xref: /dpdk/examples/ipv4_multicast/main.c (revision 131a75b6e4df60586103d71defb85dcf9f77fb17)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
47 #include <rte_log.h>
48 #include <rte_memory.h>
49 #include <rte_memcpy.h>
50 #include <rte_eal.h>
51 #include <rte_launch.h>
52 #include <rte_atomic.h>
53 #include <rte_cycles.h>
54 #include <rte_prefetch.h>
55 #include <rte_lcore.h>
56 #include <rte_per_lcore.h>
57 #include <rte_branch_prediction.h>
58 #include <rte_interrupts.h>
59 #include <rte_random.h>
60 #include <rte_debug.h>
61 #include <rte_ether.h>
62 #include <rte_ethdev.h>
63 #include <rte_mempool.h>
64 #include <rte_mbuf.h>
65 #include <rte_malloc.h>
66 #include <rte_fbk_hash.h>
67 #include <rte_ip.h>
68 
69 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
70 
71 #define MAX_PORTS 16
72 
73 #define	MCAST_CLONE_PORTS	2
74 #define	MCAST_CLONE_SEGS	2
75 
76 #define	PKT_MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
77 #define	NB_PKT_MBUF	8192
78 
79 #define	HDR_MBUF_DATA_SIZE	(2 * RTE_PKTMBUF_HEADROOM)
80 #define	NB_HDR_MBUF	(NB_PKT_MBUF * MAX_PORTS)
81 
82 #define	NB_CLONE_MBUF	(NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
83 
84 /* allow max jumbo frame 9.5 KB */
85 #define	JUMBO_FRAME_MAX_SIZE	0x2600
86 
87 #define MAX_PKT_BURST 32
88 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
89 
90 /* Configure how many packets ahead to prefetch, when reading packets */
91 #define PREFETCH_OFFSET	3
92 
93 /*
94  * Construct Ethernet multicast address from IPv4 multicast address.
95  * Citing RFC 1112, section 6.4:
96  * "An IP host group address is mapped to an Ethernet multicast address
97  * by placing the low-order 23-bits of the IP address into the low-order
98  * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
99  */
100 #define	ETHER_ADDR_FOR_IPV4_MCAST(x)	\
101 	(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
102 
103 /*
104  * Configurable number of RX/TX ring descriptors
105  */
106 #define RTE_TEST_RX_DESC_DEFAULT 128
107 #define RTE_TEST_TX_DESC_DEFAULT 512
108 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
109 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
110 
111 /* ethernet addresses of ports */
112 static struct ether_addr ports_eth_addr[MAX_PORTS];
113 
114 /* mask of enabled ports */
115 static uint32_t enabled_port_mask = 0;
116 
117 static uint16_t nb_ports;
118 
119 static int rx_queue_per_lcore = 1;
120 
121 struct mbuf_table {
122 	uint16_t len;
123 	struct rte_mbuf *m_table[MAX_PKT_BURST];
124 };
125 
126 #define MAX_RX_QUEUE_PER_LCORE 16
127 #define MAX_TX_QUEUE_PER_PORT 16
128 struct lcore_queue_conf {
129 	uint64_t tx_tsc;
130 	uint16_t n_rx_queue;
131 	uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
132 	uint16_t tx_queue_id[MAX_PORTS];
133 	struct mbuf_table tx_mbufs[MAX_PORTS];
134 } __rte_cache_aligned;
135 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
136 
137 static struct rte_eth_conf port_conf = {
138 	.rxmode = {
139 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
140 		.split_hdr_size = 0,
141 		.header_split   = 0, /**< Header Split disabled */
142 		.hw_ip_checksum = 0, /**< IP checksum offload disabled */
143 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
144 		.jumbo_frame    = 1, /**< Jumbo Frame Support enabled */
145 		.hw_strip_crc   = 1, /**< CRC stripped by hardware */
146 	},
147 	.txmode = {
148 		.mq_mode = ETH_MQ_TX_NONE,
149 	},
150 };
151 
152 static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
153 
154 
155 /* Multicast */
156 static struct rte_fbk_hash_params mcast_hash_params = {
157 	.name = "MCAST_HASH",
158 	.entries = 1024,
159 	.entries_per_bucket = 4,
160 	.socket_id = 0,
161 	.hash_func = NULL,
162 	.init_val = 0,
163 };
164 
