1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_memory.h> 20 #include <rte_memcpy.h> 21 #include <rte_eal.h> 22 #include <rte_launch.h> 23 #include <rte_atomic.h> 24 #include <rte_cycles.h> 25 #include <rte_prefetch.h> 26 #include <rte_lcore.h> 27 #include <rte_per_lcore.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_interrupts.h> 30 #include <rte_random.h> 31 #include <rte_debug.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_mempool.h> 35 #include <rte_mbuf.h> 36 #include <rte_malloc.h> 37 #include <rte_fbk_hash.h> 38 #include <rte_ip.h> 39 40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1 41 42 #define MAX_PORTS 16 43 44 #define MCAST_CLONE_PORTS 2 45 #define MCAST_CLONE_SEGS 2 46 47 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 48 #define NB_PKT_MBUF 8192 49 50 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM) 51 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS) 52 53 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2) 54 55 /* allow max jumbo frame 9.5 KB */ 56 #define JUMBO_FRAME_MAX_SIZE 0x2600 57 58 #define MAX_PKT_BURST 32 59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 60 61 /* Configure how many packets ahead to prefetch, when reading packets */ 62 #define PREFETCH_OFFSET 3 63 64 /* 65 * Construct Ethernet multicast address from IPv4 multicast address. 66 * Citing RFC 1112, section 6.4: 67 * "An IP host group address is mapped to an Ethernet multicast address 68 * by placing the low-order 23-bits of the IP address into the low-order 69 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)." 70 */ 71 72 /* Construct Ethernet multicast address from IPv4 multicast Address. 8< */ 73 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \ 74 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16) 75 /* >8 End of Construction of multicast address from IPv4 multicast address. */ 76 77 /* 78 * Configurable number of RX/TX ring descriptors 79 */ 80 #define RTE_TEST_RX_DESC_DEFAULT 1024 81 #define RTE_TEST_TX_DESC_DEFAULT 1024 82 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 83 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 84 85 /* ethernet addresses of ports */ 86 static struct rte_ether_addr ports_eth_addr[MAX_PORTS]; 87 88 /* mask of enabled ports */ 89 static uint32_t enabled_port_mask = 0; 90 91 static uint16_t nb_ports; 92 93 static int rx_queue_per_lcore = 1; 94 95 struct mbuf_table { 96 uint16_t len; 97 struct rte_mbuf *m_table[MAX_PKT_BURST]; 98 }; 99 100 #define MAX_RX_QUEUE_PER_LCORE 16 101 #define MAX_TX_QUEUE_PER_PORT 16 102 struct lcore_queue_conf { 103 uint64_t tx_tsc; 104 uint16_t n_rx_queue; 105 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 106 uint16_t tx_queue_id[MAX_PORTS]; 107 struct mbuf_table tx_mbufs[MAX_PORTS]; 108 } __rte_cache_aligned; 109 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 110 111 static struct rte_eth_conf port_conf = { 112 .rxmode = { 113 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 114 .split_hdr_size = 0, 115 .offloads = DEV_RX_OFFLOAD_JUMBO_FRAME, 116 }, 117 .txmode = { 118 .mq_mode = ETH_MQ_TX_NONE, 119 .offloads = DEV_TX_OFFLOAD_MULTI_SEGS, 120 }, 121 }; 122 123 static struct rte_mempool *packet_pool, *header_pool, *clone_pool; 124 125 126 /* Multicast */ 127 static struct rte_fbk_hash_params mcast_hash_params = { 128 .name = "MCAST_HASH", 129 .entries = 1024, 130 .entries_per_bucket = 4, 131 .socket_id = 0, 132 .hash_func = NULL, 133 .init_val = 0, 134 }; 135 136 struct rte_fbk_hash_table *mcast_hash = NULL; 137 138 struct mcast_group_params { 139 uint32_t ip; 140 uint16_t port_mask; 141 }; 142 143 static struct mcast_group_params mcast_group_table[] = { 144 {RTE_IPV4(224,0,0,101), 0x1}, 145 {RTE_IPV4(224,0,0,102), 0x2}, 146 {RTE_IPV4(224,0,0,103), 0x3}, 147 {RTE_IPV4(224,0,0,104), 0x4}, 148 {RTE_IPV4(224,0,0,105), 0x5}, 149 {RTE_IPV4(224,0,0,106), 0x6}, 150 {RTE_IPV4(224,0,0,107), 0x7}, 151 {RTE_IPV4(224,0,0,108), 0x8}, 152 {RTE_IPV4(224,0,0,109), 0x9}, 153 {RTE_IPV4(224,0,0,110), 0xA}, 154 {RTE_IPV4(224,0,0,111), 0xB}, 155 {RTE_IPV4(224,0,0,112), 0xC}, 156 {RTE_IPV4(224,0,0,113), 0xD}, 157 {RTE_IPV4(224,0,0,114), 0xE}, 158 {RTE_IPV4(224,0,0,115), 0xF}, 159 }; 160 161 /* Send burst of packets on an output interface */ 162 static void 163 send_burst(struct lcore_queue_conf *qconf, uint16_t port) 164 { 165 struct rte_mbuf **m_table; 166 uint16_t n, queueid; 167 int ret; 168 169 queueid = qconf->tx_queue_id[port]; 170 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 171 n = qconf->tx_mbufs[port].len; 172 173 ret = rte_eth_tx_burst(port, queueid, m_table, n); 174 while (unlikely (ret < n)) { 175 rte_pktmbuf_free(m_table[ret]); 176 ret++; 177 } 178 179 qconf->tx_mbufs[port].len = 0; 180 } 181 182 /* Get number of bits set. 8< */ 183 static inline uint32_t 184 bitcnt(uint32_t v) 185 { 186 uint32_t n; 187 188 for (n = 0; v != 0; v &= v - 1, n++) 189 ; 190 191 return n; 192 } 193 /* >8 End of getting number of bits set. */ 194 195 /** 196 * Create the output multicast packet based on the given input packet. 197 * There are two approaches for creating outgoing packet, though both 198 * are based on data zero-copy idea, they differ in few details: 199 * First one creates a clone of the input packet, e.g - walk though all 200 * segments of the input packet, and for each of them create a new packet 201 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone() 202 * for more details). Then new mbuf is allocated for the packet header 203 * and is prepended to the 'clone' mbuf. 204 * Second approach doesn't make a clone, it just increment refcnt for all 205 * input packet segments. Then it allocates new mbuf for the packet header 206 * and prepends it to the input packet. 207 * Basically first approach reuses only input packet's data, but creates 208 * it's own copy of packet's metadata. Second approach reuses both input's 209 * packet data and metadata. 210 * The advantage of first approach - is that each outgoing packet has it's 211 * own copy of metadata, so we can safely modify data pointer of the 212 * input packet. That allows us to skip creation if the output packet for 213 * the last destination port, but instead modify input packet's header inplace, 214 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times. 215 * The advantage of second approach - less work for each outgoing packet, 216 * e.g: we skip "clone" operation completely. Though it comes with a price - 217 * input packet's metadata has to be intact. So for N destination ports we 218 * need to invoke mcast_out_pkt N times. 219 * So for small number of outgoing ports (and segments in the input packet) 220 * first approach will be faster. 221 * As number of outgoing ports (and/or input segments) will grow, 222 * second way will become more preferable. 223 * 224 * @param pkt 225 * Input packet mbuf. 226 * @param use_clone 227 * Control which of the two approaches described above should be used: 228 * - 0 - use second approach: 229 * Don't "clone" input packet. 230 * Prepend new header directly to the input packet 231 * - 1 - use first approach: 232 * Make a "clone" of input packet first. 233 * Prepend new header to the clone of the input packet 234 * @return 235 * - The pointer to the new outgoing packet. 236 * - NULL if operation failed. 237 */ 238 239 /* mcast_out_pkt 8< */ 240 static inline struct rte_mbuf * 241 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone) 242 { 243 struct rte_mbuf *hdr; 244 245 /* Create new mbuf for the header. */ 246 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL)) 247 return NULL; 248 249 /* If requested, then make a new clone packet. */ 250 if (use_clone != 0 && 251 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) { 252 rte_pktmbuf_free(hdr); 253 return NULL; 254 } 255 256 /* prepend new header */ 257 hdr->next = pkt; 258 259 /* update header's fields */ 260 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len); 261 hdr->nb_segs = pkt->nb_segs + 1; 262 263 __rte_mbuf_sanity_check(hdr, 1); 264 return hdr; 265 } 266 /* >8 End of mcast_out_kt. */ 267 268 /* 269 * Write new Ethernet header to the outgoing packet, 270 * and put it into the outgoing queue for the given port. 271 */ 272 273 /* Write new Ethernet header to outgoing packets. 