xref: /dpdk/examples/ipv4_multicast/main.c (revision 3998e2a07220844d3f3c17f76a781ced3efe0de0)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_eal.h>
22 #include <rte_launch.h>
23 #include <rte_atomic.h>
24 #include <rte_cycles.h>
25 #include <rte_prefetch.h>
26 #include <rte_lcore.h>
27 #include <rte_per_lcore.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_interrupts.h>
30 #include <rte_random.h>
31 #include <rte_debug.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_mempool.h>
35 #include <rte_mbuf.h>
36 #include <rte_malloc.h>
37 #include <rte_fbk_hash.h>
38 #include <rte_ip.h>
39 
40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
41 
42 #define MAX_PORTS 16
43 
44 #define	MCAST_CLONE_PORTS	2
45 #define	MCAST_CLONE_SEGS	2
46 
47 #define	PKT_MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
48 #define	NB_PKT_MBUF	8192
49 
50 #define	HDR_MBUF_DATA_SIZE	(2 * RTE_PKTMBUF_HEADROOM)
51 #define	NB_HDR_MBUF	(NB_PKT_MBUF * MAX_PORTS)
52 
53 #define	NB_CLONE_MBUF	(NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
54 
55 /* allow max jumbo frame 9.5 KB */
56 #define	JUMBO_FRAME_MAX_SIZE	0x2600
57 
58 #define MAX_PKT_BURST 32
59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
60 
61 /* Configure how many packets ahead to prefetch, when reading packets */
62 #define PREFETCH_OFFSET	3
63 
64 /*
65  * Construct Ethernet multicast address from IPv4 multicast address.
66  * Citing RFC 1112, section 6.4:
67  * "An IP host group address is mapped to an Ethernet multicast address
68  * by placing the low-order 23-bits of the IP address into the low-order
69  * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
70  */
71 #define	ETHER_ADDR_FOR_IPV4_MCAST(x)	\
72 	(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
73 
74 /*
75  * Configurable number of RX/TX ring descriptors
76  */
77 #define RTE_TEST_RX_DESC_DEFAULT 128
78 #define RTE_TEST_TX_DESC_DEFAULT 512
79 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
80 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
81 
82 /* ethernet addresses of ports */
83 static struct ether_addr ports_eth_addr[MAX_PORTS];
84 
85 /* mask of enabled ports */
86 static uint32_t enabled_port_mask = 0;
87 
88 static uint16_t nb_ports;
89 
90 static int rx_queue_per_lcore = 1;
91 
92 struct mbuf_table {
93 	uint16_t len;
94 	struct rte_mbuf *m_table[MAX_PKT_BURST];
95 };
96 
97 #define MAX_RX_QUEUE_PER_LCORE 16
98 #define MAX_TX_QUEUE_PER_PORT 16
99 struct lcore_queue_conf {
100 	uint64_t tx_tsc;
101 	uint16_t n_rx_queue;
102 	uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
103 	uint16_t tx_queue_id[MAX_PORTS];
104 	struct mbuf_table tx_mbufs[MAX_PORTS];
105 } __rte_cache_aligned;
106 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
107 
108 static struct rte_eth_conf port_conf = {
109 	.rxmode = {
110 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
111 		.split_hdr_size = 0,
112 		.header_split   = 0, /**< Header Split disabled */
113 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
114 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
115 		.jumbo_frame    = 1, /**< Jumbo Frame Support enabled */
116 		.hw_strip_crc   = 1, /**< CRC stripped by hardware */
117 	},
118 	.txmode = {
119 		.mq_mode = ETH_MQ_TX_NONE,
120 	},
121 };
122 
123 static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
124 
125 
126 /* Multicast */
127 static struct rte_fbk_hash_params mcast_hash_params = {
128 	.name = "MCAST_HASH",
129 	.entries = 1024,
130 	.entries_per_bucket = 4,
131 	.socket_id = 0,
132 	.hash_func = NULL,
133 	.init_val = 0,
134 };
135 
136 struct rte_fbk_hash_table *mcast_hash = NULL;
137 
138 struct mcast_group_params {
139 	uint32_t ip;
140 	uint16_t port_mask;
141 };
142 