165 struct rte_fbk_hash_table *mcast_hash = NULL;
166 
167 struct mcast_group_params {
168 	uint32_t ip;
169 	uint16_t port_mask;
170 };
171 
172 static struct mcast_group_params mcast_group_table[] = {
173 		{IPv4(224,0,0,101), 0x1},
174 		{IPv4(224,0,0,102), 0x2},
175 		{IPv4(224,0,0,103), 0x3},
176 		{IPv4(224,0,0,104), 0x4},
177 		{IPv4(224,0,0,105), 0x5},
178 		{IPv4(224,0,0,106), 0x6},
179 		{IPv4(224,0,0,107), 0x7},
180 		{IPv4(224,0,0,108), 0x8},
181 		{IPv4(224,0,0,109), 0x9},
182 		{IPv4(224,0,0,110), 0xA},
183 		{IPv4(224,0,0,111), 0xB},
184 		{IPv4(224,0,0,112), 0xC},
185 		{IPv4(224,0,0,113), 0xD},
186 		{IPv4(224,0,0,114), 0xE},
187 		{IPv4(224,0,0,115), 0xF},
188 };
189 
190 #define N_MCAST_GROUPS \
191 	(sizeof (mcast_group_table) / sizeof (mcast_group_table[0]))
192 
193 
194 /* Send burst of packets on an output interface */
195 static void
196 send_burst(struct lcore_queue_conf *qconf, uint16_t port)
197 {
198 	struct rte_mbuf **m_table;
199 	uint16_t n, queueid;
200 	int ret;
201 
202 	queueid = qconf->tx_queue_id[port];
203 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
204 	n = qconf->tx_mbufs[port].len;
205 
206 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
207 	while (unlikely (ret < n)) {
208 		rte_pktmbuf_free(m_table[ret]);
209 		ret++;
210 	}
211 
212 	qconf->tx_mbufs[port].len = 0;
213 }
214 
215 /* Get number of bits set. */
216 static inline uint32_t
217 bitcnt(uint32_t v)
218 {
219 	uint32_t n;
220 
221 	for (n = 0; v != 0; v &= v - 1, n++)
222 		;
223 
224 	return n;
225 }
226 
227 /**
228  * Create the output multicast packet based on the given input packet.
229  * There are two approaches for creating outgoing packet, though both
230  * are based on data zero-copy idea, they differ in few details:
231  * First one creates a clone of the input packet, e.g - walk though all
232  * segments of the input packet, and for each of them create a new packet
233  * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
234  * for more details). Then new mbuf is allocated for the packet header
235  * and is prepended to the 'clone' mbuf.
236  * Second approach doesn't make a clone, it just increment refcnt for all
237  * input packet segments. Then it allocates new mbuf for the packet header
238  * and prepends it to the input packet.
239  * Basically first approach reuses only input packet's data, but creates
240  * it's own copy of packet's metadata. Second approach reuses both input's
241  * packet data and metadata.
242  * The advantage of first approach - is that each outgoing packet has it's
243  * own copy of metadata, so we can safely modify data pointer of the
244  * input packet. That allows us to skip creation if the output packet for
245  * the last destination port, but instead modify input packet's header inplace,
246  * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
247  * The advantage of second approach - less work for each outgoing packet,
248  * e.g: we skip "clone" operation completely. Though it comes with a price -
249  * input packet's metadata has to be intact. So for N destination ports we
250  * need to invoke mcast_out_pkt N times.
251  * So for small number of outgoing ports (and segments in the input packet)
252  * first approach will be faster.
253  * As number of outgoing ports (and/or input segments) will grow,
254  * second way will become more preferable.
255  *
256  *  @param pkt
257  *  Input packet mbuf.
258  *  @param use_clone
259  *  Control which of the two approaches described above should be used:
260  *  - 0 - use second approach:
261  *    Don't "clone" input packet.
262  *    Prepend new header directly to the input packet
263  *  - 1 - use first approach:
264  *    Make a "clone" of input packet first.
