1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_memory.h> 20 #include <rte_memcpy.h> 21 #include <rte_eal.h> 22 #include <rte_launch.h> 23 #include <rte_atomic.h> 24 #include <rte_cycles.h> 25 #include <rte_prefetch.h> 26 #include <rte_lcore.h> 27 #include <rte_per_lcore.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_interrupts.h> 30 #include <rte_random.h> 31 #include <rte_debug.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_mempool.h> 35 #include <rte_mbuf.h> 36 #include <rte_malloc.h> 37 #include <rte_fbk_hash.h> 38 #include <rte_ip.h> 39 40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 41 42 #define MAX_PORTS 16 43 44 #define MCAST_CLONE_PORTS 2 45 #define MCAST_CLONE_SEGS 2 46 47 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 48 #define NB_PKT_MBUF 8192 49 50 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 51 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 52 53 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 54 55 /* allow max jumbo frame 9.5 KB */ 56 #define JUMBO_FRAME_MAX_SIZE 0x2600 57 58 #define MAX_PKT_BURST 32 59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 60 61 /* Configure how many packets ahead to prefetch, when reading packets */ 62 #define PREFETCH_OFFSET 3 63 64 /* 65 * Construct Ethernet multicast address from IPv4 multicast address. 66 * Citing RFC 1112, section 6.4: 67 * "An IP host group address is mapped to an Ethernet multicast address 68 * by placing the low-order 23-bits of the IP address into the low-order 69 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 70 */ 71 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 72 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 73 74 /* 75 * Configurable number of RX/TX ring descriptors 76 */ 77 #define RTE_TEST_RX_DESC_DEFAULT 1024 78 #define RTE_TEST_TX_DESC_DEFAULT 1024 79 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 80 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 81 82 /* ethernet addresses of ports */ 83 static struct ether_addr ports_eth_addr[MAX_PORTS]; 84 85 /* mask of enabled ports */ 86 static uint32_t enabled_port_mask = 0; 87 88 static uint16_t nb_ports; 89 90 static int rx_queue_per_lcore = 1; 91 92 struct mbuf_table { 93 uint16_t len; 94 struct rte_mbuf *m_table[MAX_PKT_BURST]; 95 }; 96 97 #define MAX_RX_QUEUE_PER_LCORE 16 98 #define MAX_TX_QUEUE_PER_PORT 16 99 struct lcore_queue_conf { 100 uint64_t tx_tsc; 101 uint16_t n_rx_queue; 102 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 103 uint16_t tx_queue_id[MAX_PORTS]; 104 struct mbuf_table tx_mbufs[MAX_PORTS]; 105 } __rte_cache_aligned; 106 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 107 108 static struct rte_eth_conf port_conf = { 109 .rxmode = { 110 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 111 .split_hdr_size = 0, 112 .offloads = (DEV_RX_OFFLOAD_JUMBO_FRAME | 113 DEV_RX_OFFLOAD_CRC_STRIP), 114 }, 115 .txmode = { 116 .mq_mode = ETH_MQ_TX_NONE, 117 .offloads = DEV_TX_OFFLOAD_MULTI_SEGS, 118 }, 119 }; 120 121 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 122 123 124 /* Multicast */ 125 static struct rte_fbk_hash_params mcast_hash_params = { 126 .name = "MCAST_HASH", 127 .entries = 1024, 128 .entries_per_bucket = 4, 129 .socket_id = 0, 130 .hash_func = NULL, 131 .init_val = 0, 132 }; 133 134 struct rte_fbk_hash_table *mcast_hash = NULL; 135 136 struct mcast_group_params { 137 uint32_t ip; 138 uint16_t port_mask; 139 }; 140 141 static struct mcast_group_params mcast_group_table[] = { 142 {IPv4(224,0,0,101), 0x1}, 143 {IPv4(224,0,0,102), 0x2}, 144 {IPv4(224,0,0,103), 0x3}, 145 {IPv4(224,0,0,104), 0x4}, 146 {IPv4(224,0,0,105), 0x5}, 147 {IPv4(224,0,0,106), 0x6}, 148 {IPv4(224,0,0,107), 0x7}, 149 {IPv4(224,0,0,108), 0x8}, 150 {IPv4(224,0,0,109), 0x9}, 151 {IPv4(224,0,0,110), 0xA}, 152 {IPv4(224,0,0,111), 0xB}, 153 {IPv4(224,0,0,112), 0xC}, 154 {IPv4(224,0,0,113), 0xD}, 155 {IPv4(224,0,0,114), 0xE}, 156 {IPv4(224,0,0,115), 0xF}, 157 }; 158 159 #define N_MCAST_GROUPS \ 160 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 161 162 163 /* Send burst of packets on an output interface */ 164 static void 165 send_burst(struct lcore_queue_conf *qconf, uint16_t port) 166 { 167 struct rte_mbuf **m_table; 168 uint16_t n, queueid; 169 int ret; 170 171 queueid = qconf->tx_queue_id[port]; 172 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 173 n = qconf->tx_mbufs[port].len; 174 175 ret = rte_eth_tx_burst(port, queueid, m_table, n); 176 while (unlikely (ret < n)) { 177 rte_pktmbuf_free(m_table[ret]); 178 ret++; 179 } 180 181 qconf->tx_mbufs[port].len = 0; 182 } 183 184 /* Get number of bits set. */ 185 static inline uint32_t 186 bitcnt(uint32_t v) 187 { 188 uint32_t n; 189 190 for (n = 0; v != 0; v &= v - 1, n++) 191 ; 192 193 return n; 194 } 195 196 /** 197 * Create the output multicast packet based on the given input packet. 