1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_memory.h> 20 #include <rte_memcpy.h> 21 #include <rte_eal.h> 22 #include <rte_launch.h> 23 #include <rte_atomic.h> 24 #include <rte_cycles.h> 25 #include <rte_prefetch.h> 26 #include <rte_lcore.h> 27 #include <rte_per_lcore.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_interrupts.h> 30 #include <rte_random.h> 31 #include <rte_debug.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_mempool.h> 35 #include <rte_mbuf.h> 36 #include <rte_malloc.h> 37 #include <rte_fbk_hash.h> 38 #include <rte_ip.h> 39 40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 41 42 #define MAX_PORTS 16 43 44 #define MCAST_CLONE_PORTS 2 45 #define MCAST_CLONE_SEGS 2 46 47 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 48 #define NB_PKT_MBUF 8192 49 50 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 51 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 52 53 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 54 55 /* allow max jumbo frame 9.5 KB */ 56 #define JUMBO_FRAME_MAX_SIZE 0x2600 57 58 #define MAX_PKT_BURST 32 59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 60 61 /* Configure how many packets ahead to prefetch, when reading packets */ 62 #define PREFETCH_OFFSET 3 63 64 /* 65 * Construct Ethernet multicast address from IPv4 multicast address. 66 * Citing RFC 1112, section 6.4: 67 * "An IP host group address is mapped to an Ethernet multicast address 68 * by placing the low-order 23-bits of the IP address into the low-order 69 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 70 */ 71 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 72 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 73 74 /* 75 * Configurable number of RX/TX ring descriptors 76 */ 77 #define RTE_TEST_RX_DESC_DEFAULT 1024 78 #define RTE_TEST_TX_DESC_DEFAULT 1024 79 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 80 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 81 82 /* ethernet addresses of ports */ 83 static struct ether_addr ports_eth_addr[MAX_PORTS]; 84 85 /* mask of enabled ports */ 86 static uint32_t enabled_port_mask = 0; 87 88 static uint16_t nb_ports; 89 90 static int rx_queue_per_lcore = 1; 91 92 struct mbuf_table { 93 uint16_t len; 94 struct rte_mbuf *m_table[MAX_PKT_BURST]; 95 }; 96 97 #define MAX_RX_QUEUE_PER_LCORE 16 98 #define MAX_TX_QUEUE_PER_PORT 16 99 struct lcore_queue_conf { 100 uint64_t tx_tsc; 101 uint16_t n_rx_queue; 102 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 103 uint16_t tx_queue_id[MAX_PORTS]; 104 struct mbuf_table tx_mbufs[MAX_PORTS]; 105 } __rte_cache_aligned; 106 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 107 108 static struct rte_eth_conf port_conf = { 109 .rxmode = { 110 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 111 .split_hdr_size = 0, 112 .ignore_offload_bitfield = 1, 113 .offloads = (DEV_RX_OFFLOAD_JUMBO_FRAME | 114 DEV_RX_OFFLOAD_CRC_STRIP), 115 }, 116 .txmode = { 117 .mq_mode = ETH_MQ_TX_NONE, 118 .offloads = DEV_TX_OFFLOAD_MULTI_SEGS, 119 }, 120 }; 121 122 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 123 124 125 /* Multicast */ 126 static struct rte_fbk_hash_params mcast_hash_params = { 127 .name = "MCAST_HASH", 128 .entries = 1024, 129 .entries_per_bucket = 4, 130 .socket_id = 0, 131 .hash_func = NULL, 132 .init_val = 0, 133 }; 134 135 struct rte_fbk_hash_table *mcast_hash = NULL; 136 137 struct mcast_group_params { 138 uint32_t ip; 139 uint16_t port_mask; 140 }; 141 142 static struct mcast_group_params mcast_group_table[] = { 143 {IPv4(224,0,0,101), 0x1}, 144 {IPv4(224,0,0,102), 0x2}, 145 {IPv4(224,0,0,103), 0x3}, 146 {IPv4(224,0,0,104), 0x4}, 147 {IPv4(224,0,0,105), 0x5}, 148 {IPv4(224,0,0,106), 0x6}, 149 {IPv4(224,0,0,107), 0x7}, 150 {IPv4(224,0,0,108), 0x8}, 151 {IPv4(224,0,0,109), 0x9}, 152 {IPv4(224,0,0,110), 0xA}, 153 {IPv4(224,0,0,111), 0xB}, 154 {IPv4(224,0,0,112), 0xC}, 155 {IPv4(224,0,0,113), 0xD}, 156 {IPv4(224,0,0,114), 0xE}, 157 {IPv4(224,0,0,115), 0xF}, 158 }; 159 160 #define N_MCAST_GROUPS \ 161 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 162 163 164 /* Send burst of packets on an output interface */ 165 static void 166 send_burst(struct lcore_queue_conf *qconf, uint16_t port) 167 { 168 struct rte_mbuf **m_table; 169 uint16_t n, queueid; 170 int ret; 171 172 queueid = qconf->tx_queue_id[port]; 173 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 174 n = qconf->tx_mbufs[port].len; 175 176 ret = rte_eth_tx_burst(port, queueid, m_table, n); 177 while (unlikely (ret < n)) { 178 rte_pktmbuf_free(m_table[ret]); 179 ret++; 180 } 181 182 qconf->tx_mbufs[port].len = 0; 183 } 184 185 /* Get number of bits set. */ 186 static inline uint32_t 187 bitcnt(uint32_t v) 188 { 189 uint32_t n; 190 191 for (n = 0; v != 0; v &= v - 1, n++) 192 ; 193 194 return n; 195 } 196 197 /** 198 * Create the output multicast packet based on the given input packet. 