265  *    Prepend new header to the clone of the input packet
266  *  @return
267  *  - The pointer to the new outgoing packet.
268  *  - NULL if operation failed.
269  */
270 static inline struct rte_mbuf *
271 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
272 {
273 	struct rte_mbuf *hdr;
274 
275 	/* Create new mbuf for the header. */
276 	if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
277 		return NULL;
278 
279 	/* If requested, then make a new clone packet. */
280 	if (use_clone != 0 &&
281 	    unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
282 		rte_pktmbuf_free(hdr);
283 		return NULL;
284 	}
285 
286 	/* prepend new header */
287 	hdr->next = pkt;
288 
289 
290 	/* update header's fields */
291 	hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
292 	hdr->nb_segs = pkt->nb_segs + 1;
293 
294 	/* copy metadata from source packet*/
295 	hdr->port = pkt->port;
296 	hdr->vlan_tci = pkt->vlan_tci;
297 	hdr->vlan_tci_outer = pkt->vlan_tci_outer;
298 	hdr->tx_offload = pkt->tx_offload;
299 	hdr->hash = pkt->hash;
300 
301 	hdr->ol_flags = pkt->ol_flags;
302 
303 	__rte_mbuf_sanity_check(hdr, 1);
304 	return hdr;
305 }
306 
307 /*
308  * Write new Ethernet header to the outgoing packet,
309  * and put it into the outgoing queue for the given port.
310  */
311 static inline void
312 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr,
313 		struct lcore_queue_conf *qconf, uint16_t port)
314 {
315 	struct ether_hdr *ethdr;
316 	uint16_t len;
317 
318 	/* Construct Ethernet header. */
319 	ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
320 	RTE_ASSERT(ethdr != NULL);
321 
322 	ether_addr_copy(dest_addr, &ethdr->d_addr);
323 	ether_addr_copy(&ports_eth_addr[port], &ethdr->s_addr);
324 	ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
325 
326 	/* Put new packet into the output queue */
327 	len = qconf->tx_mbufs[port].len;
328 	qconf->tx_mbufs[port].m_table[len] = pkt;
329 	qconf->tx_mbufs[port].len = ++len;
330 
331 	/* Transmit packets */
332 	if (unlikely(MAX_PKT_BURST == len))
333 		send_burst(qconf, port);
334 }
335 
336 /* Multicast forward of the input packet */
337 static inline void
338 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
339 {
340 	struct rte_mbuf *mc;
341 	struct ipv4_hdr *iphdr;
342 	uint32_t dest_addr, port_mask, port_num, use_clone;
343 	int32_t hash;
344 	uint16_t port;
345 	union {
346 		uint64_t as_int;
347 		struct ether_addr as_addr;
348 	} dst_eth_addr;
349 
350 	/* Remove the Ethernet header from the input packet */
351 	iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
352 	RTE_ASSERT(iphdr != NULL);
353 
354 	dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
355 
356 	/*
357 	 * Check that it is a valid multicast address and
358 	 * we have some active ports assigned to it.
359 	 */
360 	if(!IS_IPV4_MCAST(dest_addr) ||
361 	    (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
362 	    (port_mask = hash & enabled_port_mask) == 0) {
363 		rte_pktmbuf_free(m);
364 		return;
365 	}
366 
367 	/* Calculate number of destination ports. */
368 	port_num = bitcnt(port_mask);
369 
370 	/* Should we use rte_pktmbuf_clone() or not. */
371 	use_clone = (port_num <= MCAST_CLONE_PORTS &&
372 	    m->nb_segs <= MCAST_CLONE_SEGS);
373 
374 	/* Mark all packet's segments as referenced port_num times */
375 	if (use_clone == 0)
376 		rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
377 
378 	/* construct destination ethernet address */
379 	dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
380 
381 	for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
382 
383 		/* Prepare output packet and send it out. */
384 		if ((port_mask & 1) != 0) {
385 			if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
386 				mcast_send_pkt(mc, &dst_eth_addr.as_addr,
387 						qconf, port);
388 			else if (use_clone == 0)
389 				rte_pktmbuf_free(m);
390 		}
391 	}
392 
393 	/*
394 	 * If we making clone packets, then, for the last destination port,
395 	 * we can overwrite input packet's metadata.
