xref: /dpdk/examples/ipv4_multicast/main.c (revision 2808423a9ce42a748aed77a4b487be27d2b6acfa)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_eal.h>
22 #include <rte_launch.h>
23 #include <rte_atomic.h>
24 #include <rte_cycles.h>
25 #include <rte_prefetch.h>
26 #include <rte_lcore.h>
27 #include <rte_per_lcore.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_interrupts.h>
30 #include <rte_random.h>
31 #include <rte_debug.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_mempool.h>
35 #include <rte_mbuf.h>
36 #include <rte_malloc.h>
37 #include <rte_fbk_hash.h>
38 #include <rte_ip.h>
39 
40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
41 
42 #define MAX_PORTS 16
43 
44 #define	MCAST_CLONE_PORTS	2
45 #define	MCAST_CLONE_SEGS	2
46 
47 #define	PKT_MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
48 #define	NB_PKT_MBUF	8192
49 
50 #define	HDR_MBUF_DATA_SIZE	(2 * RTE_PKTMBUF_HEADROOM)
51 #define	NB_HDR_MBUF	(NB_PKT_MBUF * MAX_PORTS)
52 
53 #define	NB_CLONE_MBUF	(NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
54 
55 /* allow max jumbo frame 9.5 KB */
56 #define	JUMBO_FRAME_MAX_SIZE	0x2600
57 
58 #define MAX_PKT_BURST 32
59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
60 
61 /* Configure how many packets ahead to prefetch, when reading packets */
62 #define PREFETCH_OFFSET	3
63 
64 /*
65  * Construct Ethernet multicast address from IPv4 multicast address.
66  * Citing RFC 1112, section 6.4:
67  * "An IP host group address is mapped to an Ethernet multicast address
68  * by placing the low-order 23-bits of the IP address into the low-order
69  * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
70  */
71 #define	ETHER_ADDR_FOR_IPV4_MCAST(x)	\
72 	(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
73 
74 /*
75  * Configurable number of RX/TX ring descriptors
76  */
77 #define RTE_TEST_RX_DESC_DEFAULT 1024
78 #define RTE_TEST_TX_DESC_DEFAULT 1024
79 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
80 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
81 
82 /* ethernet addresses of ports */
83 static struct ether_addr ports_eth_addr[MAX_PORTS];
84 
85 /* mask of enabled ports */
86 static uint32_t enabled_port_mask = 0;
87 
88 static uint16_t nb_ports;
89 
90 static int rx_queue_per_lcore = 1;
91 
92 struct mbuf_table {
93 	uint16_t len;
94 	struct rte_mbuf *m_table[MAX_PKT_BURST];
95 };
96 
97 #define MAX_RX_QUEUE_PER_LCORE 16
98 #define MAX_TX_QUEUE_PER_PORT 16
99 struct lcore_queue_conf {
100 	uint64_t tx_tsc;
101 	uint16_t n_rx_queue;
102 	uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
103 	uint16_t tx_queue_id[MAX_PORTS];
104 	struct mbuf_table tx_mbufs[MAX_PORTS];
105 } __rte_cache_aligned;
106 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
107 
108 static struct rte_eth_conf port_conf = {
109 	.rxmode = {
110 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
111 		.split_hdr_size = 0,
112 		.offloads = (DEV_RX_OFFLOAD_JUMBO_FRAME |
113 			     DEV_RX_OFFLOAD_CRC_STRIP),
114 	},
115 	.txmode = {
116 		.mq_mode = ETH_MQ_TX_NONE,
117 		.offloads = DEV_TX_OFFLOAD_MULTI_SEGS,
118 	},
119 };
120 
121 static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
122 
123 
124 /* Multicast */
125 static struct rte_fbk_hash_params mcast_hash_params = {
126 	.name = "MCAST_HASH",
127 	.entries = 1024,
128 	.entries_per_bucket = 4,
129 	.socket_id = 0,
130 	.hash_func = NULL,
131 	.init_val = 0,
132 };
133 
134 struct rte_fbk_hash_table *mcast_hash = NULL;
135 
136 struct mcast_group_params {
137 	uint32_t ip;
138 	uint16_t port_mask;
139 };
140 
141 static struct mcast_group_params mcast_group_table[] = {
142 		{IPv4(224,0,0,101), 0x1},