8< */ 274 static inline void 275 mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr, 276 struct lcore_queue_conf *qconf, uint16_t port) 277 { 278 struct rte_ether_hdr *ethdr; 279 uint16_t len; 280 281 /* Construct Ethernet header. */ 282 ethdr = (struct rte_ether_hdr *) 283 rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr)); 284 RTE_ASSERT(ethdr != NULL); 285 286 rte_ether_addr_copy(dest_addr, ðdr->dst_addr); 287 rte_ether_addr_copy(&ports_eth_addr[port], ðdr->src_addr); 288 ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4); 289 290 /* Put new packet into the output queue */ 291 len = qconf->tx_mbufs[port].len; 292 qconf->tx_mbufs[port].m_table[len] = pkt; 293 qconf->tx_mbufs[port].len = ++len; 294 295 /* Transmit packets */ 296 if (unlikely(MAX_PKT_BURST == len)) 297 send_burst(qconf, port); 298 } 299 /* >8 End of writing new Ethernet headers. */ 300 301 /* Multicast forward of the input packet */ 302 static inline void 303 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf) 304 { 305 struct rte_mbuf *mc; 306 struct rte_ipv4_hdr *iphdr; 307 uint32_t dest_addr, port_mask, port_num, use_clone; 308 int32_t hash; 309 uint16_t port; 310 union { 311 uint64_t as_int; 312 struct rte_ether_addr as_addr; 313 } dst_eth_addr; 314 315 /* Remove the Ethernet header from the input packet. 8< */ 316 iphdr = (struct rte_ipv4_hdr *) 317 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr)); 318 RTE_ASSERT(iphdr != NULL); 319 320 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr); 321 /* >8 End of removing the Ethernet header from the input packet. */ 322 323 /* 324 * Check that it is a valid multicast address and 325 * we have some active ports assigned to it. 326 */ 327 328 /* Check valid multicast address. 8< */ 329 if (!RTE_IS_IPV4_MCAST(dest_addr) || 330 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 || 331 (port_mask = hash & enabled_port_mask) == 0) { 332 rte_pktmbuf_free(m); 333 return; 334 } 335 /* >8 End of valid multicast address check. */ 336 337 /* Calculate number of destination ports. */ 338 port_num = bitcnt(port_mask); 339 340 /* Should we use rte_pktmbuf_clone() or not. 8< */ 341 use_clone = (port_num <= MCAST_CLONE_PORTS && 342 m->nb_segs <= MCAST_CLONE_SEGS); 343 /* >8 End of using rte_pktmbuf_clone(). */ 344 345 /* Mark all packet's segments as referenced port_num times */ 346 if (use_clone == 0) 347 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num); 348 349 /* Construct destination ethernet address. 8< */ 350 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr); 351 /* >8 End of constructing destination ethernet address. */ 352 353 /* Packets dispatched to destination ports. 8< */ 354 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) { 355 356 /* Prepare output packet and send it out. */ 357 if ((port_mask & 1) != 0) { 358 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL)) 359 mcast_send_pkt(mc, &dst_eth_addr.as_addr, 360 qconf, port); 361 else if (use_clone == 0) 362 rte_pktmbuf_free(m); 363 } 364 } 365 /* >8 End of packets dispatched to destination ports. */ 366 367 /* 368 * If we making clone packets, then, for the last destination port, 369 * we can overwrite input packet's metadata. 