1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_memory.h> 20 #include <rte_memcpy.h> 21 #include <rte_eal.h> 22 #include <rte_launch.h> 23 #include <rte_atomic.h> 24 #include <rte_cycles.h> 25 #include <rte_prefetch.h> 26 #include <rte_lcore.h> 27 #include <rte_per_lcore.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_interrupts.h> 30 #include <rte_random.h> 31 #include <rte_debug.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_mempool.h> 35 #include <rte_mbuf.h> 36 #include <rte_malloc.h> 37 #include <rte_fbk_hash.h> 38 #include <rte_ip.h> 39 40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 41 42 #define MAX_PORTS 16 43 44 #define MCAST_CLONE_PORTS 2 45 #define MCAST_CLONE_SEGS 2 46 47 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 48 #define NB_PKT_MBUF 8192 49 50 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 51 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 52 53 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 54 55 /* allow max jumbo frame 9.5 KB */ 56 #define JUMBO_FRAME_MAX_SIZE 0x2600 57 58 #define MAX_PKT_BURST 32 59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 60 61 /* Configure how many packets ahead to prefetch, when reading packets */ 62 #define PREFETCH_OFFSET 3 63 64 /* 65 * Construct Ethernet multicast address from IPv4 multicast address. 66 * Citing RFC 1112, section 6.4: 67 * "An IP host group address is mapped to an Ethernet multicast address 68 * by placing the low-order 23-bits of the IP address into the low-order 69 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 70 */ 71 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 72 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 73 74 /* 75 * Configurable number of RX/TX ring descriptors 76 */ 77 #define RTE_TEST_RX_DESC_DEFAULT 1024 78 #define RTE_TEST_TX_DESC_DEFAULT 1024 79 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 80 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 81 82 /* ethernet addresses of ports */ 83 static struct rte_ether_addr ports_eth_addr[MAX_PORTS]; 84 85 /* mask of enabled ports */ 86 static uint32_t enabled_port_mask = 0; 87 88 static uint16_t nb_ports; 89 90 static int rx_queue_per_lcore = 1; 91 92 struct mbuf_table { 93 uint16_t len; 94 struct rte_mbuf *m_table[MAX_PKT_BURST]; 95 }; 96 97 #define MAX_RX_QUEUE_PER_LCORE 16 98 #define MAX_TX_QUEUE_PER_PORT 16 99 struct lcore_queue_conf { 100 uint64_t tx_tsc; 101 uint16_t n_rx_queue; 102 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 103 uint16_t tx_queue_id[MAX_PORTS]; 104 struct mbuf_table tx_mbufs[MAX_PORTS]; 105 } __rte_cache_aligned; 106 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 107 108 static struct rte_eth_conf port_conf = { 109 .rxmode = { 110 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 111 .split_hdr_size = 0, 112 .offloads = DEV_RX_OFFLOAD_JUMBO_FRAME, 113 }, 114 .txmode = { 115 .mq_mode = ETH_MQ_TX_NONE, 116 .offloads = DEV_TX_OFFLOAD_MULTI_SEGS, 117 }, 118 }; 119 120 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 121 122 123 /* Multicast */ 124 static struct rte_fbk_hash_params mcast_hash_params = { 125 .name = "MCAST_HASH", 126 .entries = 1024, 127 .entries_per_bucket = 4, 128 .socket_id = 0, 129 .hash_func = NULL, 130 .init_val = 0, 131 }; 132 133 struct rte_fbk_hash_table *mcast_hash = NULL; 134 135 struct mcast_group_params { 136 uint32_t ip; 137 uint16_t port_mask; 138 }; 139 140 static struct mcast_group_params mcast_group_table[] = { 141 {RTE_IPV4(224,0,0,101), 0x1}, 142 {RTE_IPV4(224,0,0,102), 0x2}, 143 {RTE_IPV4(224,0,0,103), 0x3}, 144 {RTE_IPV4(224,0,0,104), 0x4}, 145 {RTE_IPV4(224,0,0,105), 0x5}, 146 {RTE_IPV4(224,0,0,106), 0x6}, 147 {RTE_IPV4(224,0,0,107), 0x7}, 148 {RTE_IPV4(224,0,0,108), 0x8}, 149 {RTE_IPV4(224,0,0,109), 0x9}, 150 {RTE_IPV4(224,0,0,110), 0xA}, 151 {RTE_IPV4(224,0,0,111), 0xB}, 152 {RTE_IPV4(224,0,0,112), 0xC}, 153 {RTE_IPV4(224,0,0,113), 0xD}, 154 {RTE_IPV4(224,0,0,114), 0xE}, 155 {RTE_IPV4(224,0,0,115), 0xF}, 156 }; 157 158 #define N_MCAST_GROUPS \ 159 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0])) 160 161 162 /* Send burst of packets on an output interface */ 163 static void 164 send_burst(struct lcore_queue_conf *qconf, uint16_t port) 165 { 166 struct rte_mbuf **m_table; 167 uint16_t n, queueid; 168 int ret; 169 170 queueid = qconf->tx_queue_id[port]; 171 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 172 n = qconf->tx_mbufs[port].len; 173 174 ret = rte_eth_tx_burst(port, queueid, m_table, n); 175 while (unlikely (ret < n)) { 176 rte_pktmbuf_free(m_table[ret]); 177 ret++; 178 } 179 180 qconf->tx_mbufs[port].len = 0; 181 } 182 183 /* Get number of bits set. */ 184 static inline uint32_t 185 bitcnt(uint32_t v) 186 { 187 uint32_t n; 188 189 for (n = 0; v != 0; v &= v - 1, n++) 190 ; 191 192 return n; 193 } 194 195 /** 196 * Create the output multicast packet based on the given input packet. 