396 	 */
397 	if (use_clone != 0)
398 		mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
399 	else
400 		rte_pktmbuf_free(m);
401 }
402 
403 /* Send burst of outgoing packet, if timeout expires. */
404 static inline void
405 send_timeout_burst(struct lcore_queue_conf *qconf)
406 {
407 	uint64_t cur_tsc;
408 	uint16_t portid;
409 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
410 
411 	cur_tsc = rte_rdtsc();
412 	if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
413 		return;
414 
415 	for (portid = 0; portid < MAX_PORTS; portid++) {
416 		if (qconf->tx_mbufs[portid].len != 0)
417 			send_burst(qconf, portid);
418 	}
419 	qconf->tx_tsc = cur_tsc;
420 }
421 
422 /* main processing loop */
423 static int
424 main_loop(__rte_unused void *dummy)
425 {
426 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
427 	unsigned lcore_id;
428 	int i, j, nb_rx;
429 	uint16_t portid;
430 	struct lcore_queue_conf *qconf;
431 
432 	lcore_id = rte_lcore_id();
433 	qconf = &lcore_queue_conf[lcore_id];
434 
435 
436 	if (qconf->n_rx_queue == 0) {
437 		RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
438 		    lcore_id);
439 		return 0;
440 	}
441 
442 	RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
443 	    lcore_id);
444 
445 	for (i = 0; i < qconf->n_rx_queue; i++) {
446 
447 		portid = qconf->rx_queue_list[i];
448 		RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
449 		    lcore_id, portid);
450 	}
451 
452 	while (1) {
453 
454 		/*
455 		 * Read packet from RX queues
456 		 */
457 		for (i = 0; i < qconf->n_rx_queue; i++) {
458 
459 			portid = qconf->rx_queue_list[i];
460 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
461 						 MAX_PKT_BURST);
462 
463 			/* Prefetch first packets */
464 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
465 				rte_prefetch0(rte_pktmbuf_mtod(
466 						pkts_burst[j], void *));
467 			}
468 
469 			/* Prefetch and forward already prefetched packets */
470 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
471 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
472 						j + PREFETCH_OFFSET], void *));
473 				mcast_forward(pkts_burst[j], qconf);
474 			}
475 
476 			/* Forward remaining prefetched packets */
477 			for (; j < nb_rx; j++) {
478 				mcast_forward(pkts_burst[j], qconf);
479 			}
480 		}
481 
482 		/* Send out packets from TX queues */
483 		send_timeout_burst(qconf);
484 	}
485 }
486 
487 /* display usage */
488 static void
489 print_usage(const char *prgname)
490 {
491 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
492 	    "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
493 	    "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
494 	    prgname);
495 }
496 
497 static uint32_t
498 parse_portmask(const char *portmask)
499 {
500 	char *end = NULL;
501 	unsigned long pm;
502 
503 	/* parse hexadecimal string */
504 	pm = strtoul(portmask, &end, 16);
505 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
506 		return 0;
507 
508 	return (uint32_t)pm;
509 }
510 
511 static int
512 parse_nqueue(const char *q_arg)
513 {
514 	char *end = NULL;
515 	unsigned long n;
516 
517 	/* parse numerical string */
518 	errno = 0;
519 	n = strtoul(q_arg, &end, 0);
520 	if (errno != 0 || end == NULL || *end != '\0' ||
521 			n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
522 		return -1;
523 
524 	return n;
525 }
526 
527 /* Parse the argument given in the command line of the application */
528 static int
529 parse_args(int argc, char **argv)
530 {
531 	int opt, ret;
532 	char **argvopt;
533 	int option_index;
534 	char *prgname = argv[0];
535 	static struct option lgopts[] = {
536 		{NULL, 0, 0, 0}
537 	};
538 
539 	argvopt = argv;
540 
541 	while ((opt = getopt_long(argc, argvopt, "p:q:",
542 				  lgopts, &option_index)) != EOF) {
543 
544 		switch (opt) {
545 		/* portmask */
546 		case 'p':
547 			enabled_port_mask = parse_portmask(optarg);
548 			if (enabled_port_mask == 0) {
549 				printf("invalid portmask\n");
550 				print_usage(prgname);