143 		{IPv4(224,0,0,102), 0x2},
144 		{IPv4(224,0,0,103), 0x3},
145 		{IPv4(224,0,0,104), 0x4},
146 		{IPv4(224,0,0,105), 0x5},
147 		{IPv4(224,0,0,106), 0x6},
148 		{IPv4(224,0,0,107), 0x7},
149 		{IPv4(224,0,0,108), 0x8},
150 		{IPv4(224,0,0,109), 0x9},
151 		{IPv4(224,0,0,110), 0xA},
152 		{IPv4(224,0,0,111), 0xB},
153 		{IPv4(224,0,0,112), 0xC},
154 		{IPv4(224,0,0,113), 0xD},
155 		{IPv4(224,0,0,114), 0xE},
156 		{IPv4(224,0,0,115), 0xF},
157 };
158 
159 #define N_MCAST_GROUPS \
160 	(sizeof (mcast_group_table) / sizeof (mcast_group_table[0]))
161 
162 
163 /* Send burst of packets on an output interface */
164 static void
165 send_burst(struct lcore_queue_conf *qconf, uint16_t port)
166 {
167 	struct rte_mbuf **m_table;
168 	uint16_t n, queueid;
169 	int ret;
170 
171 	queueid = qconf->tx_queue_id[port];
172 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
173 	n = qconf->tx_mbufs[port].len;
174 
175 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
176 	while (unlikely (ret < n)) {
177 		rte_pktmbuf_free(m_table[ret]);
178 		ret++;
179 	}
180 
181 	qconf->tx_mbufs[port].len = 0;
182 }
183 
184 /* Get number of bits set. */
185 static inline uint32_t
186 bitcnt(uint32_t v)
187 {
188 	uint32_t n;
189 
190 	for (n = 0; v != 0; v &= v - 1, n++)
191 		;
192 
193 	return n;
194 }
195 
196 /**
197  * Create the output multicast packet based on the given input packet.
198  * There are two approaches for creating outgoing packet, though both
199  * are based on data zero-copy idea, they differ in few details:
200  * First one creates a clone of the input packet, e.g - walk though all
201  * segments of the input packet, and for each of them create a new packet
202  * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
203  * for more details). Then new mbuf is allocated for the packet header
204  * and is prepended to the 'clone' mbuf.
205  * Second approach doesn't make a clone, it just increment refcnt for all
206  * input packet segments. Then it allocates new mbuf for the packet header
207  * and prepends it to the input packet.
208  * Basically first approach reuses only input packet's data, but creates
209  * it's own copy of packet's metadata. Second approach reuses both input's
210  * packet data and metadata.
211  * The advantage of first approach - is that each outgoing packet has it's
212  * own copy of metadata, so we can safely modify data pointer of the
213  * input packet. That allows us to skip creation if the output packet for
214  * the last destination port, but instead modify input packet's header inplace,
215  * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
216  * The advantage of second approach - less work for each outgoing packet,
217  * e.g: we skip "clone" operation completely. Though it comes with a price -
218  * input packet's metadata has to be intact. So for N destination ports we
219  * need to invoke mcast_out_pkt N times.
220  * So for small number of outgoing ports (and segments in the input packet)
221  * first approach will be faster.
222  * As number of outgoing ports (and/or input segments) will grow,
223  * second way will become more preferable.
224  *
225  *  @param pkt
226  *  Input packet mbuf.
227  *  @param use_clone
228  *  Control which of the two approaches described above should be used:
229  *  - 0 - use second approach:
230  *    Don't "clone" input packet.
231  *    Prepend new header directly to the input packet
232  *  - 1 - use first approach:
233  *    Make a "clone" of input packet first.
234  *    Prepend new header to the clone of the input packet
235  *  @return
236  *  - The pointer to the new outgoing packet.
237  *  - NULL if operation failed.