370 */ 371 if (use_clone != 0) 372 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port); 373 else 374 rte_pktmbuf_free(m); 375 } 376 377 /* Send burst of outgoing packet, if timeout expires. */ 378 static inline void 379 send_timeout_burst(struct lcore_queue_conf *qconf) 380 { 381 uint64_t cur_tsc; 382 uint16_t portid; 383 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 384 385 cur_tsc = rte_rdtsc(); 386 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc)) 387 return; 388 389 for (portid = 0; portid < MAX_PORTS; portid++) { 390 if (qconf->tx_mbufs[portid].len != 0) 391 send_burst(qconf, portid); 392 } 393 qconf->tx_tsc = cur_tsc; 394 } 395 396 /* main processing loop */ 397 static int 398 main_loop(__rte_unused void *dummy) 399 { 400 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 401 unsigned lcore_id; 402 int i, j, nb_rx; 403 uint16_t portid; 404 struct lcore_queue_conf *qconf; 405 406 lcore_id = rte_lcore_id(); 407 qconf = &lcore_queue_conf[lcore_id]; 408 409 410 if (qconf->n_rx_queue == 0) { 411 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n", 412 lcore_id); 413 return 0; 414 } 415 416 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n", 417 lcore_id); 418 419 for (i = 0; i < qconf->n_rx_queue; i++) { 420 421 portid = qconf->rx_queue_list[i]; 422 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n", 423 lcore_id, portid); 424 } 425 426 while (1) { 427 428 /* 429 * Read packet from RX queues 430 */ 431 for (i = 0; i < qconf->n_rx_queue; i++) { 432 433 portid = qconf->rx_queue_list[i]; 434 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 435 MAX_PKT_BURST); 436 437 /* Prefetch first packets */ 438 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 439 rte_prefetch0(rte_pktmbuf_mtod( 440 pkts_burst[j], void *)); 441 } 442 443 /* Prefetch and forward already prefetched packets */ 444 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 445 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 446 j + PREFETCH_OFFSET], void *)); 447 mcast_forward(pkts_burst[j], qconf); 448 } 449 450 /* Forward remaining prefetched packets */ 451 for (; j < nb_rx; j++) { 452 mcast_forward(pkts_burst[j], qconf); 453 } 454 } 455 456 /* Send out packets from TX queues */ 457 send_timeout_burst(qconf); 458 } 459 } 460 461 /* display usage */ 462 static void 463 print_usage(const char *prgname) 464 { 465 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 466 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 467 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 468 prgname); 469 } 470 471 static uint32_t 472 parse_portmask(const char *portmask) 473 { 474 char *end = NULL; 475 unsigned long pm; 476 477 /* parse hexadecimal string */ 478 pm = strtoul(portmask, &end, 16); 479 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 480 return 0; 481 482 return (uint32_t)pm; 483 } 484 485 static int 486 parse_nqueue(const char *q_arg) 487 { 488 char *end = NULL; 489 unsigned long n; 490 491 /* parse numerical string */ 492 errno = 0; 493 n = strtoul(q_arg, &end, 0); 494 if (errno != 0 || end == NULL || *end != '\0' || 495 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE) 496 return -1; 497 498 return n; 499 } 500 501 /* Parse the argument given in the command line of the application */ 502 static int 503 parse_args(int argc, char **argv) 504 { 505 int opt, ret; 506 char **argvopt; 507 int option_index; 508 char *prgname = argv[0]; 509 static struct option lgopts[] = { 510 {NULL, 0, 0, 0} 511 }; 512 513 argvopt = argv; 514 515 while ((opt = getopt_long(argc, argvopt, "p:q:", 516 lgopts, &option_index)) != EOF) { 517 518 switch (opt) { 519 /* portmask */ 520 case 'p': 521 enabled_port_mask = parse_portmask(optarg); 522 if (enabled_port_mask == 0) { 523 printf("invalid portmask\n"); 524 print_usage(prgname); 525 return -1; 526 } 527 break; 528 529 /* nqueue */ 530 case 'q': 531 rx_queue_per_lcore = parse_nqueue(optarg); 532 if (rx_queue_per_lcore < 0) { 533 printf("invalid queue number\n"); 534 print_usage(prgname); 535 return -1; 536 } 537 break; 538 539 default: 540 print_usage(prgname); 541 return -1; 542 } 543 } 544 545 if (optind >= 0) 546 argv[optind-1] = prgname; 547 548 ret = optind-1; 549 optind = 1; /* reset getopt lib */ 550 return ret; 551 } 552 553 static void 554 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 555 { 556 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 557 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 558 printf("%s%s", name, buf); 559 } 560 561 /* Hash object is created and loaded. 