143 static struct mcast_group_params mcast_group_table[] = {
144 		{IPv4(224,0,0,101), 0x1},
145 		{IPv4(224,0,0,102), 0x2},
146 		{IPv4(224,0,0,103), 0x3},
147 		{IPv4(224,0,0,104), 0x4},
148 		{IPv4(224,0,0,105), 0x5},
149 		{IPv4(224,0,0,106), 0x6},
150 		{IPv4(224,0,0,107), 0x7},
151 		{IPv4(224,0,0,108), 0x8},
152 		{IPv4(224,0,0,109), 0x9},
153 		{IPv4(224,0,0,110), 0xA},
154 		{IPv4(224,0,0,111), 0xB},
155 		{IPv4(224,0,0,112), 0xC},
156 		{IPv4(224,0,0,113), 0xD},
157 		{IPv4(224,0,0,114), 0xE},
158 		{IPv4(224,0,0,115), 0xF},
159 };
160 
161 #define N_MCAST_GROUPS \
162 	(sizeof (mcast_group_table) / sizeof (mcast_group_table[0]))
163 
164 
165 /* Send burst of packets on an output interface */
166 static void
167 send_burst(struct lcore_queue_conf *qconf, uint16_t port)
168 {
169 	struct rte_mbuf **m_table;
170 	uint16_t n, queueid;
171 	int ret;
172 
173 	queueid = qconf->tx_queue_id[port];
174 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
175 	n = qconf->tx_mbufs[port].len;
176 
177 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
178 	while (unlikely (ret < n)) {
179 		rte_pktmbuf_free(m_table[ret]);
180 		ret++;
181 	}
182 
183 	qconf->tx_mbufs[port].len = 0;
184 }
185 
186 /* Get number of bits set. */
187 static inline uint32_t
188 bitcnt(uint32_t v)
189 {
190 	uint32_t n;
191 
192 	for (n = 0; v != 0; v &= v - 1, n++)
193 		;
194 
195 	return n;
196 }
197 
198 /**
199  * Create the output multicast packet based on the given input packet.
200  * There are two approaches for creating outgoing packet, though both
201  * are based on data zero-copy idea, they differ in few details:
202  * First one creates a clone of the input packet, e.g - walk though all
203  * segments of the input packet, and for each of them create a new packet
204  * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
205  * for more details). Then new mbuf is allocated for the packet header
206  * and is prepended to the 'clone' mbuf.
207  * Second approach doesn't make a clone, it just increment refcnt for all
208  * input packet segments. Then it allocates new mbuf for the packet header
209  * and prepends it to the input packet.
210  * Basically first approach reuses only input packet's data, but creates
211  * it's own copy of packet's metadata. Second approach reuses both input's
212  * packet data and metadata.
213  * The advantage of first approach - is that each outgoing packet has it's
214  * own copy of metadata, so we can safely modify data pointer of the
215  * input packet. That allows us to skip creation if the output packet for
216  * the last destination port, but instead modify input packet's header inplace,
217  * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
218  * The advantage of second approach - less work for each outgoing packet,
219  * e.g: we skip "clone" operation completely. Though it comes with a price -
220  * input packet's metadata has to be intact. So for N destination ports we
221  * need to invoke mcast_out_pkt N times.
222  * So for small number of outgoing ports (and segments in the input packet)
223  * first approach will be faster.
224  * As number of outgoing ports (and/or input segments) will grow,
225  * second way will become more preferable.
226  *
227  *  @param pkt
228  *  Input packet mbuf.
229  *  @param use_clone
230  *  Control which of the two approaches described above should be used:
231  *  - 0 - use second approach:
232  *    Don't "clone" input packet.
233  *    Prepend new header directly to the input packet
234  *  - 1 - use first approach:
235  *    Make a "clone" of input packet first.
236  *    Prepend new header to the clone of the input packet
237  *  @return
238  *  - The pointer to the new outgoing packet.
239  *  - NULL if operation failed.
