xref: /dpdk/examples/ipv4_multicast/main.c (revision 03ab51eafda992874a48c392ca66ffb577fe2b71)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_eal.h>
22 #include <rte_launch.h>
23 #include <rte_atomic.h>
24 #include <rte_cycles.h>
25 #include <rte_prefetch.h>
26 #include <rte_lcore.h>
27 #include <rte_per_lcore.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_interrupts.h>
30 #include <rte_random.h>
31 #include <rte_debug.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_mempool.h>
35 #include <rte_mbuf.h>
36 #include <rte_malloc.h>
37 #include <rte_fbk_hash.h>
38 #include <rte_ip.h>
39 
40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
41 
42 #define MAX_PORTS 16
43 
44 #define	MCAST_CLONE_PORTS	2
45 #define	MCAST_CLONE_SEGS	2
46 
47 #define	PKT_MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
48 #define	NB_PKT_MBUF	8192
49 
50 #define	HDR_MBUF_DATA_SIZE	(2 * RTE_PKTMBUF_HEADROOM)
51 #define	NB_HDR_MBUF	(NB_PKT_MBUF * MAX_PORTS)
52 
53 #define	NB_CLONE_MBUF	(NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
54 
55 /* allow max jumbo frame 9.5 KB */
56 #define	JUMBO_FRAME_MAX_SIZE	0x2600
57 
58 #define MAX_PKT_BURST 32
59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
60 
61 /* Configure how many packets ahead to prefetch, when reading packets */
62 #define PREFETCH_OFFSET	3
63 
64 /*
65  * Construct Ethernet multicast address from IPv4 multicast address.
66  * Citing RFC 1112, section 6.4:
67  * "An IP host group address is mapped to an Ethernet multicast address
68  * by placing the low-order 23-bits of the IP address into the low-order
69  * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
70  */
71 
72 /* Construct Ethernet multicast address from IPv4 multicast Address. 8< */
73 #define	ETHER_ADDR_FOR_IPV4_MCAST(x)	\
74 	(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
75 /* >8 End of Construction of multicast address from IPv4 multicast address. */
76 
77 /*
78  * Configurable number of RX/TX ring descriptors
79  */
80 #define RTE_TEST_RX_DESC_DEFAULT 1024
81 #define RTE_TEST_TX_DESC_DEFAULT 1024
82 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
83 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
84 
85 /* ethernet addresses of ports */
86 static struct rte_ether_addr ports_eth_addr[MAX_PORTS];
87 
88 /* mask of enabled ports */
89 static uint32_t enabled_port_mask = 0;
90 
91 static uint16_t nb_ports;
92 
93 static int rx_queue_per_lcore = 1;
94 
95 struct mbuf_table {
96 	uint16_t len;
97 	struct rte_mbuf *m_table[MAX_PKT_BURST];
98 };
99 
100 #define MAX_RX_QUEUE_PER_LCORE 16
101 #define MAX_TX_QUEUE_PER_PORT 16
102 struct lcore_queue_conf {
103 	uint64_t tx_tsc;
104 	uint16_t n_rx_queue;
105 	uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
106 	uint16_t tx_queue_id[MAX_PORTS];
107 	struct mbuf_table tx_mbufs[MAX_PORTS];
108 } __rte_cache_aligned;
109 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
110 
111 static struct rte_eth_conf port_conf = {
112 	.rxmode = {
113 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
114 		.split_hdr_size = 0,
115 		.offloads = DEV_RX_OFFLOAD_JUMBO_FRAME,
116 	},
117 	.txmode = {
118 		.mq_mode = ETH_MQ_TX_NONE,
119 		.offloads = DEV_TX_OFFLOAD_MULTI_SEGS,
120 	},
121 };
122 
123 static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
124 
125 
126 /* Multicast */
127 static struct rte_fbk_hash_params mcast_hash_params = {
128 	.name = "MCAST_HASH",
129 	.entries = 1024,
130 	.entries_per_bucket = 4,
131 	.socket_id = 0,
132 	.hash_func = NULL,
133 	.init_val = 0,
134 };
135 
136 struct rte_fbk_hash_table *mcast_hash = NULL;
137 
138 struct mcast_group_params {
139 	uint32_t ip;
140 	uint16_t port_mask;
141 };
142 
143 static struct mcast_group_params mcast_group_table[] = {
144 		{RTE_IPV4(224,0,0,101), 0x1},
145 		{RTE_IPV4(224,0,0,102), 0x2},
146 		{RTE_IPV4(224,0,0,103), 0x3},
147 		{RTE_IPV4(224,0,0,104), 0x4},
148 		{RTE_IPV4(224,0,0,105), 0x5},
149 		{RTE_IPV4(224,0,0,106), 0x6},
150 		{RTE_IPV4(224,0,0,107), 0x7},
151 		{RTE_IPV4(224,0,0,108), 0x8},
152 		{RTE_IPV4(224,0,0,109), 0x9},
153 		{RTE_IPV4(224,0,0,110), 0xA},
154 		{RTE_IPV4(224,0,0,111), 0xB},
155 		{RTE_IPV4(224,0,0,112), 0xC},