198 * There are two approaches for creating outgoing packet, though both 199 * are based on data zero-copy idea, they differ in few details: 200 * First one creates a clone of the input packet, e.g - walk though all 201 * segments of the input packet, and for each of them create a new packet 202 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 203 * for more details). Then new mbuf is allocated for the packet header 204 * and is prepended to the 'clone' mbuf. 205 * Second approach doesn't make a clone, it just increment refcnt for all 206 * input packet segments. Then it allocates new mbuf for the packet header 207 * and prepends it to the input packet. 208 * Basically first approach reuses only input packet's data, but creates 209 * it's own copy of packet's metadata. Second approach reuses both input's 210 * packet data and metadata. 211 * The advantage of first approach - is that each outgoing packet has it's 212 * own copy of metadata, so we can safely modify data pointer of the 213 * input packet. That allows us to skip creation if the output packet for 214 * the last destination port, but instead modify input packet's header inplace, 215 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 216 * The advantage of second approach - less work for each outgoing packet, 217 * e.g: we skip "clone" operation completely. Though it comes with a price - 218 * input packet's metadata has to be intact. So for N destination ports we 219 * need to invoke mcast_out_pkt N times. 220 * So for small number of outgoing ports (and segments in the input packet) 221 * first approach will be faster. 222 * As number of outgoing ports (and/or input segments) will grow, 223 * second way will become more preferable. 224 * 225 * @param pkt 226 * Input packet mbuf. 227 * @param use_clone 228 * Control which of the two approaches described above should be used: 229 * - 0 - use second approach: 230 * Don't "clone" input packet. 231 * Prepend new header directly to the input packet 232 * - 1 - use first approach: 233 * Make a "clone" of input packet first. 234 * Prepend new header to the clone of the input packet 235 * @return 236 * - The pointer to the new outgoing packet. 237 * - NULL if operation failed. 238 */ 239 static inline struct rte_mbuf * 240 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 241 { 242 struct rte_mbuf *hdr; 243 244 /* Create new mbuf for the header. */ 245 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 246 return NULL; 247 248 /* If requested, then make a new clone packet. */ 249 if (use_clone != 0 && 250 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 251 rte_pktmbuf_free(hdr); 252 return NULL; 253 } 254 255 /* prepend new header */ 256 hdr->next = pkt; 257 258 259 /* update header's fields */ 260 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 261 hdr->nb_segs = pkt->nb_segs + 1; 262 263 /* copy metadata from source packet*/ 264 hdr->port = pkt->port; 265 hdr->vlan_tci = pkt->vlan_tci; 266 hdr->vlan_tci_outer = pkt->vlan_tci_outer; 267 hdr->tx_offload = pkt->tx_offload; 268 hdr->hash = pkt->hash; 269 270 hdr->ol_flags = pkt->ol_flags; 271 272 __rte_mbuf_sanity_check(hdr, 1); 273 return hdr; 274 } 275 276 /* 277 * Write new Ethernet header to the outgoing packet, 278 * and put it into the outgoing queue for the given port. 279 */ 280 static inline void 281 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 282 struct lcore_queue_conf *qconf, uint16_t port) 283 { 284 struct ether_hdr *ethdr; 285 uint16_t len; 286 287 /* Construct Ethernet header. */ 288 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 289 RTE_ASSERT(ethdr != NULL); 290 291 ether_addr_copy(dest_addr, ðdr->d_addr); 292 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 293 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 294 295 /* Put new packet into the output queue */ 296 len = qconf->tx_mbufs[port].len; 297 qconf->tx_mbufs[port].m_table[len] = pkt; 298 qconf->tx_mbufs[port].len = ++len; 299 300 /* Transmit packets */ 301 if (unlikely(MAX_PKT_BURST == len)) 302 