240  */
241 static inline struct rte_mbuf *
242 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
243 {
244 	struct rte_mbuf *hdr;
245 
246 	/* Create new mbuf for the header. */
247 	if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
248 		return NULL;
249 
250 	/* If requested, then make a new clone packet. */
251 	if (use_clone != 0 &&
252 	    unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
253 		rte_pktmbuf_free(hdr);
254 		return NULL;
255 	}
256 
257 	/* prepend new header */
258 	hdr->next = pkt;
259 
260 
261 	/* update header's fields */
262 	hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
263 	hdr->nb_segs = pkt->nb_segs + 1;
264 
265 	/* copy metadata from source packet*/
266 	hdr->port = pkt->port;
267 	hdr->vlan_tci = pkt->vlan_tci;
268 	hdr->vlan_tci_outer = pkt->vlan_tci_outer;
269 	hdr->tx_offload = pkt->tx_offload;
270 	hdr->hash = pkt->hash;
271 
272 	hdr->ol_flags = pkt->ol_flags;
273 
274 	__rte_mbuf_sanity_check(hdr, 1);
275 	return hdr;
276 }
277 
278 /*
279  * Write new Ethernet header to the outgoing packet,
280  * and put it into the outgoing queue for the given port.
281  */
282 static inline void
283 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr,
284 		struct lcore_queue_conf *qconf, uint16_t port)
285 {
286 	struct ether_hdr *ethdr;
287 	uint16_t len;
288 
289 	/* Construct Ethernet header. */
290 	ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
291 	RTE_ASSERT(ethdr != NULL);
292 
293 	ether_addr_copy(dest_addr, &ethdr->d_addr);
294 	ether_addr_copy(&ports_eth_addr[port], &ethdr->s_addr);
295 	ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
296 
297 	/* Put new packet into the output queue */
298 	len = qconf->tx_mbufs[port].len;
299 	qconf->tx_mbufs[port].m_table[len] = pkt;
300 	qconf->tx_mbufs[port].len = ++len;
301 
302 	/* Transmit packets */
303 	if (unlikely(MAX_PKT_BURST == len))
304 		send_burst(qconf, port);
305 }
306 
307 /* Multicast forward of the input packet */
308 static inline void
309 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
310 {
311 	struct rte_mbuf *mc;
312 	struct ipv4_hdr *iphdr;
313 	uint32_t dest_addr, port_mask, port_num, use_clone;
314 	int32_t hash;
315 	uint16_t port;
316 	union {
317 		uint64_t as_int;
318 		struct ether_addr as_addr;
319 	} dst_eth_addr;
320 
321 	/* Remove the Ethernet header from the input packet */
322 	iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
323 	RTE_ASSERT(iphdr != NULL);
324 
325 	dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
326 
327 	/*
328 	 * Check that it is a valid multicast address and
329 	 * we have some active ports assigned to it.
330 	 */
331 	if(!IS_IPV4_MCAST(dest_addr) ||
332 	    (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
333 	    (port_mask = hash & enabled_port_mask) == 0) {
334 		rte_pktmbuf_free(m);
335 		return;
336 	}
337 
338 	/* Calculate number of destination ports. */
339 	port_num = bitcnt(port_mask);
340 
341 	/* Should we use rte_pktmbuf_clone() or not. */
342 	use_clone = (port_num <= MCAST_CLONE_PORTS &&
343 	    m->nb_segs <= MCAST_CLONE_SEGS);
344 
345 	/* Mark all packet's segments as referenced port_num times */
346 	if (use_clone == 0)
347 		rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
348 
349 	/* construct destination ethernet address */
350 	dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
351 
352 	for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
353 
354 		/* Prepare output packet and send it out. */
355 		if ((port_mask & 1) != 0) {
356 			if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
357 				mcast_send_pkt(mc, &dst_eth_addr.as_addr,
358 						qconf, port);
359 			else if (use_clone == 0)
360 				rte_pktmbuf_free(m);
361 		}
362 	}
363 
364 	/*
365 	 * If we making clone packets, then, for the last destination port,
366 	 * we can overwrite input packet's metadata.