8< */ 562 static int 563 init_mcast_hash(void) 564 { 565 uint32_t i; 566 567 mcast_hash_params.socket_id = rte_socket_id(); 568 mcast_hash = rte_fbk_hash_create(&mcast_hash_params); 569 if (mcast_hash == NULL){ 570 return -1; 571 } 572 573 for (i = 0; i < RTE_DIM(mcast_group_table); i++) { 574 if (rte_fbk_hash_add_key(mcast_hash, 575 mcast_group_table[i].ip, 576 mcast_group_table[i].port_mask) < 0) { 577 return -1; 578 } 579 } 580 581 return 0; 582 } 583 /* >8 End of hash object is created and loaded. */ 584 585 /* Check the link status of all ports in up to 9s, and print them finally */ 586 static void 587 check_all_ports_link_status(uint32_t port_mask) 588 { 589 #define CHECK_INTERVAL 100 /* 100ms */ 590 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 591 uint16_t portid; 592 uint8_t count, all_ports_up, print_flag = 0; 593 struct rte_eth_link link; 594 int ret; 595 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN]; 596 597 printf("\nChecking link status"); 598 fflush(stdout); 599 for (count = 0; count <= MAX_CHECK_TIME; count++) { 600 all_ports_up = 1; 601 RTE_ETH_FOREACH_DEV(portid) { 602 if ((port_mask & (1 << portid)) == 0) 603 continue; 604 memset(&link, 0, sizeof(link)); 605 ret = rte_eth_link_get_nowait(portid, &link); 606 if (ret < 0) { 607 all_ports_up = 0; 608 if (print_flag == 1) 609 printf("Port %u link get failed: %s\n", 610 portid, rte_strerror(-ret)); 611 continue; 612 } 613 /* print link status if flag set */ 614 if (print_flag == 1) { 615 rte_eth_link_to_str(link_status_text, 616 sizeof(link_status_text), 617 &link); 618 printf("Port %d %s\n", portid, 619 link_status_text); 620 continue; 621 } 622 /* clear all_ports_up flag if any link down */ 623 if (link.link_status == ETH_LINK_DOWN) { 624 all_ports_up = 0; 625 break; 626 } 627 } 628 /* after finally printing all link status, get out */ 629 if (print_flag == 1) 630 break; 631 632 if (all_ports_up == 0) { 633 printf("."); 634 fflush(stdout); 635 rte_delay_ms(CHECK_INTERVAL); 636 } 637 638 /* set the print_flag if all ports up or timeout */ 639 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 640 print_flag = 1; 641 printf("done\n"); 642 } 643 } 644 } 645 646 int 647 main(int argc, char **argv) 648 { 649 struct lcore_queue_conf *qconf; 650 struct rte_eth_dev_info dev_info; 651 struct rte_eth_txconf *txconf; 652 int ret; 653 uint16_t queueid; 654 unsigned lcore_id = 0, rx_lcore_id = 0; 655 uint32_t n_tx_queue, nb_lcores; 656 uint16_t portid; 657 658 /* init EAL */ 659 ret = rte_eal_init(argc, argv); 660 if (ret < 0) 661 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 662 argc -= ret; 663 argv += ret; 664 665 /* parse application arguments (after the EAL ones) */ 666 ret = parse_args(argc, argv); 667 if (ret < 0) 668 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n"); 669 670 /* Create the mbuf pools. 8< */ 671 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32, 672 0, PKT_MBUF_DATA_SIZE, rte_socket_id()); 673 674 if (packet_pool == NULL) 675 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n"); 676 677 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32, 678 0, HDR_MBUF_DATA_SIZE, rte_socket_id()); 679 680 if (header_pool == NULL) 681 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n"); 682 683 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32, 684 0, 0, rte_socket_id()); 685 686 if (clone_pool == NULL) 687 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n"); 688 /* >8 End of create mbuf pools. */ 689 690 nb_ports = rte_eth_dev_count_avail(); 691 if (nb_ports == 0) 692 rte_exit(EXIT_FAILURE, "No physical ports!