send_burst(qconf, port); 303 } 304 305 /* Multicast forward of the input packet */ 306 static inline void 307 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 308 { 309 struct rte_mbuf *mc; 310 struct ipv4_hdr *iphdr; 311 uint32_t dest_addr, port_mask, port_num, use_clone; 312 int32_t hash; 313 uint16_t port; 314 union { 315 uint64_t as_int; 316 struct ether_addr as_addr; 317 } dst_eth_addr; 318 319 /* Remove the Ethernet header from the input packet */ 320 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 321 RTE_ASSERT(iphdr != NULL); 322 323 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 324 325 /* 326 * Check that it is a valid multicast address and 327 * we have some active ports assigned to it. 328 */ 329 if(!IS_IPV4_MCAST(dest_addr) || 330 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 331 (port_mask = hash & enabled_port_mask) == 0) { 332 rte_pktmbuf_free(m); 333 return; 334 } 335 336 /* Calculate number of destination ports. */ 337 port_num = bitcnt(port_mask); 338 339 /* Should we use rte_pktmbuf_clone() or not. */ 340 use_clone = (port_num <= MCAST_CLONE_PORTS && 341 m->nb_segs <= MCAST_CLONE_SEGS); 342 343 /* Mark all packet's segments as referenced port_num times */ 344 if (use_clone == 0) 345 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 346 347 /* construct destination ethernet address */ 348 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 349 350 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 351 352 /* Prepare output packet and send it out. */ 353 if ((port_mask & 1) != 0) { 354 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 355 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 356 qconf, port); 357 else if (use_clone == 0) 358 rte_pktmbuf_free(m); 359 } 360 } 361 362 /* 363 * If we making clone packets, then, for the last destination port, 364 * we can overwrite input packet's metadata. 365 */ 366 if (use_clone != 0) 367 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 368 else 369 rte_pktmbuf_free(m); 370 } 371 372 /* Send burst of outgoing packet, if timeout expires. */ 373 static inline void 374 send_timeout_burst(struct lcore_queue_conf *qconf) 375 { 376 uint64_t cur_tsc; 377 uint16_t portid; 378 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 379 380 cur_tsc = rte_rdtsc(); 381 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 382 return; 383 384 for (portid = 0; portid < MAX_PORTS; portid++) { 385 if (qconf->tx_mbufs[portid].len != 0) 386 send_burst(qconf, portid); 387 } 388 qconf->tx_tsc = cur_tsc; 389 } 390 391 /* main processing loop */ 392 static int 393 main_loop(__rte_unused void *dummy) 394 { 395 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 396 unsigned lcore_id; 397 int i, j, nb_rx; 398 uint16_t portid; 399 struct lcore_queue_conf *qconf; 400 401 lcore_id = rte_lcore_id(); 402 qconf = &lcore_queue_conf[lcore_id]; 403 404 405 if (qconf->n_rx_queue == 0) { 406 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 407 lcore_id); 408 return 0; 409 } 410 411 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 412 lcore_id); 413 414 for (i = 0; i < qconf->n_rx_queue; i++) { 415 416 portid = qconf->rx_queue_list[i]; 417 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 418 lcore_id, portid); 419 } 420 421 while (1) { 422 423 /* 424 * Read packet from RX queues 425 */ 426 for (i = 0; i < qconf->n_rx_queue; i++) { 427 428 portid = qconf->rx_queue_list[i]; 429 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 430 MAX_PKT_BURST); 431 432 /* Prefetch first packets */ 433 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 434 rte_prefetch0(rte_pktmbuf_mtod( 435 pkts_burst[j], void *)); 436 } 437 438 /* Prefetch and forward already prefetched packets */ 439 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 440 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 441 j + PREFETCH_OFFSET], void *)); 442 mcast_forward(pkts_burst[j], qconf); 443 } 444 445 /* Forward remaining prefetched packets */ 446 for (; j < nb_rx; j++) { 447 mcast_forward(pkts_burst[j], qconf); 448 } 449 } 450 451 /* Send out packets from TX queues */ 452 send_timeout_burst(qconf); 453 } 454 } 455 456 /* display usage */ 457 static void 458 print_usage(const char *prgname) 459 { 460 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 461 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 462 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 463 prgname); 464 } 465 466 static uint32_t 467 