1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_memory.h> 20 #include <rte_memcpy.h> 21 #include <rte_eal.h> 22 #include <rte_launch.h> 23 #include <rte_atomic.h> 24 #include <rte_cycles.h> 25 #include <rte_prefetch.h> 26 #include <rte_lcore.h> 27 #include <rte_per_lcore.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_interrupts.h> 30 #include <rte_random.h> 31 #include <rte_debug.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_mempool.h> 35 #include <rte_mbuf.h> 36 #include <rte_malloc.h> 37 #include <rte_fbk_hash.h> 38 #include <rte_ip.h> 39 40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 41 42 #define MAX_PORTS 16 43 44 #define MCAST_CLONE_PORTS 2 45 #define MCAST_CLONE_SEGS 2 46 47 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 48 #define NB_PKT_MBUF 8192 49 50 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 51 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 52 53 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 54 55 /* allow max jumbo frame 9.5 KB */ 56 #define JUMBO_FRAME_MAX_SIZE 0x2600 57 58 #define MAX_PKT_BURST 32 59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 60 61 /* Configure how many packets ahead to prefetch, when reading packets */ 62 #define PREFETCH_OFFSET 3 63 64 /* 65 * Construct Ethernet multicast address from IPv4 multicast address. 66 * Citing RFC 1112, section 6.4: 67 * "An IP host group address is mapped to an Ethernet multicast address 68 * by placing the low-order 23-bits of the IP address into the low-order 69 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 70 */ 71 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 72 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 73 74 /* 75 * Configurable number of RX/TX ring descriptors 76 */ 77 #define RTE_TEST_RX_DESC_DEFAULT 1024 78 #define RTE_TEST_TX_DESC_DEFAULT 1024 79 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 80 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 81 82 /* ethernet addresses of ports */ 83 static struct rte_ether_addr ports_eth_addr[MAX_PORTS]; 84 85 /* mask of enabled ports */ 86 static uint32_t enabled_port_mask = 0; 87 88 static uint16_t nb_ports; 89 90 static int rx_queue_per_lcore = 1; 91 92 struct mbuf_table { 93 uint16_t len; 94 struct rte_mbuf *m_table[MAX_PKT_BURST]; 95 }; 96 97 #define MAX_RX_QUEUE_PER_LCORE 16 98 #define MAX_TX_QUEUE_PER_PORT 16 99 struct lcore_queue_conf { 100 uint64_t tx_tsc; 101 uint16_t n_rx_queue; 102 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 103 uint16_t tx_queue_id[MAX_PORTS]; 104 struct mbuf_table tx_mbufs[MAX_PORTS]; 105 } __rte_cache_aligned; 106 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 107 108 static struct rte_eth_conf port_conf = { 109 .rxmode = { 110 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 111 .split_hdr_size = 0, 112 .offloads = DEV_RX_OFFLOAD_JUMBO_FRAME, 113 }, 114 .txmode = { 115 .mq_mode = ETH_MQ_TX_NONE, 116 .offloads = DEV_TX_OFFLOAD_MULTI_SEGS, 117 }, 118 }; 119 120 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 121 122 123 /* Multicast */ 124 static struct rte_fbk_hash_params mcast_hash_params = { 125 .name = "MCAST_HASH", 126 .entries = 1024, 127 .entries_per_bucket = 4, 128 .socket_id = 0, 129 .hash_func = NULL, 130 .init_val = 0, 131 }; 132 133 struct rte_fbk_hash_table *mcast_hash = NULL; 134 135 struct mcast_group_params { 136 uint32_t ip; 137 uint16_t port_mask; 138 }; 139 140 static struct mcast_group_params mcast_group_table[] = { 141 {RTE_IPV4(224,0,0,101), 0x1}, 142 {RTE_IPV4(224,0,0,102), 0x2}, 143 {RTE_IPV4(224,0,0,103), 0x3}, 144 {RTE_IPV4(224,0,0,104), 0x4}, 145 {RTE_IPV4(224,0,0,105), 0x5}, 146 {RTE_IPV4(224,0,0,106), 0x6}, 147 {RTE_IPV4(224,0,0,107), 0x7}, 148 {RTE_IPV4(224,0,0,108), 0x8}, 149 {RTE_IPV4(224,0,0,109), 0x9}, 