199 * There are two approaches for creating outgoing packet, though both 200 * are based on data zero-copy idea, they differ in few details: 201 * First one creates a clone of the input packet, e.g - walk though all 202 * segments of the input packet, and for each of them create a new packet 203 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 204 * for more details). Then new mbuf is allocated for the packet header 205 * and is prepended to the 'clone' mbuf. 206 * Second approach doesn't make a clone, it just increment refcnt for all 207 * input packet segments. Then it allocates new mbuf for the packet header 208 * and prepends it to the input packet. 209 * Basically first approach reuses only input packet's data, but creates 210 * it's own copy of packet's metadata. Second approach reuses both input's 211 * packet data and metadata. 212 * The advantage of first approach - is that each outgoing packet has it's 213 * own copy of metadata, so we can safely modify data pointer of the 214 * input packet. That allows us to skip creation if the output packet for 215 * the last destination port, but instead modify input packet's header inplace, 216 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 217 * The advantage of second approach - less work for each outgoing packet, 218 * e.g: we skip "clone" operation completely. Though it comes with a price - 219 * input packet's metadata has to be intact. So for N destination ports we 220 * need to invoke mcast_out_pkt N times. 221 * So for small number of outgoing ports (and segments in the input packet) 222 * first approach will be faster. 223 * As number of outgoing ports (and/or input segments) will grow, 224 * second way will become more preferable. 225 * 226 * @param pkt 227 * Input packet mbuf. 228 * @param use_clone 229 * Control which of the two approaches described above should be used: 230 * - 0 - use second approach: 231 * Don't "clone" input packet. 232 * Prepend new header directly to the input packet 233 * - 1 - use first approach: 234 * Make a "clone" of input packet first. 235 * Prepend new header to the clone of the input packet 236 * @return 237 * - The pointer to the new outgoing packet. 238 * - NULL if operation failed. 239 */ 240 static inline struct rte_mbuf * 241 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 242 { 243 struct rte_mbuf *hdr; 244 245 /* Create new mbuf for the header. */ 246 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 247 return NULL; 248 249 /* If requested, then make a new clone packet. */ 250 if (use_clone != 0 && 251 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 252 rte_pktmbuf_free(hdr); 253 return NULL; 254 } 255 256 /* prepend new header */ 257 hdr->next = pkt; 258 259 260 /* update header's fields */ 261 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 262 hdr->nb_segs = pkt->nb_segs + 1; 263 264 /* copy metadata from source packet*/ 265 hdr->port = pkt->port; 266 hdr->vlan_tci = pkt->vlan_tci; 267 hdr->vlan_tci_outer = pkt->vlan_tci_outer; 268 hdr->tx_offload = pkt->tx_offload; 269 hdr->hash = pkt->hash; 270 271 hdr->ol_flags = pkt->ol_flags; 272 273 __rte_mbuf_sanity_check(hdr, 1); 274 return hdr; 275 } 276 277 /* 278 * Write new Ethernet header to the outgoing packet, 279 * and put it into the outgoing queue for the given port. 280 */ 281 static inline void 282 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, 283 struct lcore_queue_conf *qconf, uint16_t port) 284 { 285 struct ether_hdr *ethdr; 286 uint16_t len; 287 288 /* Construct Ethernet header. */ 289 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 290 RTE_ASSERT(ethdr != NULL); 291 292 ether_addr_copy(dest_addr, ðdr->d_addr); 293 ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 294 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 295 296 /* Put new packet into the output queue */ 297 len = qconf->tx_mbufs[port].len; 298 qconf->tx_mbufs[port].m_table[len] = pkt; 299 qconf->tx_mbufs[port].len = ++len; 300 301 /* Transmit packets */ 302 if (unlikely(MAX_PKT_BURST == len)) 303 send_burst(qconf, port); 