367 	 */
368 	if (use_clone != 0)
369 		mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
370 	else
371 		rte_pktmbuf_free(m);
372 }
373 
374 /* Send burst of outgoing packet, if timeout expires. */
375 static inline void
376 send_timeout_burst(struct lcore_queue_conf *qconf)
377 {
378 	uint64_t cur_tsc;
379 	uint16_t portid;
380 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
381 
382 	cur_tsc = rte_rdtsc();
383 	if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
384 		return;
385 
386 	for (portid = 0; portid < MAX_PORTS; portid++) {
387 		if (qconf->tx_mbufs[portid].len != 0)
388 			send_burst(qconf, portid);
389 	}
390 	qconf->tx_tsc = cur_tsc;
391 }
392 
393 /* main processing loop */
394 static int
395 main_loop(__rte_unused void *dummy)
396 {
397 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
398 	unsigned lcore_id;
399 	int i, j, nb_rx;
400 	uint16_t portid;
401 	struct lcore_queue_conf *qconf;
402 
403 	lcore_id = rte_lcore_id();
404 	qconf = &lcore_queue_conf[lcore_id];
405 
406 
407 	if (qconf->n_rx_queue == 0) {
408 		RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
409 		    lcore_id);
410 		return 0;
411 	}
412 
413 	RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
414 	    lcore_id);
415 
416 	for (i = 0; i < qconf->n_rx_queue; i++) {
417 
418 		portid = qconf->rx_queue_list[i];
419 		RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
420 		    lcore_id, portid);
421 	}
422 
423 	while (1) {
424 
425 		/*
426 		 * Read packet from RX queues
427 		 */
428 		for (i = 0; i < qconf->n_rx_queue; i++) {
429 
430 			portid = qconf->rx_queue_list[i];
431 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
432 						 MAX_PKT_BURST);
433 
434 			/* Prefetch first packets */
435 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
436 				rte_prefetch0(rte_pktmbuf_mtod(
437 						pkts_burst[j], void *));
438 			}
439 
440 			/* Prefetch and forward already prefetched packets */
441 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
442 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
443 						j + PREFETCH_OFFSET], void *));
444 				mcast_forward(pkts_burst[j], qconf);
445 			}
446 
447 			/* Forward remaining prefetched packets */
448 			for (; j < nb_rx; j++) {
449 				mcast_forward(pkts_burst[j], qconf);
450 			}
451 		}
452 
453 		/* Send out packets from TX queues */
454 		send_timeout_burst(qconf);
455 	}
456 }
457 
458 /* display usage */
459 static void
460 print_usage(const char *prgname)
461 {
462 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
463 	    "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
464 	    "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
465 	    prgname);
466 }
467 
468 static uint32_t
469 parse_portmask(const char *portmask)
470 {
471 	char *end = NULL;
472 	unsigned long pm;
473 
474 	/* parse hexadecimal string */
475 	pm = strtoul(portmask, &end, 16);
476 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
477 		return 0;
478 
479 	return (uint32_t)pm;
480 }
481 
482 static int
483 parse_nqueue(const char *q_arg)
484 {
485 	char *end = NULL;
486 	unsigned long n;
487 
488 	/* parse numerical string */
489 	errno = 0;
490 	n = strtoul(q_arg, &end, 0);
491 	if (errno != 0 || end == NULL || *end != '\0' ||
492 			n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
493 		return -1;
494 
495 	return n;
496 }
497 
498 /* Parse the argument given in the command line of the application */
499 static int
500 parse_args(int argc, char **argv)
501 {
502 	int opt, ret;
503 	char **argvopt;
504 	int option_index;
505 	char *prgname = argv[0];
506 	static struct option lgopts[] = {
507 		{NULL, 0, 0, 0}
508 	};
509 
510 	argvopt = argv;
511 
512 	while ((opt = getopt_long(argc, argvopt, "p:q:",
513 				  lgopts, &option_index)) != EOF) {
514 
515 		switch (opt) {
516 		/* portmask */
517 		case 'p':
518 			enabled_port_mask = parse_portmask(optarg);
519 			if (enabled_port_mask == 0) {
520 				printf("invalid portmask\n");
521 				print_usage(prgname);