150 {RTE_IPV4(224,0,0,110), 0xA}, 151 {RTE_IPV4(224,0,0,111), 0xB}, 152 {RTE_IPV4(224,0,0,112), 0xC}, 153 {RTE_IPV4(224,0,0,113), 0xD}, 154 {RTE_IPV4(224,0,0,114), 0xE}, 155 {RTE_IPV4(224,0,0,115), 0xF}, 156 }; 157 158 /* Send burst of packets on an output interface */ 159 static void 160 send_burst(struct lcore_queue_conf *qconf, uint16_t port) 161 { 162 struct rte_mbuf **m_table; 163 uint16_t n, queueid; 164 int ret; 165 166 queueid = qconf->tx_queue_id[port]; 167 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 168 n = qconf->tx_mbufs[port].len; 169 170 ret = rte_eth_tx_burst(port, queueid, m_table, n); 171 while (unlikely (ret < n)) { 172 rte_pktmbuf_free(m_table[ret]); 173 ret++; 174 } 175 176 qconf->tx_mbufs[port].len = 0; 177 } 178 179 /* Get number of bits set. */ 180 static inline uint32_t 181 bitcnt(uint32_t v) 182 { 183 uint32_t n; 184 185 for (n = 0; v != 0; v &= v - 1, n++) 186 ; 187 188 return n; 189 } 190 191 /** 192 * Create the output multicast packet based on the given input packet. 193 * There are two approaches for creating outgoing packet, though both 194 * are based on data zero-copy idea, they differ in few details: 195 * First one creates a clone of the input packet, e.g - walk though all 196 * segments of the input packet, and for each of them create a new packet 197 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 198 * for more details). Then new mbuf is allocated for the packet header 199 * and is prepended to the 'clone' mbuf. 200 * Second approach doesn't make a clone, it just increment refcnt for all 201 * input packet segments. Then it allocates new mbuf for the packet header 202 * and prepends it to the input packet. 203 * Basically first approach reuses only input packet's data, but creates 204 * it's own copy of packet's metadata. Second approach reuses both input's 205 * packet data and metadata. 206 * The advantage of first approach - is that each outgoing packet has it's 207 * own copy of metadata, so we can safely modify data pointer of the 208 * input packet. That allows us to skip creation if the output packet for 209 * the last destination port, but instead modify input packet's header inplace, 210 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 211 * The advantage of second approach - less work for each outgoing packet, 212 * e.g: we skip "clone" operation completely. Though it comes with a price - 213 * input packet's metadata has to be intact. So for N destination ports we 214 * need to invoke mcast_out_pkt N times. 215 * So for small number of outgoing ports (and segments in the input packet) 216 * first approach will be faster. 217 * As number of outgoing ports (and/or input segments) will grow, 218 * second way will become more preferable. 219 * 220 * @param pkt 221 * Input packet mbuf. 222 * @param use_clone 223 * Control which of the two approaches described above should be used: 224 * - 0 - use second approach: 225 * Don't "clone" input packet. 226 * Prepend new header directly to the input packet 227 * - 1 - use first approach: 228 * Make a "clone" of input packet first. 229 * Prepend new header to the clone of the input packet 230 * @return 231 * - The pointer to the new outgoing packet. 232 * - NULL if operation failed. 