304 } 305 306 /* Multicast forward of the input packet */ 307 static inline void 308 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 309 { 310 struct rte_mbuf *mc; 311 struct ipv4_hdr *iphdr; 312 uint32_t dest_addr, port_mask, port_num, use_clone; 313 int32_t hash; 314 uint16_t port; 315 union { 316 uint64_t as_int; 317 struct ether_addr as_addr; 318 } dst_eth_addr; 319 320 /* Remove the Ethernet header from the input packet */ 321 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 322 RTE_ASSERT(iphdr != NULL); 323 324 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 325 326 /* 327 * Check that it is a valid multicast address and 328 * we have some active ports assigned to it. 329 */ 330 if(!IS_IPV4_MCAST(dest_addr) || 331 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 332 (port_mask = hash & enabled_port_mask) == 0) { 333 rte_pktmbuf_free(m); 334 return; 335 } 336 337 /* Calculate number of destination ports. */ 338 port_num = bitcnt(port_mask); 339 340 /* Should we use rte_pktmbuf_clone() or not. */ 341 use_clone = (port_num <= MCAST_CLONE_PORTS && 342 m->nb_segs <= MCAST_CLONE_SEGS); 343 344 /* Mark all packet's segments as referenced port_num times */ 345 if (use_clone == 0) 346 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 347 348 /* construct destination ethernet address */ 349 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 350 351 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 352 353 /* Prepare output packet and send it out. */ 354 if ((port_mask & 1) != 0) { 355 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 356 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 357 qconf, port); 358 else if (use_clone == 0) 359 rte_pktmbuf_free(m); 360 } 361 } 362 363 /* 364 * If we making clone packets, then, for the last destination port, 365 * we can overwrite input packet's metadata. 366 */ 367 if (use_clone != 0) 368 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 369 else 370 rte_pktmbuf_free(m); 371 } 372 373 /* Send burst of outgoing packet, if timeout expires. */ 374 static inline void 375 send_timeout_burst(struct lcore_queue_conf *qconf) 376 { 377 uint64_t cur_tsc; 378 uint16_t portid; 379 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 380 381 cur_tsc = rte_rdtsc(); 382 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 383 return; 384 385 for (portid = 0; portid < MAX_PORTS; portid++) { 386 if (qconf->tx_mbufs[portid].len != 0) 387 send_burst(qconf, portid); 388 } 389 qconf->tx_tsc = cur_tsc; 390 } 391 392 /* main processing loop */ 393 static int 394 main_loop(__rte_unused void *dummy) 395 { 396 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 397 unsigned lcore_id; 398 int i, j, nb_rx; 399 uint16_t portid; 400 struct lcore_queue_conf *qconf; 401 402 lcore_id = rte_lcore_id(); 403 qconf = &lcore_queue_conf[lcore_id]; 404 405 406 if (qconf->n_rx_queue == 0) { 407 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 408 lcore_id); 409 return 0; 410 } 411 412 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 413 lcore_id); 414 415 for (i = 0; i < qconf->n_rx_queue; i++) { 416 417 portid = qconf->rx_queue_list[i]; 418 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 419 lcore_id, portid); 420 } 421 422 while (1) { 423 424 /* 425 * Read packet from RX queues 426 */ 427 for (i = 0; i < qconf->n_rx_queue; i++) { 428 429 portid = qconf->rx_queue_list[i]; 430 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 431 MAX_PKT_BURST); 432 433 /* Prefetch first packets */ 434 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 435 rte_prefetch0(rte_pktmbuf_mtod( 436 pkts_burst[j], void *)); 437 } 438 439 /* Prefetch and forward already prefetched packets */ 440 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 441 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 442 j + PREFETCH_OFFSET], void *)); 443 mcast_forward(pkts_burst[j], qconf); 444 } 445 446 /* Forward remaining prefetched packets */ 447 for (; j < nb_rx; j++) { 448 mcast_forward(pkts_burst[j], qconf); 449 } 450 } 451 452 /* Send out packets from TX queues */ 453 send_timeout_burst(qconf); 454 } 455 } 456 457 /* display usage */ 458 static void 459 print_usage(const char *prgname) 460 { 461 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 462 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 463 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 464 prgname); 465 } 466 467 static uint32_t 468 parse_portmask(const char *portmask) 469 { 