197 * There are two approaches for creating outgoing packet, though both 198 * are based on data zero-copy idea, they differ in few details: 199 * First one creates a clone of the input packet, e.g - walk though all 200 * segments of the input packet, and for each of them create a new packet 201 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 202 * for more details). Then new mbuf is allocated for the packet header 203 * and is prepended to the 'clone' mbuf. 204 * Second approach doesn't make a clone, it just increment refcnt for all 205 * input packet segments. Then it allocates new mbuf for the packet header 206 * and prepends it to the input packet. 207 * Basically first approach reuses only input packet's data, but creates 208 * it's own copy of packet's metadata. Second approach reuses both input's 209 * packet data and metadata. 210 * The advantage of first approach - is that each outgoing packet has it's 211 * own copy of metadata, so we can safely modify data pointer of the 212 * input packet. That allows us to skip creation if the output packet for 213 * the last destination port, but instead modify input packet's header inplace, 214 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 215 * The advantage of second approach - less work for each outgoing packet, 216 * e.g: we skip "clone" operation completely. Though it comes with a price - 217 * input packet's metadata has to be intact. So for N destination ports we 218 * need to invoke mcast_out_pkt N times. 219 * So for small number of outgoing ports (and segments in the input packet) 220 * first approach will be faster. 221 * As number of outgoing ports (and/or input segments) will grow, 222 * second way will become more preferable. 223 * 224 * @param pkt 225 * Input packet mbuf. 226 * @param use_clone 227 * Control which of the two approaches described above should be used: 228 * - 0 - use second approach: 229 * Don't "clone" input packet. 230 * Prepend new header directly to the input packet 231 * - 1 - use first approach: 232 * Make a "clone" of input packet first. 233 * Prepend new header to the clone of the input packet 234 * @return 235 * - The pointer to the new outgoing packet. 236 * - NULL if operation failed. 237 */ 238 static inline struct rte_mbuf * 239 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 240 { 241 struct rte_mbuf *hdr; 242 243 /* Create new mbuf for the header. */ 244 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 245 return NULL; 246 247 /* If requested, then make a new clone packet. */ 248 if (use_clone != 0 && 249 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 250 rte_pktmbuf_free(hdr); 251 return NULL; 252 } 253 254 /* prepend new header */ 255 hdr->next = pkt; 256 257 /* update header's fields */ 258 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 259 hdr->nb_segs = pkt->nb_segs + 1; 260 261 __rte_mbuf_sanity_check(hdr, 1); 262 return hdr; 263 } 264 265 /* 266 * Write new Ethernet header to the outgoing packet, 267 * and put it into the outgoing queue for the given port. 268 */ 269 static inline void 270 mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr, 271 struct lcore_queue_conf *qconf, uint16_t port) 272 { 273 struct rte_ether_hdr *ethdr; 274 uint16_t len; 275 276 /* Construct Ethernet header. */ 277 ethdr = (struct rte_ether_hdr *) 278 rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 279 RTE_ASSERT(ethdr != NULL); 280 281 rte_ether_addr_copy(dest_addr, ðdr->d_addr); 282 rte_ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr); 283 ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4); 284 285 /* Put new packet into the output queue */ 286 len = qconf->tx_mbufs[port].len; 287 qconf->tx_mbufs[port].m_table[len] = pkt; 288 qconf->tx_mbufs[port].len = ++len; 289 290 /* Transmit packets */ 291 if (unlikely(MAX_PKT_BURST == len)) 292 send_burst(qconf, port); 293 } 294 295 /* Multicast forward of the input packet */ 296 static inline void 297 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 298 { 299 struct rte_mbuf *mc; 300 struct