233 */ 234 static inline struct rte_mbuf * 235 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 236 { 237 struct rte_mbuf *hdr; 238 239 /* Create new mbuf for the header. */ 240 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 241 return NULL; 242 243 /* If requested, then make a new clone packet. */ 244 if (use_clone != 0 && 245 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 246 rte_pktmbuf_free(hdr); 247 return NULL; 248 } 249 250 /* prepend new header */ 251 hdr->next = pkt; 252 253 /* update header's fields */ 254 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 255 hdr->nb_segs = pkt->nb_segs + 1; 256 257 __rte_mbuf_sanity_check(hdr, 1); 258 return hdr; 259 } 260 261 /* 262 * Write new Ethernet header to the outgoing packet, 263 * and put it into the outgoing queue for the given port. 264 */ 265 static inline void 266 mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr, 267 struct lcore_queue_conf *qconf, uint16_t port) 268 { 269 struct rte_ether_hdr *ethdr; 270 uint16_t len; 271 272 /* Construct Ethernet header. */ 273 ethdr = (struct rte_ether_hdr *) 274 rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 275 RTE_ASSERT(ethdr != NULL); 276 277 rte_ether_addr_copy(dest_addr, ðdr->d_addr); 278 rte_ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 279 ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4); 280 281 /* Put new packet into the output queue */ 282 len = qconf->tx_mbufs[port].len; 283 qconf->tx_mbufs[port].m_table[len] = pkt; 284 qconf->tx_mbufs[port].len = ++len; 285 286 /* Transmit packets */ 287 if (unlikely(MAX_PKT_BURST == len)) 288 send_burst(qconf, port); 289 } 290 291 /* Multicast forward of the input packet */ 292 static inline void 293 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 294 { 295 struct rte_mbuf *mc; 296 struct rte_ipv4_hdr *iphdr; 297 uint32_t dest_addr, port_mask, port_num, use_clone; 298 int32_t hash; 299 uint16_t port; 300 union { 301 uint64_t as_int; 302 struct rte_ether_addr as_addr; 303 } dst_eth_addr; 304 305 /* Remove the Ethernet header from the input packet */ 306 iphdr = (struct rte_ipv4_hdr *) 307 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr)); 308 RTE_ASSERT(iphdr != NULL); 309 310 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 311 312 /* 313 * Check that it is a valid multicast address and 314 * we have some active ports assigned to it. 315 */ 316 if (!RTE_IS_IPV4_MCAST(dest_addr) || 317 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 318 (port_mask = hash & enabled_port_mask) == 0) { 319 rte_pktmbuf_free(m); 320 return; 321 } 322 323 /* Calculate number of destination ports. */ 324 port_num = bitcnt(port_mask); 325 326 /* Should we use rte_pktmbuf_clone() or not. */ 327 use_clone = (port_num <= MCAST_CLONE_PORTS && 328 m->nb_segs <= MCAST_CLONE_SEGS); 329 330 /* Mark all packet's segments as referenced port_num times */ 331 if (use_clone == 0) 332 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 333 334 /* construct destination ethernet address */ 335 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 336 337 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 338 339 /* Prepare output packet and send it out. */ 340 if ((port_mask & 1) != 0) { 341 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 342 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 343 qconf, port); 344 else if (use_clone == 0) 345 rte_pktmbuf_free(m); 346 } 347 } 348 349 /* 350 * If we making clone packets, then, for the last destination port, 351 * we can overwrite input packet's metadata. 352 */ 353 if (use_clone != 0) 354 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 355 else 356 rte_pktmbuf_free(m); 357 } 358 359 /* Send burst of outgoing packet, if timeout expires. */ 360 static inline void 361 send_timeout_burst(struct lcore_queue_conf *qconf) 362 { 363 uint64_t cur_tsc; 364 uint16_t portid; 365 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 366 367 cur_tsc = rte_rdtsc(); 368 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 369 return; 370 371 for (portid = 0; portid < MAX_PORTS; portid++) { 372 if (qconf->tx_mbufs[portid].len != 0) 373 send_burst(qconf, portid); 374 } 375 qconf->tx_tsc = cur_tsc; 376 } 377 378 /* main processing loop */ 379 static int 380 main_loop(__rte_unused void *dummy) 381 { 382 