470 char *end = NULL; 471 unsigned long pm; 472 473 /* parse hexadecimal string */ 474 pm = strtoul(portmask, &end, 16); 475 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 476 return 0; 477 478 return (uint32_t)pm; 479 } 480 481 static int 482 parse_nqueue(const char *q_arg) 483 { 484 char *end = NULL; 485 unsigned long n; 486 487 /* parse numerical string */ 488 errno = 0; 489 n = strtoul(q_arg, &end, 0); 490 if (errno != 0 || end == NULL || *end != '\0' || 491 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 492 return -1; 493 494 return n; 495 } 496 497 /* Parse the argument given in the command line of the application */ 498 static int 499 parse_args(int argc, char **argv) 500 { 501 int opt, ret; 502 char **argvopt; 503 int option_index; 504 char *prgname = argv[0]; 505 static struct option lgopts[] = { 506 {NULL, 0, 0, 0} 507 }; 508 509 argvopt = argv; 510 511 while ((opt = getopt_long(argc, argvopt, "p:q:", 512 lgopts, &option_index)) != EOF) { 513 514 switch (opt) { 515 /* portmask */ 516 case 'p': 517 enabled_port_mask = parse_portmask(optarg); 518 if (enabled_port_mask == 0) { 519 printf("invalid portmask\n"); 520 print_usage(prgname); 521 return -1; 522 } 523 break; 524 525 /* nqueue */ 526 case 'q': 527 rx_queue_per_lcore = parse_nqueue(optarg); 528 if (rx_queue_per_lcore < 0) { 529 printf("invalid queue number\n"); 530 print_usage(prgname); 531 return -1; 532 } 533 break; 534 535 default: 536 print_usage(prgname); 537 return -1; 538 } 539 } 540 541 if (optind >= 0) 542 argv[optind-1] = prgname; 543 544 ret = optind-1; 545 optind = 1; /* reset getopt lib */ 546 return ret; 547 } 548 549 static void 550 print_ethaddr(const char *name, struct ether_addr *eth_addr) 551 { 552 char buf[ETHER_ADDR_FMT_SIZE]; 553 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 554 printf("%s%s", name, buf); 555 } 556 557 static int 558 init_mcast_hash(void) 559 { 560 uint32_t i; 561 562 mcast_hash_params.socket_id = rte_socket_id(); 563 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 564 if (mcast_hash == NULL){ 565 return -1; 566 } 567 568 for (i = 0; i < N_MCAST_GROUPS; i ++){ 569 if (rte_fbk_hash_add_key(mcast_hash, 570 mcast_group_table[i].ip, 571 mcast_group_table[i].port_mask) < 0) { 572 return -1; 573 } 574 } 575 576 return 0; 577 } 578 579 /* Check the link status of all ports in up to 9s, and print them finally */ 580 static void 581 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) 582 { 583 #define CHECK_INTERVAL 100 /* 100ms */ 584 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 585 uint16_t portid; 586 uint8_t count, all_ports_up, print_flag = 0; 587 struct rte_eth_link link; 588 589 printf("\nChecking link status"); 590 fflush(stdout); 591 for (count = 0; count <= MAX_CHECK_TIME; count++) { 592 all_ports_up = 1; 593 for (portid = 0; portid < port_num; portid++) { 594 if ((port_mask & (1 << portid)) == 0) 595 continue; 596 memset(&link, 0, sizeof(link)); 597 rte_eth_link_get_nowait(portid, &link); 598 /* print link status if flag set */ 599 if (print_flag == 1) { 600 if (link.link_status) 601 printf( 602 "Port%d Link Up. Speed %u Mbps - %s\n", 603 portid, link.link_speed, 604 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 605 ("full-duplex") : ("half-duplex\n")); 606 else 607 printf("Port %d Link Down\n", portid); 608 continue; 609 } 610 /* clear all_ports_up flag if any link down */ 611 if (link.link_status == ETH_LINK_DOWN) { 612 all_ports_up = 0; 613 break; 614 } 615 } 616 /* after finally printing all link status, get out */ 617 if (print_flag == 1) 618 break; 619 620 if (all_ports_up == 0) { 621 printf("."); 622 fflush(stdout); 623 rte_delay_ms(CHECK_INTERVAL); 624 } 625 626 /* set the print_flag if all ports up or timeout */ 627 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 628 print_flag = 1; 629 printf("done\n"); 630 } 631 } 632 } 633 634 int 635 main(int argc, char **argv) 636 { 637 struct lcore_queue_conf *qconf; 638 struct rte_eth_dev_info dev_info; 639 struct rte_eth_txconf *txconf; 640 int ret; 641 uint16_t queueid; 642 unsigned lcore_id = 0, rx_lcore_id = 0; 643 uint32_t n_tx_queue, nb_lcores; 644 uint16_t portid; 645 646 /* init EAL */ 647 ret = rte_eal_init(argc, argv); 648 if (ret < 0) 649 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 650 argc -= ret; 651 argv += ret; 652 653 /* parse application arguments (after the EAL ones) */ 654 ret = parse_args(argc, argv); 655 if (ret < 0) 656 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 