238  */
239 static inline struct rte_mbuf *
240 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
241 {
242 	struct rte_mbuf *hdr;
243 
244 	/* Create new mbuf for the header. */
245 	if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
246 		return NULL;
247 
248 	/* If requested, then make a new clone packet. */
249 	if (use_clone != 0 &&
250 	    unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
251 		rte_pktmbuf_free(hdr);
252 		return NULL;
253 	}
254 
255 	/* prepend new header */
256 	hdr->next = pkt;
257 
258 
259 	/* update header's fields */
260 	hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
261 	hdr->nb_segs = pkt->nb_segs + 1;
262 
263 	/* copy metadata from source packet*/
264 	hdr->port = pkt->port;
265 	hdr->vlan_tci = pkt->vlan_tci;
266 	hdr->vlan_tci_outer = pkt->vlan_tci_outer;
267 	hdr->tx_offload = pkt->tx_offload;
268 	hdr->hash = pkt->hash;
269 
270 	hdr->ol_flags = pkt->ol_flags;
271 
272 	__rte_mbuf_sanity_check(hdr, 1);
273 	return hdr;
274 }
275 
276 /*
277  * Write new Ethernet header to the outgoing packet,
278  * and put it into the outgoing queue for the given port.
279  */
280 static inline void
281 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr,
282 		struct lcore_queue_conf *qconf, uint16_t port)
283 {
284 	struct ether_hdr *ethdr;
285 	uint16_t len;
286 
287 	/* Construct Ethernet header. */
288 	ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
289 	RTE_ASSERT(ethdr != NULL);
290 
291 	ether_addr_copy(dest_addr, &ethdr->d_addr);
292 	ether_addr_copy(&ports_eth_addr[port], &ethdr->s_addr);
293 	ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
294 
295 	/* Put new packet into the output queue */
296 	len = qconf->tx_mbufs[port].len;
297 	qconf->tx_mbufs[port].m_table[len] = pkt;
298 	qconf->tx_mbufs[port].len = ++len;
299 
300 	/* Transmit packets */
301 	if (unlikely(MAX_PKT_BURST == len))
302 		send_burst(qconf, port);
303 }
304 
305 /* Multicast forward of the input packet */
306 static inline void
307 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
308 {
309 	struct rte_mbuf *mc;
310 	struct ipv4_hdr *iphdr;
311 	uint32_t dest_addr, port_mask, port_num, use_clone;
312 	int32_t hash;
313 	uint16_t port;
314 	union {
315 		uint64_t as_int;
316 		struct ether_addr as_addr;
317 	} dst_eth_addr;
318 
319 	/* Remove the Ethernet header from the input packet */
320 	iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
321 	RTE_ASSERT(iphdr != NULL);
322 
323 	dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
324 
325 	/*
326 	 * Check that it is a valid multicast address and
327 	 * we have some active ports assigned to it.
328 	 */
329 	if(!IS_IPV4_MCAST(dest_addr) ||
330 	    (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
331 	    (port_mask = hash & enabled_port_mask) == 0) {
332 		rte_pktmbuf_free(m);
333 		return;
334 	}
335 
336 	/* Calculate number of destination ports. */
337 	port_num = bitcnt(port_mask);
338 
339 	/* Should we use rte_pktmbuf_clone() or not. */
340 	use_clone = (port_num <= MCAST_CLONE_PORTS &&
341 	    m->nb_segs <= MCAST_CLONE_SEGS);
342 
343 	/* Mark all packet's segments as referenced port_num times */
344 	if (use_clone == 0)
345 		rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
346 
347 	/* construct destination ethernet address */
348 	dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
349 
350 	for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
351 
352 		/* Prepare output packet and send it out. */
353 		if ((port_mask & 1) != 0) {
354 			if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
355 				mcast_send_pkt(mc, &dst_eth_addr.as_addr,
356 						qconf, port);
357 			else if (use_clone == 0)
358 				rte_pktmbuf_free(m);
359 		}
360 	}
361 
362 	/*
363 	 * If we making clone packets, then, for the last destination port,
364 	 * we can overwrite input packet's metadata.