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 383 unsigned lcore_id; 384 int i, j, nb_rx; 385 uint16_t portid; 386 struct lcore_queue_conf *qconf; 387 388 lcore_id = rte_lcore_id(); 389 qconf = &lcore_queue_conf[lcore_id]; 390 391 392 if (qconf->n_rx_queue == 0) { 393 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 394 lcore_id); 395 return 0; 396 } 397 398 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 399 lcore_id); 400 401 for (i = 0; i < qconf->n_rx_queue; i++) { 402 403 portid = qconf->rx_queue_list[i]; 404 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 405 lcore_id, portid); 406 } 407 408 while (1) { 409 410 /* 411 * Read packet from RX queues 412 */ 413 for (i = 0; i < qconf->n_rx_queue; i++) { 414 415 portid = qconf->rx_queue_list[i]; 416 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 417 MAX_PKT_BURST); 418 419 /* Prefetch first packets */ 420 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 421 rte_prefetch0(rte_pktmbuf_mtod( 422 pkts_burst[j], void *)); 423 } 424 425 /* Prefetch and forward already prefetched packets */ 426 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 427 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 428 j + PREFETCH_OFFSET], void *)); 429 mcast_forward(pkts_burst[j], qconf); 430 } 431 432 /* Forward remaining prefetched packets */ 433 for (; j < nb_rx; j++) { 434 mcast_forward(pkts_burst[j], qconf); 435 } 436 } 437 438 /* Send out packets from TX queues */ 439 send_timeout_burst(qconf); 440 } 441 } 442 443 /* display usage */ 444 static void 445 print_usage(const char *prgname) 446 { 447 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 448 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 449 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 450 prgname); 451 } 452 453 static uint32_t 454 parse_portmask(const char *portmask) 455 { 456 char *end = NULL; 457 unsigned long pm; 458 459 /* parse hexadecimal string */ 460 pm = strtoul(portmask, &end, 16); 461 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 462 return 0; 463 464 return (uint32_t)pm; 465 } 466 467 static int 468 parse_nqueue(const char *q_arg) 469 { 470 char *end = NULL; 471 unsigned long n; 472 473 /* parse numerical string */ 474 errno = 0; 475 n = strtoul(q_arg, &end, 0); 476 if (errno != 0 || end == NULL || *end != '\0' || 477 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 478 return -1; 479 480 return n; 481 } 482 483 /* Parse the argument given in the command line of the application */ 484 static int 485 parse_args(int argc, char **argv) 486 { 487 int opt, ret; 488 char **argvopt; 489 int option_index; 490 char *prgname = argv[0]; 491 static struct option lgopts[] = { 492 {NULL, 0, 0, 0} 493 }; 494 495 argvopt = argv; 496 497 while ((opt = getopt_long(argc, argvopt, "p:q:", 498 lgopts, &option_index)) != EOF) { 499 500 switch (opt) { 501 /* portmask */ 502 case 'p': 503 enabled_port_mask = parse_portmask(optarg); 504 if (enabled_port_mask == 0) { 505 printf("invalid portmask\n"); 506 print_usage(prgname); 507 return -1; 508 } 509 break; 510 511 /* nqueue */ 512 case 'q': 513 rx_queue_per_lcore = parse_nqueue(optarg); 514 if (rx_queue_per_lcore < 0) { 515 printf("invalid queue number\n"); 516 print_usage(prgname); 517 return -1; 518 } 519 break; 520 521 default: 522 print_usage(prgname); 523 return -1; 524 } 525 } 526 527 if (optind >= 0) 528 argv[optind-1] = prgname; 529 530 ret = optind-1; 531 optind = 1; /* reset getopt lib */ 532 return ret; 533 } 534 535 static void 536 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 537 { 538 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 539 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 540 printf("%s%s", name, buf); 541 } 542 543 static int 544 init_mcast_hash(void) 545 { 546 uint32_t i; 