657 658 /* create the mbuf pools */ 659 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 660 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 661 662 if (packet_pool == NULL) 663 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 664 665 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 666 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 667 668 if (header_pool == NULL) 669 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 670 671 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 672 0, 0, rte_socket_id()); 673 674 if (clone_pool == NULL) 675 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 676 677 nb_ports = rte_eth_dev_count(); 678 if (nb_ports == 0) 679 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 680 if (nb_ports > MAX_PORTS) 681 nb_ports = MAX_PORTS; 682 683 nb_lcores = rte_lcore_count(); 684 685 /* initialize all ports */ 686 for (portid = 0; portid < nb_ports; portid++) { 687 struct rte_eth_rxconf rxq_conf; 688 struct rte_eth_conf local_port_conf = port_conf; 689 690 /* skip ports that are not enabled */ 691 if ((enabled_port_mask & (1 << portid)) == 0) { 692 printf("Skipping disabled port %d\n", portid); 693 continue; 694 } 695 696 qconf = &lcore_queue_conf[rx_lcore_id]; 697 698 /* limit the frame size to the maximum supported by NIC */ 699 rte_eth_dev_info_get(portid, &dev_info); 700 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 701 dev_info.max_rx_pktlen, 702 local_port_conf.rxmode.max_rx_pkt_len); 703 704 /* get the lcore_id for this port */ 705 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 706 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 707 708 rx_lcore_id ++; 709 qconf = &lcore_queue_conf[rx_lcore_id]; 710 711 if (rx_lcore_id >= RTE_MAX_LCORE) 712 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 713 } 714 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 715 qconf->n_rx_queue++; 716 717 /* init port */ 718 printf("Initializing port %d on lcore %u... ", portid, 719 rx_lcore_id); 720 fflush(stdout); 721 722 n_tx_queue = nb_lcores; 723 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 724 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 725 726 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 727 &local_port_conf); 728 if (ret < 0) 729 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 730 ret, portid); 731 732 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 733 &nb_txd); 734 if (ret < 0) 735 rte_exit(EXIT_FAILURE, 736 "Cannot adjust number of descriptors: err=%d, port=%d\n", 737 ret, portid); 738 739 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 740 print_ethaddr(" Address:", &ports_eth_addr[portid]); 741 printf(", "); 742 743 /* init one RX queue */ 744 queueid = 0; 745 printf("rxq=%hu ", queueid); 746 fflush(stdout); 747 rxq_conf = dev_info.default_rxconf; 748 rxq_conf.offloads = local_port_conf.rxmode.offloads; 749 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 750 rte_eth_dev_socket_id(portid), 751 &rxq_conf, 752 packet_pool); 753 if (ret < 0) 754 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 755 ret, portid); 756 757 /* init one TX queue per couple (lcore,port) */ 758 queueid = 0; 759 760 RTE_LCORE_FOREACH(lcore_id) { 761 if (rte_lcore_is_enabled(lcore_id) == 0) 762 continue; 763 printf("txq=%u,%hu ", lcore_id, queueid); 764 fflush(stdout); 765 766 txconf = &dev_info.default_txconf; 767 txconf->txq_flags = ETH_TXQ_FLAGS_IGNORE; 768 txconf->offloads = local_port_conf.txmode.offloads; 769 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 770 rte_lcore_to_socket_id(lcore_id), txconf); 771 if (ret < 0) 772 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 773 "port=%d\n", ret, portid); 774 775 qconf = &lcore_queue_conf[lcore_id]; 776 qconf->tx_queue_id[portid] = queueid; 777 queueid++; 778 } 779 780 /* Start device */ 781 ret = rte_eth_dev_start(portid); 782 if (ret < 0) 783 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 784 ret, portid); 785 786 printf("done:\n"); 787 } 788 789 check_all_ports_link_status(nb_ports, enabled_port_mask); 790 791 /* initialize the multicast hash */ 792 int retval = init_mcast_hash(); 793 if (retval != 0) 794 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 795 796 /* launch per-lcore init on every lcore */ 797 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 798 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 799 if (rte_eal_wait_lcore(lcore_id) < 0) 800 return -1; 801 } 802 803 return 0; 804 } 805