rte_ipv4_hdr *iphdr; 301 uint32_t dest_addr, port_mask, port_num, use_clone; 302 int32_t hash; 303 uint16_t port; 304 union { 305 uint64_t as_int; 306 struct rte_ether_addr as_addr; 307 } dst_eth_addr; 308 309 /* Remove the Ethernet header from the input packet */ 310 iphdr = (struct rte_ipv4_hdr *) 311 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr)); 312 RTE_ASSERT(iphdr != NULL); 313 314 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 315 316 /* 317 * Check that it is a valid multicast address and 318 * we have some active ports assigned to it. 319 */ 320 if (!RTE_IS_IPV4_MCAST(dest_addr) || 321 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 322 (port_mask = hash & enabled_port_mask) == 0) { 323 rte_pktmbuf_free(m); 324 return; 325 } 326 327 /* Calculate number of destination ports. */ 328 port_num = bitcnt(port_mask); 329 330 /* Should we use rte_pktmbuf_clone() or not. */ 331 use_clone = (port_num <= MCAST_CLONE_PORTS && 332 m->nb_segs <= MCAST_CLONE_SEGS); 333 334 /* Mark all packet's segments as referenced port_num times */ 335 if (use_clone == 0) 336 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 337 338 /* construct destination ethernet address */ 339 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 340 341 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 342 343 /* Prepare output packet and send it out. */ 344 if ((port_mask & 1) != 0) { 345 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 346 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 347 qconf, port); 348 else if (use_clone == 0) 349 rte_pktmbuf_free(m); 350 } 351 } 352 353 /* 354 * If we making clone packets, then, for the last destination port, 355 * we can overwrite input packet's metadata. 356 */ 357 if (use_clone != 0) 358 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 359 else 360 rte_pktmbuf_free(m); 361 } 362 363 /* Send burst of outgoing packet, if timeout expires. */ 364 static inline void 365 send_timeout_burst(struct lcore_queue_conf *qconf) 366 { 367 uint64_t cur_tsc; 368 uint16_t portid; 369 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 370 371 cur_tsc = rte_rdtsc(); 372 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 373 return; 374 375 for (portid = 0; portid < MAX_PORTS; portid++) { 376 if (qconf->tx_mbufs[portid].len != 0) 377 send_burst(qconf, portid); 378 } 379 qconf->tx_tsc = cur_tsc; 380 } 381 382 /* main processing loop */ 383 static int 384 main_loop(__rte_unused void *dummy) 385 { 386 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 387 unsigned lcore_id; 388 int i, j, nb_rx; 389 uint16_t portid; 390 struct lcore_queue_conf *qconf; 391 392 lcore_id = rte_lcore_id(); 393 qconf = &lcore_queue_conf[lcore_id]; 394 395 396 if (qconf->n_rx_queue == 0) { 397 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 398 lcore_id); 399 return 0; 400 } 401 402 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 403 lcore_id); 404 405 for (i = 0; i < qconf->n_rx_queue; i++) { 406 407 portid = qconf->rx_queue_list[i]; 408 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 409 lcore_id, portid); 410 } 411 412 while (1) { 413 414 /* 415 * Read packet from RX queues 416 */ 417 for (i = 0; i < qconf->n_rx_queue; i++) { 418 419 portid = qconf->rx_queue_list[i]; 420 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 421 MAX_PKT_BURST); 422 423 /* Prefetch first packets */ 424 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 425 rte_prefetch0(rte_pktmbuf_mtod( 426 pkts_burst[j], void *)); 427 } 428 429 /* Prefetch and forward already prefetched packets */ 430 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 431 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 432 j + PREFETCH_OFFSET], void *)); 433 mcast_forward(pkts_burst[j], qconf); 434 } 435 436 /* Forward remaining prefetched packets */ 437 for (; j < nb_rx; j++) { 438 mcast_forward(pkts_burst[j], qconf); 439 } 440 } 441 442 /* Send out packets from TX queues */ 443 send_timeout_burst(qconf); 444 } 445 } 446 447 /* display usage */ 448 static void 449 print_usage(const char *prgname) 450 { 451 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 452 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 453 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 454 prgname); 455 } 456 457 static uint32_t 458 parse_portmask(const char *portmask) 459 { 460 char *end = NULL; 461 unsigned long pm; 462 463 /* parse hexadecimal string */ 464 pm = strtoul(portmask, &end, 16); 