522 				return -1;
523 			}
524 			break;
525 
526 		/* nqueue */
527 		case 'q':
528 			rx_queue_per_lcore = parse_nqueue(optarg);
529 			if (rx_queue_per_lcore < 0) {
530 				printf("invalid queue number\n");
531 				print_usage(prgname);
532 				return -1;
533 			}
534 			break;
535 
536 		default:
537 			print_usage(prgname);
538 			return -1;
539 		}
540 	}
541 
542 	if (optind >= 0)
543 		argv[optind-1] = prgname;
544 
545 	ret = optind-1;
546 	optind = 1; /* reset getopt lib */
547 	return ret;
548 }
549 
550 static void
551 print_ethaddr(const char *name, struct ether_addr *eth_addr)
552 {
553 	char buf[ETHER_ADDR_FMT_SIZE];
554 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
555 	printf("%s%s", name, buf);
556 }
557 
558 static int
559 init_mcast_hash(void)
560 {
561 	uint32_t i;
562 
563 	mcast_hash_params.socket_id = rte_socket_id();
564 	mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
565 	if (mcast_hash == NULL){
566 		return -1;
567 	}
568 
569 	for (i = 0; i < N_MCAST_GROUPS; i ++){
570 		if (rte_fbk_hash_add_key(mcast_hash,
571 			mcast_group_table[i].ip,
572 			mcast_group_table[i].port_mask) < 0) {
573 			return -1;
574 		}
575 	}
576 
577 	return 0;
578 }
579 
580 /* Check the link status of all ports in up to 9s, and print them finally */
581 static void
582 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
583 {
584 #define CHECK_INTERVAL 100 /* 100ms */
585 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
586 	uint16_t portid;
587 	uint8_t count, all_ports_up, print_flag = 0;
588 	struct rte_eth_link link;
589 
590 	printf("\nChecking link status");
591 	fflush(stdout);
592 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
593 		all_ports_up = 1;
594 		for (portid = 0; portid < port_num; portid++) {
595 			if ((port_mask & (1 << portid)) == 0)
596 				continue;
597 			memset(&link, 0, sizeof(link));
598 			rte_eth_link_get_nowait(portid, &link);
599 			/* print link status if flag set */
600 			if (print_flag == 1) {
601 				if (link.link_status)
602 					printf(
603 					"Port%d Link Up. Speed %u Mbps - %s\n",
604 					portid, link.link_speed,
605 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
606 					("full-duplex") : ("half-duplex\n"));
607 				else
608 					printf("Port %d Link Down\n", portid);
609 				continue;
610 			}
611 			/* clear all_ports_up flag if any link down */
612 			if (link.link_status == ETH_LINK_DOWN) {
613 				all_ports_up = 0;
614 				break;
615 			}
616 		}
617 		/* after finally printing all link status, get out */
618 		if (print_flag == 1)
619 			break;
620 
621 		if (all_ports_up == 0) {
622 			printf(".");
623 			fflush(stdout);
624 			rte_delay_ms(CHECK_INTERVAL);
625 		}
626 
627 		/* set the print_flag if all ports up or timeout */
628 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
629 			print_flag = 1;
630 			printf("done\n");
631 		}
632 	}
633 }
634 
635 int
636 main(int argc, char **argv)
637 {
638 	struct lcore_queue_conf *qconf;
639 	struct rte_eth_dev_info dev_info;
640 	struct rte_eth_txconf *txconf;
641 	int ret;
642 	uint16_t queueid;
643 	unsigned lcore_id = 0, rx_lcore_id = 0;
644 	uint32_t n_tx_queue, nb_lcores;
645 	uint16_t portid;
646 
647 	/* init EAL */
648 	ret = rte_eal_init(argc, argv);
649 	if (ret < 0)
650 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
651 	argc -= ret;
652 	argv += ret;
653 
654 	/* parse application arguments (after the EAL ones) */
655 	ret = parse_args(argc, argv);
656 	if (ret < 0)
657 		rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
658 
659 	/* create the mbuf pools */
660 	packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
661 		0, PKT_MBUF_DATA_SIZE, rte_socket_id());
662 
663 	if (packet_pool == NULL)
664 		rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
665 
666 	header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
667 		0, HDR_MBUF_DATA_SIZE, rte_socket_id());
668 
669 	if (header_pool == NULL)
670 		rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