551 				return -1;
552 			}
553 			break;
554 
555 		/* nqueue */
556 		case 'q':
557 			rx_queue_per_lcore = parse_nqueue(optarg);
558 			if (rx_queue_per_lcore < 0) {
559 				printf("invalid queue number\n");
560 				print_usage(prgname);
561 				return -1;
562 			}
563 			break;
564 
565 		default:
566 			print_usage(prgname);
567 			return -1;
568 		}
569 	}
570 
571 	if (optind >= 0)
572 		argv[optind-1] = prgname;
573 
574 	ret = optind-1;
575 	optind = 1; /* reset getopt lib */
576 	return ret;
577 }
578 
579 static void
580 print_ethaddr(const char *name, struct ether_addr *eth_addr)
581 {
582 	char buf[ETHER_ADDR_FMT_SIZE];
583 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
584 	printf("%s%s", name, buf);
585 }
586 
587 static int
588 init_mcast_hash(void)
589 {
590 	uint32_t i;
591 
592 	mcast_hash_params.socket_id = rte_socket_id();
593 	mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
594 	if (mcast_hash == NULL){
595 		return -1;
596 	}
597 
598 	for (i = 0; i < N_MCAST_GROUPS; i ++){
599 		if (rte_fbk_hash_add_key(mcast_hash,
600 			mcast_group_table[i].ip,
601 			mcast_group_table[i].port_mask) < 0) {
602 			return -1;
603 		}
604 	}
605 
606 	return 0;
607 }
608 
609 /* Check the link status of all ports in up to 9s, and print them finally */
610 static void
611 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
612 {
613 #define CHECK_INTERVAL 100 /* 100ms */
614 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
615 	uint16_t portid;
616 	uint8_t count, all_ports_up, print_flag = 0;
617 	struct rte_eth_link link;
618 
619 	printf("\nChecking link status");
620 	fflush(stdout);
621 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
622 		all_ports_up = 1;
623 		for (portid = 0; portid < port_num; portid++) {
624 			if ((port_mask & (1 << portid)) == 0)
625 				continue;
626 			memset(&link, 0, sizeof(link));
627 			rte_eth_link_get_nowait(portid, &link);
628 			/* print link status if flag set */
629 			if (print_flag == 1) {
630 				if (link.link_status)
631 					printf(
632 					"Port%d Link Up. Speed %u Mbps - %s\n",
633 					portid, link.link_speed,
634 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
635 					("full-duplex") : ("half-duplex\n"));
636 				else
637 					printf("Port %d Link Down\n", portid);
638 				continue;
639 			}
640 			/* clear all_ports_up flag if any link down */
641 			if (link.link_status == ETH_LINK_DOWN) {
642 				all_ports_up = 0;
643 				break;
644 			}
645 		}
646 		/* after finally printing all link status, get out */
647 		if (print_flag == 1)
648 			break;
649 
650 		if (all_ports_up == 0) {
651 			printf(".");
652 			fflush(stdout);
653 			rte_delay_ms(CHECK_INTERVAL);
654 		}
655 
656 		/* set the print_flag if all ports up or timeout */
657 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
658 			print_flag = 1;
659 			printf("done\n");
660 		}
661 	}
662 }
663 
664 int
665 main(int argc, char **argv)
666 {
667 	struct lcore_queue_conf *qconf;
668 	struct rte_eth_dev_info dev_info;
669 	struct rte_eth_txconf *txconf;
670 	int ret;
671 	uint16_t queueid;
672 	unsigned lcore_id = 0, rx_lcore_id = 0;
673 	uint32_t n_tx_queue, nb_lcores;
674 	uint16_t portid;
675 
676 	/* init EAL */
677 	ret = rte_eal_init(argc, argv);
678 	if (ret < 0)
679 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
680 	argc -= ret;
681 	argv += ret;
682 
683 	/* parse application arguments (after the EAL ones) */
684 	ret = parse_args(argc, argv);
685 	if (ret < 0)
686 		rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
687 
688 	/* create the mbuf pools */
689 	packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
690 		0, PKT_MBUF_DATA_SIZE, rte_socket_id());
691 
692 	if (packet_pool == NULL)
693 		rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
694 
695 	header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
696 		0, HDR_MBUF_DATA_SIZE, rte_socket_id());
697 
698 	if (header_pool == NULL)
699 		rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