\n"); 693 if (nb_ports > MAX_PORTS) 694 nb_ports = MAX_PORTS; 695 696 nb_lcores = rte_lcore_count(); 697 698 /* initialize all ports */ 699 RTE_ETH_FOREACH_DEV(portid) { 700 struct rte_eth_rxconf rxq_conf; 701 struct rte_eth_conf local_port_conf = port_conf; 702 703 /* skip ports that are not enabled */ 704 if ((enabled_port_mask & (1 << portid)) == 0) { 705 printf("Skipping disabled port %d\n", portid); 706 continue; 707 } 708 709 qconf = &lcore_queue_conf[rx_lcore_id]; 710 711 /* limit the frame size to the maximum supported by NIC */ 712 ret = rte_eth_dev_info_get(portid, &dev_info); 713 if (ret != 0) 714 rte_exit(EXIT_FAILURE, 715 "Error during getting device (port %u) info: %s\n", 716 portid, strerror(-ret)); 717 718 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 719 dev_info.max_rx_pktlen, 720 local_port_conf.rxmode.max_rx_pkt_len); 721 722 /* get the lcore_id for this port */ 723 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 724 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 725 726 rx_lcore_id ++; 727 qconf = &lcore_queue_conf[rx_lcore_id]; 728 729 if (rx_lcore_id >= RTE_MAX_LCORE) 730 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 731 } 732 qconf->rx_queue_list[qconf->n_rx_queue] = portid; 733 qconf->n_rx_queue++; 734 735 /* init port */ 736 printf("Initializing port %d on lcore %u... ", portid, 737 rx_lcore_id); 738 fflush(stdout); 739 740 n_tx_queue = nb_lcores; 741 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 742 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 743 744 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 745 &local_port_conf); 746 if (ret < 0) 747 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n", 748 ret, portid); 749 750 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 751 &nb_txd); 752 if (ret < 0) 753 rte_exit(EXIT_FAILURE, 754 "Cannot adjust number of descriptors: err=%d, port=%d\n", 755 ret, portid); 756 757 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 758 if (ret < 0) 759 rte_exit(EXIT_FAILURE, 760 "Cannot get MAC address: err=%d, port=%d\n", 761 ret, portid); 762 763 print_ethaddr(" Address:", &ports_eth_addr[portid]); 764 printf(", "); 765 766 /* init one RX queue */ 767 queueid = 0; 768 printf("rxq=%hu ", queueid); 769 fflush(stdout); 770 rxq_conf = dev_info.default_rxconf; 771 rxq_conf.offloads = local_port_conf.rxmode.offloads; 772 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd, 773 rte_eth_dev_socket_id(portid), 774 &rxq_conf, 775 packet_pool); 776 if (ret < 0) 777 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n", 778 ret, portid); 779 780 /* init one TX queue per couple (lcore,port) */ 781 queueid = 0; 782 783 RTE_LCORE_FOREACH(lcore_id) { 784 if (rte_lcore_is_enabled(lcore_id) == 0) 785 continue; 786 printf("txq=%u,%hu ", lcore_id, queueid); 787 fflush(stdout); 788 789 txconf = &dev_info.default_txconf; 790 txconf->offloads = local_port_conf.txmode.offloads; 791 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 792 rte_lcore_to_socket_id(lcore_id), txconf); 793 if (ret < 0) 794 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 795 "port=%d\n", ret, portid); 796 797 qconf = &lcore_queue_conf[lcore_id]; 798 qconf->tx_queue_id[portid] = queueid; 799 queueid++; 800 } 801 ret = rte_eth_allmulticast_enable(portid); 802 if (ret < 0) 803 rte_exit(EXIT_FAILURE, 804 "rte_eth_allmulticast_enable: err=%d, port=%d\n", 805 ret, portid); 806 /* Start device */ 807 ret = rte_eth_dev_start(portid); 808 if (ret < 0) 809 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 810 ret, portid); 811 812 printf("done:\n"); 813 } 814 815 check_all_ports_link_status(enabled_port_mask); 816 817 /* initialize the multicast hash */ 818 int retval = init_mcast_hash(); 819 if (retval != 0) 820 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n"); 821 822 /* launch per-lcore init on every lcore */ 823 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN); 824 RTE_LCORE_FOREACH_WORKER(lcore_id) { 825 if (rte_eal_wait_lcore(lcore_id) < 0) 826 return -1; 827 } 828 829 /* clean up the EAL */ 830 rte_eal_cleanup(); 831 832 return 0; 833 } 834