parse_portmask(const char *portmask) 468 { 469 char *end = NULL; 470 unsigned long pm; 471 472 /* parse hexadecimal string */ 473 pm = strtoul(portmask, &end, 16); 474 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 475 return 0; 476 477 return (uint32_t)pm; 478 } 479 480 static int 481 parse_nqueue(const char *q_arg) 482 { 483 char *end = NULL; 484 unsigned long n; 485 486 /* parse numerical string */ 487 errno = 0; 488 n = strtoul(q_arg, &end, 0); 489 if (errno != 0 || end == NULL || *end != '\0' || 490 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 491 return -1; 492 493 return n; 494 } 495 496 /* Parse the argument given in the command line of the application */ 497 static int 498 parse_args(int argc, char **argv) 499 { 500 int opt, ret; 501 char **argvopt; 502 int option_index; 503 char *prgname = argv[0]; 504 static struct option lgopts[] = { 505 {NULL, 0, 0, 0} 506 }; 507 508 argvopt = argv; 509 510 while ((opt = getopt_long(argc, argvopt, "p:q:", 511 lgopts, &option_index)) != EOF) { 512 513 switch (opt) { 514 /* portmask */ 515 case 'p': 516 enabled_port_mask = parse_portmask(optarg); 517 if (enabled_port_mask == 0) { 518 printf("invalid portmask\n"); 519 print_usage(prgname); 520 return -1; 521 } 522 break; 523 524 /* nqueue */ 525 case 'q': 526 rx_queue_per_lcore = parse_nqueue(optarg); 527 if (rx_queue_per_lcore < 0) { 528 printf("invalid queue number\n"); 529 print_usage(prgname); 530 return -1; 531 } 532 break; 533 534 default: 535 print_usage(prgname); 536 return -1; 537 } 538 } 539 540 if (optind >= 0) 541 argv[optind-1] = prgname; 542 543 ret = optind-1; 544 optind = 1; /* reset getopt lib */ 545 return ret; 546 } 547 548 static void 549 print_ethaddr(const char *name, struct ether_addr *eth_addr) 550 { 551 char buf[ETHER_ADDR_FMT_SIZE]; 552 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 553 printf("%s%s", name, buf); 554 } 555 556 static int 557 init_mcast_hash(void) 558 { 559 uint32_t i; 560 561 mcast_hash_params.socket_id = rte_socket_id(); 562 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 563 if (mcast_hash == NULL){ 564 return -1; 565 } 566 567 for (i = 0; i < N_MCAST_GROUPS; i ++){ 568 if (rte_fbk_hash_add_key(mcast_hash, 569 mcast_group_table[i].ip, 570 mcast_group_table[i].port_mask) < 0) { 571 return -1; 572 } 573 } 574 575 return 0; 576 } 577 578 /* Check the link status of all ports in up to 9s, and print them finally */ 579 static void 580 check_all_ports_link_status(uint32_t port_mask) 581 { 582 #define CHECK_INTERVAL 100 /* 100ms */ 583 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 584 uint16_t portid; 585 uint8_t count, all_ports_up, print_flag = 0; 586 struct rte_eth_link link; 587 588 printf("\nChecking link status"); 589 fflush(stdout); 590 for (count = 0; count <= MAX_CHECK_TIME; count++) { 591 all_ports_up = 1; 592 RTE_ETH_FOREACH_DEV(portid) { 593 if ((port_mask & (1 << portid)) == 0) 594 continue; 595 memset(&link, 0, sizeof(link)); 596 rte_eth_link_get_nowait(portid, &link); 597 /* print link status if flag set */ 598 if (print_flag == 1) { 599 if (link.link_status) 600 printf( 601 "Port%d Link Up. Speed %u Mbps - %s\n", 602 portid, link.link_speed, 603 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 604 ("full-duplex") : ("half-duplex\n")); 605 else 606 printf("Port %d Link Down\n", portid); 607 continue; 608 } 609 /* clear all_ports_up flag if any link down */ 610 if (link.link_status == ETH_LINK_DOWN) { 611 all_ports_up = 0; 612 break; 613 } 614 } 615 /* after finally printing all link status, get out */ 616 if (print_flag == 1) 617 break; 618 619 if (all_ports_up == 0) { 620 printf("."); 621 fflush(stdout); 622 rte_delay_ms(CHECK_INTERVAL); 623 } 624 625 /* set the print_flag if all ports up or timeout */ 626 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 627 print_flag = 1; 628 printf("done\n"); 629 } 630 } 631 } 632 633 int 634 main(int argc, char **argv) 635 { 636 struct lcore_queue_conf *qconf; 637 struct rte_eth_dev_info dev_info; 638 struct rte_eth_txconf *txconf; 639 int ret; 640 uint16_t queueid; 641 unsigned lcore_id = 0, rx_lcore_id = 0; 642 uint32_t n_tx_queue, nb_lcores; 643 uint16_t portid; 644 645 /* init EAL */ 646 ret = rte_eal_init(argc, argv); 647 if (ret < 0) 648 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 649 argc -= ret; 650 argv += ret; 651 652 /* parse application arguments (after the EAL ones) */ 653 ret = parse_args(argc, argv); 654 if (ret < 0) 655 