156 		{RTE_IPV4(224,0,0,113), 0xD},
157 		{RTE_IPV4(224,0,0,114), 0xE},
158 		{RTE_IPV4(224,0,0,115), 0xF},
159 };
160 
161 /* Send burst of packets on an output interface */
162 static void
163 send_burst(struct lcore_queue_conf *qconf, uint16_t port)
164 {
165 	struct rte_mbuf **m_table;
166 	uint16_t n, queueid;
167 	int ret;
168 
169 	queueid = qconf->tx_queue_id[port];
170 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
171 	n = qconf->tx_mbufs[port].len;
172 
173 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
174 	while (unlikely (ret < n)) {
175 		rte_pktmbuf_free(m_table[ret]);
176 		ret++;
177 	}
178 
179 	qconf->tx_mbufs[port].len = 0;
180 }
181 
182 /* Get number of bits set. 8< */
183 static inline uint32_t
184 bitcnt(uint32_t v)
185 {
186 	uint32_t n;
187 
188 	for (n = 0; v != 0; v &= v - 1, n++)
189 		;
190 
191 	return n;
192 }
193 /* >8 End of getting number of bits set. */
194 
195 /**
196  * Create the output multicast packet based on the given input packet.
197  * There are two approaches for creating outgoing packet, though both
198  * are based on data zero-copy idea, they differ in few details:
199  * First one creates a clone of the input packet, e.g - walk though all
200  * segments of the input packet, and for each of them create a new packet
201  * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
202  * for more details). Then new mbuf is allocated for the packet header
203  * and is prepended to the 'clone' mbuf.
204  * Second approach doesn't make a clone, it just increment refcnt for all
205  * input packet segments. Then it allocates new mbuf for the packet header
206  * and prepends it to the input packet.
207  * Basically first approach reuses only input packet's data, but creates
208  * it's own copy of packet's metadata. Second approach reuses both input's
209  * packet data and metadata.
210  * The advantage of first approach - is that each outgoing packet has it's
211  * own copy of metadata, so we can safely modify data pointer of the
212  * input packet. That allows us to skip creation if the output packet for
213  * the last destination port, but instead modify input packet's header inplace,
214  * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
215  * The advantage of second approach - less work for each outgoing packet,
216  * e.g: we skip "clone" operation completely. Though it comes with a price -
217  * input packet's metadata has to be intact. So for N destination ports we
218  * need to invoke mcast_out_pkt N times.
219  * So for small number of outgoing ports (and segments in the input packet)
220  * first approach will be faster.
221  * As number of outgoing ports (and/or input segments) will grow,
222  * second way will become more preferable.
223  *
224  *  @param pkt
225  *  Input packet mbuf.
226  *  @param use_clone
227  *  Control which of the two approaches described above should be used:
228  *  - 0 - use second approach:
229  *    Don't "clone" input packet.
230  *    Prepend new header directly to the input packet
231  *  - 1 - use first approach:
232  *    Make a "clone" of input packet first.
233  *    Prepend new header to the clone of the input packet
234  *  @return
235  *  - The pointer to the new outgoing packet.
236  *  - NULL if operation failed.
237  */
238 
239 /* mcast_out_pkt 8< */
240 static inline struct rte_mbuf *
241 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
242 {
243 	struct rte_mbuf *hdr;
244 
245 	/* Create new mbuf for the header. */
246 	if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
247 		return NULL;
248 
249 	/* If requested, then make a new clone packet. */
250 	if (use_clone != 0 &&
251 	    unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
252 		rte_pktmbuf_free(hdr);
253 		return NULL;
254 	}
255 
256 	/* prepend new header */
257 	hdr->next = pkt;
258 
259 	/* update header's fields */
260 	hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
261 	hdr->nb_segs = pkt->nb_segs + 1;
262 
263 	__rte_mbuf_sanity_check(hdr, 1);
264 	return hdr;
265 }
266 /* >8 End of mcast_out_kt. */
267 
268 /*
269  * Write new Ethernet header to the outgoing packet,
270  * and put it into the outgoing queue for the given port.