365 	 */
366 	if (use_clone != 0)
367 		mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
368 	else
369 		rte_pktmbuf_free(m);
370 }
371 
372 /* Send burst of outgoing packet, if timeout expires. */
373 static inline void
374 send_timeout_burst(struct lcore_queue_conf *qconf)
375 {
376 	uint64_t cur_tsc;
377 	uint16_t portid;
378 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
379 
380 	cur_tsc = rte_rdtsc();
381 	if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
382 		return;
383 
384 	for (portid = 0; portid < MAX_PORTS; portid++) {
385 		if (qconf->tx_mbufs[portid].len != 0)
386 			send_burst(qconf, portid);
387 	}
388 	qconf->tx_tsc = cur_tsc;
389 }
390 
391 /* main processing loop */
392 static int
393 main_loop(__rte_unused void *dummy)
394 {
395 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
396 	unsigned lcore_id;
397 	int i, j, nb_rx;
398 	uint16_t portid;
399 	struct lcore_queue_conf *qconf;
400 
401 	lcore_id = rte_lcore_id();
402 	qconf = &lcore_queue_conf[lcore_id];
403 
404 
405 	if (qconf->n_rx_queue == 0) {
406 		RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
407 		    lcore_id);
408 		return 0;
409 	}
410 
411 	RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
412 	    lcore_id);
413 
414 	for (i = 0; i < qconf->n_rx_queue; i++) {
415 
416 		portid = qconf->rx_queue_list[i];
417 		RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
418 		    lcore_id, portid);
419 	}
420 
421 	while (1) {
422 
423 		/*
424 		 * Read packet from RX queues
425 		 */
426 		for (i = 0; i < qconf->n_rx_queue; i++) {
427 
428 			portid = qconf->rx_queue_list[i];
429 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
430 						 MAX_PKT_BURST);
431 
432 			/* Prefetch first packets */
433 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
434 				rte_prefetch0(rte_pktmbuf_mtod(
435 						pkts_burst[j], void *));
436 			}
437 
438 			/* Prefetch and forward already prefetched packets */
439 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
440 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
441 						j + PREFETCH_OFFSET], void *));
442 				mcast_forward(pkts_burst[j], qconf);
443 			}
444 
445 			/* Forward remaining prefetched packets */
446 			for (; j < nb_rx; j++) {
447 				mcast_forward(pkts_burst[j], qconf);
448 			}
449 		}
450 
451 		/* Send out packets from TX queues */
452 		send_timeout_burst(qconf);
453 	}
454 }
455 
456 /* display usage */
457 static void
458 print_usage(const char *prgname)
459 {
460 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
461 	    "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
462 	    "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
463 	    prgname);
464 }
465 
466 static uint32_t
467 parse_portmask(const char *portmask)
468 {
469 	char *end = NULL;
470 	unsigned long pm;
471 
472 	/* parse hexadecimal string */
473 	pm = strtoul(portmask, &end, 16);
474 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
475 		return 0;
476 
477 	return (uint32_t)pm;
478 }
479 
480 static int
481 parse_nqueue(const char *q_arg)
482 {
483 	char *end = NULL;
484 	unsigned long n;
485 
486 	/* parse numerical string */
487 	errno = 0;
488 	n = strtoul(q_arg, &end, 0);
489 	if (errno != 0 || end == NULL || *end != '\0' ||
490 			n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
491 		return -1;
492 
493 	return n;
494 }
495 
496 /* Parse the argument given in the command line of the application */
497 static int
498 parse_args(int argc, char **argv)
499 {
500 	int opt, ret;
501 	char **argvopt;
502 	int option_index;
503 	char *prgname = argv[0];
504 	static struct option lgopts[] = {
505 		{NULL, 0, 0, 0}
506 	};
507 
508 	argvopt = argv;
509 
510 	while ((opt = getopt_long(argc, argvopt, "p:q:",
511 				  lgopts, &option_index)) != EOF) {
512 
513 		switch (opt) {
514 		/* portmask */
515 		case 'p':
516 			enabled_port_mask = parse_portmask(optarg);
517 			if (enabled_port_mask == 0) {
518 				printf("invalid portmask\n");
519 				print_usage(prgname);
520 				return -1;
521 			}
522 			break;
523 
524 		/* nqueue */