700 
701 	clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
702 		0, 0, rte_socket_id());
703 
704 	if (clone_pool == NULL)
705 		rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
706 
707 	nb_ports = rte_eth_dev_count();
708 	if (nb_ports == 0)
709 		rte_exit(EXIT_FAILURE, "No physical ports!\n");
710 	if (nb_ports > MAX_PORTS)
711 		nb_ports = MAX_PORTS;
712 
713 	nb_lcores = rte_lcore_count();
714 
715 	/* initialize all ports */
716 	for (portid = 0; portid < nb_ports; portid++) {
717 		/* skip ports that are not enabled */
718 		if ((enabled_port_mask & (1 << portid)) == 0) {
719 			printf("Skipping disabled port %d\n", portid);
720 			continue;
721 		}
722 
723 		qconf = &lcore_queue_conf[rx_lcore_id];
724 
725 		/* limit the frame size to the maximum supported by NIC */
726 		rte_eth_dev_info_get(portid, &dev_info);
727 		port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
728 		    dev_info.max_rx_pktlen, port_conf.rxmode.max_rx_pkt_len);
729 
730 		/* get the lcore_id for this port */
731 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
732 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
733 
734 			rx_lcore_id ++;
735 			qconf = &lcore_queue_conf[rx_lcore_id];
736 
737 			if (rx_lcore_id >= RTE_MAX_LCORE)
738 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
739 		}
740 		qconf->rx_queue_list[qconf->n_rx_queue] = portid;
741 		qconf->n_rx_queue++;
742 
743 		/* init port */
744 		printf("Initializing port %d on lcore %u... ", portid,
745 		       rx_lcore_id);
746 		fflush(stdout);
747 
748 		n_tx_queue = nb_lcores;
749 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
750 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
751 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
752 					    &port_conf);
753 		if (ret < 0)
754 			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
755 				  ret, portid);
756 
757 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
758 						       &nb_txd);
759 		if (ret < 0)
760 			rte_exit(EXIT_FAILURE,
761 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
762 				 ret, portid);
763 
764 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
765 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
766 		printf(", ");
767 
768 		/* init one RX queue */
769 		queueid = 0;
770 		printf("rxq=%hu ", queueid);
771 		fflush(stdout);
772 		ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
773 					     rte_eth_dev_socket_id(portid),
774 					     NULL,
775 					     packet_pool);
776 		if (ret < 0)
777 			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
778 				  ret, portid);
779 
780 		/* init one TX queue per couple (lcore,port) */
781 		queueid = 0;
782 
783 		RTE_LCORE_FOREACH(lcore_id) {
784 			if (rte_lcore_is_enabled(lcore_id) == 0)
785 				continue;
786 			printf("txq=%u,%hu ", lcore_id, queueid);
787 			fflush(stdout);
788 
789 			txconf = &dev_info.default_txconf;
790 			txconf->txq_flags = 0;
791 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
792 						     rte_lcore_to_socket_id(lcore_id), txconf);
793 			if (ret < 0)
794 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
795 					  "port=%d\n", ret, portid);
796 
797 			qconf = &lcore_queue_conf[lcore_id];
798 			qconf->tx_queue_id[portid] = queueid;
799 			queueid++;
800 		}
801 
802 		/* Start device */
803 		ret = rte_eth_dev_start(portid);
804 		if (ret < 0)
805 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
806 				  ret, portid);
807 
808 		printf("done:\n");
809 	}
810 
811 	check_all_ports_link_status(nb_ports, enabled_port_mask);
812 
813 	/* initialize the multicast hash */
814 	int retval = init_mcast_hash();
815 	if (retval != 0)
816 		rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
817 
818 	/* launch per-lcore init on every lcore */
819 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
820 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
821 		if (rte_eal_wait_lcore(lcore_id) < 0)
822 			return -1;
823 	}
824 
825 	return 0;
826 }
827