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 656 657 /* create the mbuf pools */ 658 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 659 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 660 661 if (packet_pool == NULL) 662 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 663 664 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 665 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 666 667 if (header_pool == NULL) 668 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 669 670 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 671 0, 0, rte_socket_id()); 672 673 if (clone_pool == NULL) 674 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 675 676 nb_ports = rte_eth_dev_count_avail(); 677 if (nb_ports == 0) 678 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 679 if (nb_ports > MAX_PORTS) 680 nb_ports = MAX_PORTS; 681 682 nb_lcores = rte_lcore_count(); 683 684 /* initialize all ports */ 685 RTE_ETH_FOREACH_DEV(portid) { 686 struct rte_eth_rxconf rxq_conf; 687 struct rte_eth_conf local_port_conf = port_conf; 688 689 /* skip ports that are not enabled */ 690 if ((enabled_port_mask & (1 << portid)) == 0) { 691 printf("Skipping disabled port %d\n", portid); 692 continue; 693 } 694 695 qconf = &lcore_queue_conf[rx_lcore_id]; 696 697 /* limit the frame size to the maximum supported by NIC */ 698 rte_eth_dev_info_get(portid, &dev_info); 699 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 700 dev_info.max_rx_pktlen, 701 local_port_conf.rxmode.max_rx_pkt_len); 702 703 /* get the lcore_id for this port */ 704 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 705 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 706 707 rx_lcore_id ++; 708 qconf = &lcore_queue_conf[rx_lcore_id]; 709 710 if (rx_lcore_id >= RTE_MAX_LCORE) 711 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 712 } 713 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 714 qconf->n_rx_queue++; 715 716 /* init port */ 717 printf("Initializing port %d on lcore %u... ", portid, 718 rx_lcore_id); 719 fflush(stdout); 720 721 n_tx_queue = nb_lcores; 722 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 723 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 724 725 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 726 &local_port_conf); 727 if (ret < 0) 728 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 729 ret, portid); 730 731 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 732 &nb_txd); 733 if (ret < 0) 734 rte_exit(EXIT_FAILURE, 735 "Cannot adjust number of descriptors: err=%d, port=%d\n", 736 ret, portid); 737 738 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 739 print_ethaddr(" Address:", &ports_eth_addr[portid]); 740 printf(", "); 741 742 /* init one RX queue */ 743 queueid = 0; 744 printf("rxq=%hu ", queueid); 745 fflush(stdout); 746 rxq_conf = dev_info.default_rxconf; 747 rxq_conf.offloads = local_port_conf.rxmode.offloads; 748 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 749 rte_eth_dev_socket_id(portid), 750 &rxq_conf, 751 packet_pool); 752 if (ret < 0) 753 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 754 ret, portid); 755 756 /* init one TX queue per couple (lcore,port) */ 757 queueid = 0; 758 759 RTE_LCORE_FOREACH(lcore_id) { 760 if (rte_lcore_is_enabled(lcore_id) == 0) 761 continue; 762 printf("txq=%u,%hu ", lcore_id, queueid); 763 fflush(stdout); 764 765 txconf = &dev_info.default_txconf; 766 txconf->offloads = local_port_conf.txmode.offloads; 767 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 768 rte_lcore_to_socket_id(lcore_id), txconf); 769 if (ret < 0) 770 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 771 "port=%d\n", ret, portid); 772 773 qconf = &lcore_queue_conf[lcore_id]; 774 qconf->tx_queue_id[portid] = queueid; 775 queueid++; 776 } 777 778 /* Start device */ 779 ret = rte_eth_dev_start(portid); 780 if (ret < 0) 781 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 782 ret, portid); 783 784 printf("done:\n"); 785 } 786 787 check_all_ports_link_status(enabled_port_mask); 788 789 /* initialize the multicast hash */ 790 int retval = init_mcast_hash(); 791 if (retval != 0) 792 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 793 794 /* launch per-lcore init on every lcore */ 795 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 796 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 797 if (rte_eal_wait_lcore(lcore_id) < 0) 798 return -1; 799 } 800 801 return 0; 802 } 803