525 		case 'q':
526 			rx_queue_per_lcore = parse_nqueue(optarg);
527 			if (rx_queue_per_lcore < 0) {
528 				printf("invalid queue number\n");
529 				print_usage(prgname);
530 				return -1;
531 			}
532 			break;
533 
534 		default:
535 			print_usage(prgname);
536 			return -1;
537 		}
538 	}
539 
540 	if (optind >= 0)
541 		argv[optind-1] = prgname;
542 
543 	ret = optind-1;
544 	optind = 1; /* reset getopt lib */
545 	return ret;
546 }
547 
548 static void
549 print_ethaddr(const char *name, struct ether_addr *eth_addr)
550 {
551 	char buf[ETHER_ADDR_FMT_SIZE];
552 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
553 	printf("%s%s", name, buf);
554 }
555 
556 static int
557 init_mcast_hash(void)
558 {
559 	uint32_t i;
560 
561 	mcast_hash_params.socket_id = rte_socket_id();
562 	mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
563 	if (mcast_hash == NULL){
564 		return -1;
565 	}
566 
567 	for (i = 0; i < N_MCAST_GROUPS; i ++){
568 		if (rte_fbk_hash_add_key(mcast_hash,
569 			mcast_group_table[i].ip,
570 			mcast_group_table[i].port_mask) < 0) {
571 			return -1;
572 		}
573 	}
574 
575 	return 0;
576 }
577 
578 /* Check the link status of all ports in up to 9s, and print them finally */
579 static void
580 check_all_ports_link_status(uint32_t port_mask)
581 {
582 #define CHECK_INTERVAL 100 /* 100ms */
583 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
584 	uint16_t portid;
585 	uint8_t count, all_ports_up, print_flag = 0;
586 	struct rte_eth_link link;
587 
588 	printf("\nChecking link status");
589 	fflush(stdout);
590 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
591 		all_ports_up = 1;
592 		RTE_ETH_FOREACH_DEV(portid) {
593 			if ((port_mask & (1 << portid)) == 0)
594 				continue;
595 			memset(&link, 0, sizeof(link));
596 			rte_eth_link_get_nowait(portid, &link);
597 			/* print link status if flag set */
598 			if (print_flag == 1) {
599 				if (link.link_status)
600 					printf(
601 					"Port%d Link Up. Speed %u Mbps - %s\n",
602 					portid, link.link_speed,
603 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
604 					("full-duplex") : ("half-duplex\n"));
605 				else
606 					printf("Port %d Link Down\n", portid);
607 				continue;
608 			}
609 			/* clear all_ports_up flag if any link down */
610 			if (link.link_status == ETH_LINK_DOWN) {
611 				all_ports_up = 0;
612 				break;
613 			}
614 		}
615 		/* after finally printing all link status, get out */
616 		if (print_flag == 1)
617 			break;
618 
619 		if (all_ports_up == 0) {
620 			printf(".");
621 			fflush(stdout);
622 			rte_delay_ms(CHECK_INTERVAL);
623 		}
624 
625 		/* set the print_flag if all ports up or timeout */
626 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
627 			print_flag = 1;
628 			printf("done\n");
629 		}
630 	}
631 }
632 
633 int
634 main(int argc, char **argv)
635 {
636 	struct lcore_queue_conf *qconf;
637 	struct rte_eth_dev_info dev_info;
638 	struct rte_eth_txconf *txconf;
639 	int ret;
640 	uint16_t queueid;
641 	unsigned lcore_id = 0, rx_lcore_id = 0;
642 	uint32_t n_tx_queue, nb_lcores;
643 	uint16_t portid;
644 
645 	/* init EAL */
646 	ret = rte_eal_init(argc, argv);
647 	if (ret < 0)
648 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
649 	argc -= ret;
650 	argv += ret;
651 
652 	/* parse application arguments (after the EAL ones) */
653 	ret = parse_args(argc, argv);
654 	if (ret < 0)
655 		rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
656 
657 	/* create the mbuf pools */
658 	packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
659 		0, PKT_MBUF_DATA_SIZE, rte_socket_id());
660 
661 	if (packet_pool == NULL)
662 		rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
663 
664 	header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
665 		0, HDR_MBUF_DATA_SIZE, rte_socket_id());
666 
667 	if (header_pool == NULL)
668 		rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
669 
670 	clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
671 		0, 0, rte_socket_id());
672 
673 	if (clone_pool == NULL)
674 		rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
