 711 if (nb_ports > MAX_PORTS) 712 nb_ports = MAX_PORTS; 713 714 nb_lcores = rte_lcore_count(); 715 716 /* initialize all ports */ 717 for (portid = 0; portid < nb_ports; portid++) { 718 /* skip ports that are not enabled */ 719 if ((enabled_port_mask & (1 << portid)) == 0) { 720 printf("Skipping disabled port %d\n", portid); 721 continue; 722 } 723 724 qconf = &lcore_queue_conf[rx_lcore_id]; 725 726 /* limit the frame size to the maximum supported by NIC */ 727 rte_eth_dev_info_get(portid, &dev_info); 728 port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 729 dev_info.max_rx_pktlen, port_conf.rxmode.max_rx_pkt_len); 730 731 /* get the lcore_id for this port */ 732 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 733 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 734 735 rx_lcore_id ++; 736 qconf = &lcore_queue_conf[rx_lcore_id]; 737 738 if (rx_lcore_id >= RTE_MAX_LCORE) 739 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 740 } 741 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 742 qconf->n_rx_queue++; 743 744 /* init port */ 745 printf("Initializing port %d on lcore %u... ", portid, 746 rx_lcore_id); 747 fflush(stdout); 748 749 n_tx_queue = nb_lcores; 750 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 751 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 752 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 753 &port_conf); 754 if (ret < 0) 755 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 756 ret, portid); 757 758 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 759 &nb_txd); 760 if (ret < 0) 761 rte_exit(EXIT_FAILURE, 762 "Cannot adjust number of descriptors: err=%d, port=%d\n", 763 ret, portid); 764 765 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 766 print_ethaddr(" Address:", &ports_eth_addr[portid]); 767 printf(", "); 768 769 /* init one RX queue */ 770 queueid = 0; 771 printf("rxq=%hu ", queueid); 772 fflush(stdout); 773 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 774 rte_eth_dev_socket_id(portid), 775 NULL, 776 packet_pool); 777 if (ret < 0) 778 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 779 ret, portid); 780 781 /* init one TX queue per couple (lcore,port) */ 782 queueid = 0; 783 784 RTE_LCORE_FOREACH(lcore_id) { 785 if (rte_lcore_is_enabled(lcore_id) == 0) 786 continue; 787 printf("txq=%u,%hu ", lcore_id, queueid); 788 fflush(stdout); 789 790 txconf = &dev_info.default_txconf; 791 txconf->txq_flags = 0; 792 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 793 rte_lcore_to_socket_id(lcore_id), txconf); 794 if (ret < 0) 795 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 796 "port=%d\n", ret, portid); 797 798 qconf = &lcore_queue_conf[lcore_id]; 799 qconf->tx_queue_id[portid] = queueid; 800 queueid++; 801 } 802 803 /* Start device */ 804 ret = rte_eth_dev_start(portid); 805 if (ret < 0) 806 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 807 ret, portid); 808 809 printf("done:\n"); 810 } 811 812 check_all_ports_link_status(nb_ports, enabled_port_mask); 813 814 /* initialize the multicast hash */ 815 int retval = init_mcast_hash(); 816 if (retval != 0) 817 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 818 819 /* launch per-lcore init on every lcore */ 820 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 821 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 822 if (rte_eal_wait_lcore(lcore_id) < 0) 823 return -1; 824 } 825 826 return 0; 827 } 828