465 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 466 return 0; 467 468 return (uint32_t)pm; 469 } 470 471 static int 472 parse_nqueue(const char *q_arg) 473 { 474 char *end = NULL; 475 unsigned long n; 476 477 /* parse numerical string */ 478 errno = 0; 479 n = strtoul(q_arg, &end, 0); 480 if (errno != 0 || end == NULL || *end != '\0' || 481 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 482 return -1; 483 484 return n; 485 } 486 487 /* Parse the argument given in the command line of the application */ 488 static int 489 parse_args(int argc, char **argv) 490 { 491 int opt, ret; 492 char **argvopt; 493 int option_index; 494 char *prgname = argv[0]; 495 static struct option lgopts[] = { 496 {NULL, 0, 0, 0} 497 }; 498 499 argvopt = argv; 500 501 while ((opt = getopt_long(argc, argvopt, "p:q:", 502 lgopts, &option_index)) != EOF) { 503 504 switch (opt) { 505 /* portmask */ 506 case 'p': 507 enabled_port_mask = parse_portmask(optarg); 508 if (enabled_port_mask == 0) { 509 printf("invalid portmask\n"); 510 print_usage(prgname); 511 return -1; 512 } 513 break; 514 515 /* nqueue */ 516 case 'q': 517 rx_queue_per_lcore = parse_nqueue(optarg); 518 if (rx_queue_per_lcore < 0) { 519 printf("invalid queue number\n"); 520 print_usage(prgname); 521 return -1; 522 } 523 break; 524 525 default: 526 print_usage(prgname); 527 return -1; 528 } 529 } 530 531 if (optind >= 0) 532 argv[optind-1] = prgname; 533 534 ret = optind-1; 535 optind = 1; /* reset getopt lib */ 536 return ret; 537 } 538 539 static void 540 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 541 { 542 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 543 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 544 printf("%s%s", name, buf); 545 } 546 547 static int 548 init_mcast_hash(void) 549 { 550 uint32_t i; 551 552 mcast_hash_params.socket_id = rte_socket_id(); 553 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 554 if (mcast_hash == NULL){ 555 return -1; 556 } 557 558 for (i = 0; i < N_MCAST_GROUPS; i ++){ 559 if (rte_fbk_hash_add_key(mcast_hash, 560 mcast_group_table[i].ip, 561 mcast_group_table[i].port_mask) < 0) { 562 return -1; 563 } 564 } 565 566 return 0; 567 } 568 569 /* Check the link status of all ports in up to 9s, and print them finally */ 570 static void 571 check_all_ports_link_status(uint32_t port_mask) 572 { 573 #define CHECK_INTERVAL 100 /* 100ms */ 574 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 575 uint16_t portid; 576 uint8_t count, all_ports_up, print_flag = 0; 577 struct rte_eth_link link; 578 579 printf("\nChecking link status"); 580 fflush(stdout); 581 for (count = 0; count <= MAX_CHECK_TIME; count++) { 582 all_ports_up = 1; 583 RTE_ETH_FOREACH_DEV(portid) { 584 if ((port_mask & (1 << portid)) == 0) 585 continue; 586 memset(&link, 0, sizeof(link)); 587 rte_eth_link_get_nowait(portid, &link); 588 /* print link status if flag set */ 589 if (print_flag == 1) { 590 if (link.link_status) 591 printf( 592 "Port%d Link Up. Speed %u Mbps - %s\n", 593 portid, link.link_speed, 594 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 595 ("full-duplex") : ("half-duplex\n")); 596 else 597 printf("Port %d Link Down\n", portid); 598 continue; 599 } 600 /* clear all_ports_up flag if any link down */ 601 if (link.link_status == ETH_LINK_DOWN) { 602 all_ports_up = 0; 603 break; 604 } 605 } 606 /* after finally printing all link status, get out */ 607 if (print_flag == 1) 608 break; 609 610 if (all_ports_up == 0) { 611 printf("."); 612 fflush(stdout); 613 rte_delay_ms(CHECK_INTERVAL); 614 } 615 616 /* set the print_flag if all ports up or timeout */ 617 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 618 print_flag = 1; 619 printf("done\n"); 620 } 621 } 622 } 623 624 int 625 main(int argc, char **argv) 626 { 627 struct lcore_queue_conf *qconf; 628 struct rte_eth_dev_info dev_info; 629 struct rte_eth_txconf *txconf; 630 int ret; 631 uint16_t queueid; 632 unsigned lcore_id = 0, rx_lcore_id = 0; 633 uint32_t n_tx_queue, nb_lcores; 634 uint16_t portid; 635 636 /* init EAL */ 637 ret = rte_eal_init(argc, argv); 638 if (ret < 0) 639 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 640 argc -= ret; 641 argv += ret; 642 643 /* parse application arguments (after the EAL ones) */ 644 ret = parse_args(argc, argv); 645 if (ret < 0) 646 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 647 648 /* create the mbuf pools */ 649 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 650 