547 548 mcast_hash_params.socket_id = rte_socket_id(); 549 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 550 if (mcast_hash == NULL){ 551 return -1; 552 } 553 554 for (i = 0; i < RTE_DIM(mcast_group_table); i++) { 555 if (rte_fbk_hash_add_key(mcast_hash, 556 mcast_group_table[i].ip, 557 mcast_group_table[i].port_mask) < 0) { 558 return -1; 559 } 560 } 561 562 return 0; 563 } 564 565 /* Check the link status of all ports in up to 9s, and print them finally */ 566 static void 567 check_all_ports_link_status(uint32_t port_mask) 568 { 569 #define CHECK_INTERVAL 100 /* 100ms */ 570 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 571 uint16_t portid; 572 uint8_t count, all_ports_up, print_flag = 0; 573 struct rte_eth_link link; 574 int ret; 575 576 printf("\nChecking link status"); 577 fflush(stdout); 578 for (count = 0; count <= MAX_CHECK_TIME; count++) { 579 all_ports_up = 1; 580 RTE_ETH_FOREACH_DEV(portid) { 581 if ((port_mask & (1 << portid)) == 0) 582 continue; 583 memset(&link, 0, sizeof(link)); 584 ret = rte_eth_link_get_nowait(portid, &link); 585 if (ret < 0) { 586 all_ports_up = 0; 587 if (print_flag == 1) 588 printf("Port %u link get failed: %s\n", 589 portid, rte_strerror(-ret)); 590 continue; 591 } 592 /* print link status if flag set */ 593 if (print_flag == 1) { 594 if (link.link_status) 595 printf( 596 "Port%d Link Up. Speed %u Mbps - %s\n", 597 portid, link.link_speed, 598 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 599 ("full-duplex") : ("half-duplex")); 600 else 601 printf("Port %d Link Down\n", portid); 602 continue; 603 } 604 /* clear all_ports_up flag if any link down */ 605 if (link.link_status == ETH_LINK_DOWN) { 606 all_ports_up = 0; 607 break; 608 } 609 } 610 /* after finally printing all link status, get out */ 611 if (print_flag == 1) 612 break; 613 614 if (all_ports_up == 0) { 615 printf("."); 616 fflush(stdout); 617 rte_delay_ms(CHECK_INTERVAL); 618 } 619 620 /* set the print_flag if all ports up or timeout */ 621 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 622 print_flag = 1; 623 printf("done\n"); 624 } 625 } 626 } 627 628 int 629 main(int argc, char **argv) 630 { 631 struct lcore_queue_conf *qconf; 632 struct rte_eth_dev_info dev_info; 633 struct rte_eth_txconf *txconf; 634 int ret; 635 uint16_t queueid; 636 unsigned lcore_id = 0, rx_lcore_id = 0; 637 uint32_t n_tx_queue, nb_lcores; 638 uint16_t portid; 639 640 /* init EAL */ 641 ret = rte_eal_init(argc, argv); 642 if (ret < 0) 643 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 644 argc -= ret; 645 argv += ret; 646 647 /* parse application arguments (after the EAL ones) */ 648 ret = parse_args(argc, argv); 649 if (ret < 0) 650 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 651 652 /* create the mbuf pools */ 653 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 654 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 655 656 if (packet_pool == NULL) 657 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 658 659 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 660 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 661 662 if (header_pool == NULL) 663 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 664 665 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 666 0, 0, rte_socket_id()); 667 668 if (clone_pool == NULL) 669 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 670 671 nb_ports = rte_eth_dev_count_avail(); 672 if (nb_ports == 0) 673 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 674 if (nb_ports > MAX_PORTS) 675 nb_ports = MAX_PORTS; 676 677 nb_lcores = rte_lcore_count(); 678 679 /* initialize all ports */ 680 RTE_ETH_FOREACH_DEV(portid) { 681 struct rte_eth_rxconf rxq_conf; 682 struct rte_eth_conf local_port_conf = port_conf; 683 684 /* skip ports that