675 
676 	nb_ports = rte_eth_dev_count_avail();
677 	if (nb_ports == 0)
678 		rte_exit(EXIT_FAILURE, "No physical ports!\n");
679 	if (nb_ports > MAX_PORTS)
680 		nb_ports = MAX_PORTS;
681 
682 	nb_lcores = rte_lcore_count();
683 
684 	/* initialize all ports */
685 	RTE_ETH_FOREACH_DEV(portid) {
686 		struct rte_eth_rxconf rxq_conf;
687 		struct rte_eth_conf local_port_conf = port_conf;
688 
689 		/* skip ports that are not enabled */
690 		if ((enabled_port_mask & (1 << portid)) == 0) {
691 			printf("Skipping disabled port %d\n", portid);
692 			continue;
693 		}
694 
695 		qconf = &lcore_queue_conf[rx_lcore_id];
696 
697 		/* limit the frame size to the maximum supported by NIC */
698 		rte_eth_dev_info_get(portid, &dev_info);
699 		local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
700 		    dev_info.max_rx_pktlen,
701 		    local_port_conf.rxmode.max_rx_pkt_len);
702 
703 		/* get the lcore_id for this port */
704 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
705 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
706 
707 			rx_lcore_id ++;
708 			qconf = &lcore_queue_conf[rx_lcore_id];
709 
710 			if (rx_lcore_id >= RTE_MAX_LCORE)
711 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
712 		}
713 		qconf->rx_queue_list[qconf->n_rx_queue] = portid;
714 		qconf->n_rx_queue++;
715 
716 		/* init port */
717 		printf("Initializing port %d on lcore %u... ", portid,
718 		       rx_lcore_id);
719 		fflush(stdout);
720 
721 		n_tx_queue = nb_lcores;
722 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
723 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
724 
725 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
726 					    &local_port_conf);
727 		if (ret < 0)
728 			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
729 				  ret, portid);
730 
731 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
732 						       &nb_txd);
733 		if (ret < 0)
734 			rte_exit(EXIT_FAILURE,
735 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
736 				 ret, portid);
737 
738 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
739 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
740 		printf(", ");
741 
742 		/* init one RX queue */
743 		queueid = 0;
744 		printf("rxq=%hu ", queueid);
745 		fflush(stdout);
746 		rxq_conf = dev_info.default_rxconf;
747 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
748 		ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
749 					     rte_eth_dev_socket_id(portid),
750 					     &rxq_conf,
751 					     packet_pool);
752 		if (ret < 0)
753 			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
754 				  ret, portid);
755 
756 		/* init one TX queue per couple (lcore,port) */
757 		queueid = 0;
758 
759 		RTE_LCORE_FOREACH(lcore_id) {
760 			if (rte_lcore_is_enabled(lcore_id) == 0)
761 				continue;
762 			printf("txq=%u,%hu ", lcore_id, queueid);
763 			fflush(stdout);
764 
765 			txconf = &dev_info.default_txconf;
766 			txconf->offloads = local_port_conf.txmode.offloads;
767 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
768 						     rte_lcore_to_socket_id(lcore_id), txconf);
769 			if (ret < 0)
770 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
771 					  "port=%d\n", ret, portid);
772 
773 			qconf = &lcore_queue_conf[lcore_id];
774 			qconf->tx_queue_id[portid] = queueid;
775 			queueid++;
776 		}
777 
778 		/* Start device */
779 		ret = rte_eth_dev_start(portid);
780 		if (ret < 0)
781 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
782 				  ret, portid);
783 
784 		printf("done:\n");
785 	}
786 
787 	check_all_ports_link_status(enabled_port_mask);
788 
789 	/* initialize the multicast hash */
790 	int retval = init_mcast_hash();
791 	if (retval != 0)
792 		rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
793 
794 	/* launch per-lcore init on every lcore */
795 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
796 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
797 		if (rte_eal_wait_lcore(lcore_id) < 0)
798 			return -1;
799 	}
800 
801 	return 0;
802 }
803