671 
672 	clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
673 		0, 0, rte_socket_id());
674 
675 	if (clone_pool == NULL)
676 		rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
677 
678 	nb_ports = rte_eth_dev_count();
679 	if (nb_ports == 0)
680 		rte_exit(EXIT_FAILURE, "No physical ports!\n");
681 	if (nb_ports > MAX_PORTS)
682 		nb_ports = MAX_PORTS;
683 
684 	nb_lcores = rte_lcore_count();
685 
686 	/* initialize all ports */
687 	for (portid = 0; portid < nb_ports; portid++) {
688 		/* skip ports that are not enabled */
689 		if ((enabled_port_mask & (1 << portid)) == 0) {
690 			printf("Skipping disabled port %d\n", portid);
691 			continue;
692 		}
693 
694 		qconf = &lcore_queue_conf[rx_lcore_id];
695 
696 		/* limit the frame size to the maximum supported by NIC */
697 		rte_eth_dev_info_get(portid, &dev_info);
698 		port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
699 		    dev_info.max_rx_pktlen, port_conf.rxmode.max_rx_pkt_len);
700 
701 		/* get the lcore_id for this port */
702 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
703 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
704 
705 			rx_lcore_id ++;
706 			qconf = &lcore_queue_conf[rx_lcore_id];
707 
708 			if (rx_lcore_id >= RTE_MAX_LCORE)
709 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
710 		}
711 		qconf->rx_queue_list[qconf->n_rx_queue] = portid;
712 		qconf->n_rx_queue++;
713 
714 		/* init port */
715 		printf("Initializing port %d on lcore %u... ", portid,
716 		       rx_lcore_id);
717 		fflush(stdout);
718 
719 		n_tx_queue = nb_lcores;
720 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
721 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
722 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
723 					    &port_conf);
724 		if (ret < 0)
725 			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
726 				  ret, portid);
727 
728 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
729 						       &nb_txd);
730 		if (ret < 0)
731 			rte_exit(EXIT_FAILURE,
732 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
733 				 ret, portid);
734 
735 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
736 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
737 		printf(", ");
738 
739 		/* init one RX queue */
740 		queueid = 0;
741 		printf("rxq=%hu ", queueid);
742 		fflush(stdout);
743 		ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
744 					     rte_eth_dev_socket_id(portid),
745 					     NULL,
746 					     packet_pool);
747 		if (ret < 0)
748 			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
749 				  ret, portid);
750 
751 		/* init one TX queue per couple (lcore,port) */
752 		queueid = 0;
753 
754 		RTE_LCORE_FOREACH(lcore_id) {
755 			if (rte_lcore_is_enabled(lcore_id) == 0)
756 				continue;
757 			printf("txq=%u,%hu ", lcore_id, queueid);
758 			fflush(stdout);
759 
760 			txconf = &dev_info.default_txconf;
761 			txconf->txq_flags = 0;
762 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
763 						     rte_lcore_to_socket_id(lcore_id), txconf);
764 			if (ret < 0)
765 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
766 					  "port=%d\n", ret, portid);
767 
768 			qconf = &lcore_queue_conf[lcore_id];
769 			qconf->tx_queue_id[portid] = queueid;
770 			queueid++;
771 		}
772 
773 		/* Start device */
774 		ret = rte_eth_dev_start(portid);
775 		if (ret < 0)
776 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
777 				  ret, portid);
778 
779 		printf("done:\n");
780 	}
781 
782 	check_all_ports_link_status(nb_ports, enabled_port_mask);
783 
784 	/* initialize the multicast hash */
785 	int retval = init_mcast_hash();
786 	if (retval != 0)
787 		rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
788 
789 	/* launch per-lcore init on every lcore */
790 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
791 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
792 		if (rte_eal_wait_lcore(lcore_id) < 0)
793 			return -1;
794 	}
795 
796 	return 0;
797 }
798