are not enabled */ 685 if ((enabled_port_mask & (1 << portid)) == 0) { 686 printf("Skipping disabled port %d\n", portid); 687 continue; 688 } 689 690 qconf = &lcore_queue_conf[rx_lcore_id]; 691 692 /* limit the frame size to the maximum supported by NIC */ 693 ret = rte_eth_dev_info_get(portid, &dev_info); 694 if (ret != 0) 695 rte_exit(EXIT_FAILURE, 696 "Error during getting device (port %u) info: %s\n", 697 portid, strerror(-ret)); 698 699 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 700 dev_info.max_rx_pktlen, 701 local_port_conf.rxmode.max_rx_pkt_len); 702 703 /* get the lcore_id for this port */ 704 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 705 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 706 707 rx_lcore_id ++; 708 qconf = &lcore_queue_conf[rx_lcore_id]; 709 710 if (rx_lcore_id >= RTE_MAX_LCORE) 711 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 712 } 713 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 714 qconf->n_rx_queue++; 715 716 /* init port */ 717 printf("Initializing port %d on lcore %u... ", portid, 718 rx_lcore_id); 719 fflush(stdout); 720 721 n_tx_queue = nb_lcores; 722 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 723 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 724 725 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 726 &local_port_conf); 727 if (ret < 0) 728 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 729 ret, portid); 730 731 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 732 &nb_txd); 733 if (ret < 0) 734 rte_exit(EXIT_FAILURE, 735 "Cannot adjust number of descriptors: err=%d, port=%d\n", 736 ret, portid); 737 738 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 739 if (ret < 0) 740 rte_exit(EXIT_FAILURE, 741 "Cannot get MAC address: err=%d, port=%d\n", 742 ret, portid); 743 744 print_ethaddr(" Address:", &ports_eth_addr[portid]); 745 printf(", "); 746 747 /* init one RX queue */ 748 queueid = 0; 749 printf("rxq=%hu ", queueid); 750 fflush(stdout); 751 rxq_conf = dev_info.default_rxconf; 752 rxq_conf.offloads = local_port_conf.rxmode.offloads; 753 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 754 rte_eth_dev_socket_id(portid), 755 &rxq_conf, 756 packet_pool); 757 if (ret < 0) 758 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 759 ret, portid); 760 761 /* init one TX queue per couple (lcore,port) */ 762 queueid = 0; 763 764 RTE_LCORE_FOREACH(lcore_id) { 765 if (rte_lcore_is_enabled(lcore_id) == 0) 766 continue; 767 printf("txq=%u,%hu ", lcore_id, queueid); 768 fflush(stdout); 769 770 txconf = &dev_info.default_txconf; 771 txconf->offloads = local_port_conf.txmode.offloads; 772 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 773 rte_lcore_to_socket_id(lcore_id), txconf); 774 if (ret < 0) 775 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 776 "port=%d\n", ret, portid); 777 778 qconf = &lcore_queue_conf[lcore_id]; 779 qconf->tx_queue_id[portid] = queueid; 780 queueid++; 781 } 782 ret = rte_eth_allmulticast_enable(portid); 783 if (ret < 0) 784 rte_exit(EXIT_FAILURE, 785 "rte_eth_allmulticast_enable: err=%d, port=%d\n", 786 ret, portid); 787 /* Start device */ 788 ret = rte_eth_dev_start(portid); 789 if (ret < 0) 790 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 791 ret, portid); 792 793 printf("done:\n"); 794 } 795 796 check_all_ports_link_status(enabled_port_mask); 797 798 /* initialize the multicast hash */ 799 int retval = init_mcast_hash(); 800 if (retval != 0) 801 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 802 803 /* launch per-lcore init on every lcore */ 804 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 805 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 806 if (rte_eal_wait_lcore(lcore_id) < 0) 807 return -1; 808 } 809 810 return 0; 811 } 812