271  */
272 
273 /* Write new Ethernet header to outgoing packets. 8< */
274 static inline void
275 mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr,
276 		struct lcore_queue_conf *qconf, uint16_t port)
277 {
278 	struct rte_ether_hdr *ethdr;
279 	uint16_t len;
280 
281 	/* Construct Ethernet header. */
282 	ethdr = (struct rte_ether_hdr *)
283 		rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
284 	RTE_ASSERT(ethdr != NULL);
285 
286 	rte_ether_addr_copy(dest_addr, &ethdr->dst_addr);
287 	rte_ether_addr_copy(&ports_eth_addr[port], &ethdr->src_addr);
288 	ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);
289 
290 	/* Put new packet into the output queue */
291 	len = qconf->tx_mbufs[port].len;
292 	qconf->tx_mbufs[port].m_table[len] = pkt;
293 	qconf->tx_mbufs[port].len = ++len;
294 
295 	/* Transmit packets */
296 	if (unlikely(MAX_PKT_BURST == len))
297 		send_burst(qconf, port);
298 }
299 /* >8 End of writing new Ethernet headers. */
300 
301 /* Multicast forward of the input packet */
302 static inline void
303 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
304 {
305 	struct rte_mbuf *mc;
306 	struct rte_ipv4_hdr *iphdr;
307 	uint32_t dest_addr, port_mask, port_num, use_clone;
308 	int32_t hash;
309 	uint16_t port;
310 	union {
311 		uint64_t as_int;
312 		struct rte_ether_addr as_addr;
313 	} dst_eth_addr;
314 
315 	/* Remove the Ethernet header from the input packet. 8< */
316 	iphdr = (struct rte_ipv4_hdr *)
317 		rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
318 	RTE_ASSERT(iphdr != NULL);
319 
320 	dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
321 	/* >8 End of removing the Ethernet header from the input packet. */
322 
323 	/*
324 	 * Check that it is a valid multicast address and
325 	 * we have some active ports assigned to it.
326 	 */
327 
328 	/* Check valid multicast address. 8< */
329 	if (!RTE_IS_IPV4_MCAST(dest_addr) ||
330 	    (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
331 	    (port_mask = hash & enabled_port_mask) == 0) {
332 		rte_pktmbuf_free(m);
333 		return;
334 	}
335 	/* >8 End of valid multicast address check. */
336 
337 	/* Calculate number of destination ports. */
338 	port_num = bitcnt(port_mask);
339 
340 	/* Should we use rte_pktmbuf_clone() or not. 8< */
341 	use_clone = (port_num <= MCAST_CLONE_PORTS &&
342 	    m->nb_segs <= MCAST_CLONE_SEGS);
343 	/* >8 End of using rte_pktmbuf_clone(). */
344 
345 	/* Mark all packet's segments as referenced port_num times */
346 	if (use_clone == 0)
347 		rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
348 
349 	/* Construct destination ethernet address. 8< */
350 	dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
351 	/* >8 End of constructing destination ethernet address. */
352 
353 	/* Packets dispatched to destination ports. 8< */
354 	for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
355 
356 		/* Prepare output packet and send it out. */
357 		if ((port_mask & 1) != 0) {
358 			if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
359 				mcast_send_pkt(mc, &dst_eth_addr.as_addr,
360 						qconf, port);
361 			else if (use_clone == 0)
362 				rte_pktmbuf_free(m);
363 		}
364 	}
365 	/* >8 End of packets dispatched to destination ports. */
366 
367 	/*
368 	 * If we making clone packets, then, for the last destination port,
369 	 * we can overwrite input packet's metadata.