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 651 652 if (packet_pool == NULL) 653 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 654 655 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 656 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 657 658 if (header_pool == NULL) 659 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 660 661 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 662 0, 0, rte_socket_id()); 663 664 if (clone_pool == NULL) 665 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 666 667 nb_ports = rte_eth_dev_count_avail(); 668 if (nb_ports == 0) 669 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 670 if (nb_ports > MAX_PORTS) 671 nb_ports = MAX_PORTS; 672 673 nb_lcores = rte_lcore_count(); 674 675 /* initialize all ports */ 676 RTE_ETH_FOREACH_DEV(portid) { 677 struct rte_eth_rxconf rxq_conf; 678 struct rte_eth_conf local_port_conf = port_conf; 679 680 /* skip ports that are not enabled */ 681 if ((enabled_port_mask & (1 << portid)) == 0) { 682 printf("Skipping disabled port %d\n", portid); 683 continue; 684 } 685 686 qconf = &lcore_queue_conf[rx_lcore_id]; 687 688 /* limit the frame size to the maximum supported by NIC */ 689 ret = rte_eth_dev_info_get(portid, &dev_info); 690 if (ret != 0) 691 rte_exit(EXIT_FAILURE, 692 "Error during getting device (port %u) info: %s\n", 693 portid, strerror(-ret)); 694 695 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 696 dev_info.max_rx_pktlen, 697 local_port_conf.rxmode.max_rx_pkt_len); 698 699 /* get the lcore_id for this port */ 700 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 701 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 702 703 rx_lcore_id ++; 704 qconf = &lcore_queue_conf[rx_lcore_id]; 705 706 if (rx_lcore_id >= RTE_MAX_LCORE) 707 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 708 } 709 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 710 qconf->n_rx_queue++; 711 712 /* init port */ 713 printf("Initializing port %d on lcore %u... ", portid, 714 rx_lcore_id); 715 fflush(stdout); 716 717 n_tx_queue = nb_lcores; 718 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 719 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 720 721 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 722 &local_port_conf); 723 if (ret < 0) 724 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 725 ret, portid); 726 727 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 728 &nb_txd); 729 if (ret < 0) 730 rte_exit(EXIT_FAILURE, 731 "Cannot adjust number of descriptors: err=%d, port=%d\n", 732 ret, portid); 733 734 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 735 print_ethaddr(" Address:", &ports_eth_addr[portid]); 736 printf(", "); 737 738 /* init one RX queue */ 739 queueid = 0; 740 printf("rxq=%hu ", queueid); 741 fflush(stdout); 742 rxq_conf = dev_info.default_rxconf; 743 rxq_conf.offloads = local_port_conf.rxmode.offloads; 744 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 745 rte_eth_dev_socket_id(portid), 746 &rxq_conf, 747 packet_pool); 748 if (ret < 0) 749 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 750 ret, portid); 751 752 /* init one TX queue per couple (lcore,port) */ 753 queueid = 0; 754 755 RTE_LCORE_FOREACH(lcore_id) { 756 if (rte_lcore_is_enabled(lcore_id) == 0) 757 continue; 758 printf("txq=%u,%hu ", lcore_id, queueid); 759 fflush(stdout); 760 761 txconf = &dev_info.default_txconf; 762 txconf->offloads = local_port_conf.txmode.offloads; 763 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 764 rte_lcore_to_socket_id(lcore_id), txconf); 765 if (ret < 0) 766 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 767 "port=%d\n", ret, portid); 768 769 qconf = &lcore_queue_conf[lcore_id]; 770 qconf->tx_queue_id[portid] = queueid; 771 queueid++; 772 } 773 rte_eth_allmulticast_enable(portid); 774 /* Start device */ 775 ret = rte_eth_dev_start(portid); 776 if (ret < 0) 777 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 778 ret, portid); 779 780 printf("done:\n"); 781 } 782 783 check_all_ports_link_status(enabled_port_mask); 784 785 /* initialize the multicast hash */ 786 int retval = init_mcast_hash(); 787 if (retval != 0) 788 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 789 790 /* launch per-lcore init on every lcore */ 791 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 792 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 793 if (rte_eal_wait_lcore(lcore_id) < 0) 794 return -1; 795 } 796 797 return 0; 798 } 799