370 	 */
371 	if (use_clone != 0)
372 		mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
373 	else
374 		rte_pktmbuf_free(m);
375 }
376 
377 /* Send burst of outgoing packet, if timeout expires. */
378 static inline void
379 send_timeout_burst(struct lcore_queue_conf *qconf)
380 {
381 	uint64_t cur_tsc;
382 	uint16_t portid;
383 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
384 
385 	cur_tsc = rte_rdtsc();
386 	if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
387 		return;
388 
389 	for (portid = 0; portid < MAX_PORTS; portid++) {
390 		if (qconf->tx_mbufs[portid].len != 0)
391 			send_burst(qconf, portid);
392 	}
393 	qconf->tx_tsc = cur_tsc;
394 }
395 
396 /* main processing loop */
397 static int
398 main_loop(__rte_unused void *dummy)
399 {
400 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
401 	unsigned lcore_id;
402 	int i, j, nb_rx;
403 	uint16_t portid;
404 	struct lcore_queue_conf *qconf;
405 
406 	lcore_id = rte_lcore_id();
407 	qconf = &lcore_queue_conf[lcore_id];
408 
409 
410 	if (qconf->n_rx_queue == 0) {
411 		RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
412 		    lcore_id);
413 		return 0;
414 	}
415 
416 	RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
417 	    lcore_id);
418 
419 	for (i = 0; i < qconf->n_rx_queue; i++) {
420 
421 		portid = qconf->rx_queue_list[i];
422 		RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
423 		    lcore_id, portid);
424 	}
425 
426 	while (1) {
427 
428 		/*
429 		 * Read packet from RX queues
430 		 */
431 		for (i = 0; i < qconf->n_rx_queue; i++) {
432 
433 			portid = qconf->rx_queue_list[i];
434 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
435 						 MAX_PKT_BURST);
436 
437 			/* Prefetch first packets */
438 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
439 				rte_prefetch0(rte_pktmbuf_mtod(
440 						pkts_burst[j], void *));
441 			}
442 
443 			/* Prefetch and forward already prefetched packets */
444 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
445 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
446 						j + PREFETCH_OFFSET], void *));
447 				mcast_forward(pkts_burst[j], qconf);
448 			}
449 
450 			/* Forward remaining prefetched packets */
451 			for (; j < nb_rx; j++) {
452 				mcast_forward(pkts_burst[j], qconf);
453 			}
454 		}
455 
456 		/* Send out packets from TX queues */
457 		send_timeout_burst(qconf);
458 	}
459 }
460 
461 /* display usage */
462 static void
463 print_usage(const char *prgname)
464 {
465 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
466 	    "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
467 	    "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
468 	    prgname);
469 }
470 
471 static uint32_t
472 parse_portmask(const char *portmask)
473 {
474 	char *end = NULL;
475 	unsigned long pm;
476 
477 	/* parse hexadecimal string */
478 	pm = strtoul(portmask, &end, 16);
479 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
480 		return 0;
481 
482 	return (uint32_t)pm;
483 }
484 
485 static int
486 parse_nqueue(const char *q_arg)
487 {
488 	char *end = NULL;
489 	unsigned long n;
490 
491 	/* parse numerical string */
492 	errno = 0;
493 	n = strtoul(q_arg, &end, 0);
494 	if (errno != 0 || end == NULL || *end != '\0' ||
495 			n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
496 		return -1;
497 
498 	return n;
499 }
500 
501 /* Parse the argument given in the command line of the application */
502 static int
503 parse_args(int argc, char **argv)
504 {
505 	int opt, ret;
506 	char **argvopt;
507 	int option_index;
508 	char *prgname = argv[0];
509 	static struct option lgopts[] = {
510 		{NULL, 0, 0, 0}
511 	};
512 
513 	argvopt = argv;
514 
515 	while ((opt = getopt_long(argc, argvopt, "p:q:",
516 				  lgopts, &option_index)) != EOF) {
517 
518 		switch (opt) {
519 		/* portmask */
520 		case 'p':
521 			enabled_port_mask = parse_portmask(optarg);
522 			if (enabled_port_mask == 0) {
523 				printf("invalid portmask\n");
524 				print_usage(prgname);
525 				return -1;
526 			}
527 			break;
528 
529 		/* nqueue */
530 		case 'q':
531 			rx_queue_per_lcore = parse_nqueue(optarg);
532 			if (rx_queue_per_lcore < 0) {
533 				printf("invalid queue number\n");
534 				print_usage(prgname);
535 				return -1;
536 			}
537 			break;
538 
539 		default:
540 			print_usage(prgname);
541 			return -1;
542 		}
543 	}
544 
545 	if (optind >= 0)
546 		argv[optind-1] = prgname;
547 
548 	ret = optind-1;
549 	optind = 1; /* reset getopt lib */
550 	return ret;
551 }
552 
553 static void
554 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
555 {
556 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
557 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
558 	printf("%s%s", name, buf);
559 }
560 
561 /* Hash object is created and loaded. 8< */
562 static int
563 init_mcast_hash(void)
564 {
565 	uint32_t i;
566 
567 	mcast_hash_params.socket_id = rte_socket_id();
568 	mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
569 	if (mcast_hash == NULL){
570 		return -1;
571 	}
572 
573 	for (i = 0; i < RTE_DIM(mcast_group_table); i++) {
574 		if (rte_fbk_hash_add_key(mcast_hash,
575 			mcast_group_table[i].ip,
576 			mcast_group_table[i].port_mask) < 0) {
577 			return -1;
578 		}
579 	}
580 
581 	return 0;
582 }
583 /* >8 End of hash object is created and loaded. */
584 
585 /* Check the link status of all ports in up to 9s, and print them finally */
586 static void
587 check_all_ports_link_status(uint32_t port_mask)
588 {
589 #define CHECK_INTERVAL 100 /* 100ms */
590 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
591 	uint16_t portid;
592 	uint8_t count, all_ports_up, print_flag = 0;
593 	struct rte_eth_link link;
594 	int ret;
595 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
596 
597 	printf("\nChecking link status");
598 	fflush(stdout);
599 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
600 		all_ports_up = 1;
601 		RTE_ETH_FOREACH_DEV(portid) {
602 			if ((port_mask & (1 << portid)) == 0)
603 				continue;
604 			memset(&link, 0, sizeof(link));
605 			ret = rte_eth_link_get_nowait(portid, &link);
606 			if (ret < 0) {
607 				all_ports_up = 0;
608 				if (print_flag == 1)
609 					printf("Port %u link get failed: %s\n",
610 						portid, rte_strerror(-ret));
611 				continue;
612 			}
613 			/* print link status if flag set */
614 			if (print_flag == 1) {
615 				rte_eth_link_to_str(link_status_text,
616 					sizeof(link_status_text),
617 					&link);
618 				printf("Port %d %s\n", portid,
619 				       link_status_text);
620 				continue;
621 			}
622 			/* clear all_ports_up flag if any link down */
623 			if (link.link_status == ETH_LINK_DOWN) {
624 				all_ports_up = 0;
625 				break;
626 			}
627 		}
628 		/* after finally printing all link status, get out */
629 		if (print_flag == 1)
630 			break;
631 
632 		if (all_ports_up == 0) {
633 			printf(".");
634 			fflush(stdout);
635 			rte_delay_ms(CHECK_INTERVAL);
636 		}
637 
638 		/* set the print_flag if all ports up or timeout */
639 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
640 			print_flag = 1;
641 			printf("done\n");
642 		}
643 	}
644 }
645 
646 int
647 main(int argc, char **argv)
648 {
649 	struct lcore_queue_conf *qconf;
650 	struct rte_eth_dev_info dev_info;
651 	struct rte_eth_txconf *txconf;
652 	int ret;
653 	uint16_t queueid;
654 	unsigned lcore_id = 0, rx_lcore_id = 0;
655 	uint32_t n_tx_queue, nb_lcores;
656 	uint16_t portid;
657 
658 	/* init EAL */
659 	ret = rte_eal_init(argc, argv);
660 	if (ret < 0)
661 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
662 	argc -= ret;
663 	argv += ret;
664 
665 	/* parse application arguments (after the EAL ones) */
666 	ret = parse_args(argc, argv);
667 	if (ret < 0)
668 		rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
669 
670 	/* Create the mbuf pools. 8< */
671 	packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
672 		0, PKT_MBUF_DATA_SIZE, rte_socket_id());
673 
674 	if (packet_pool == NULL)
675 		rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
676 
677 	header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
678 		0, HDR_MBUF_DATA_SIZE, rte_socket_id());
679 
680 	if (header_pool == NULL)
681 		rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
682 
683 	clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
684 		0, 0, rte_socket_id());
685 
686 	if (clone_pool == NULL)
687 		rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
688 	/* >8 End of create mbuf pools. */
689 
690 	nb_ports = rte_eth_dev_count_avail();
691 	if (nb_ports == 0)
692 		rte_exit(EXIT_FAILURE, "No physical ports!\n");
693 	if (nb_ports > MAX_PORTS)
694 		nb_ports = MAX_PORTS;
695 
696 	nb_lcores = rte_lcore_count();
697 
698 	/* initialize all ports */
699 	RTE_ETH_FOREACH_DEV(portid) {
700 		struct rte_eth_rxconf rxq_conf;
701 		struct rte_eth_conf local_port_conf = port_conf;
702 
703 		/* skip ports that are not enabled */
704 		if ((enabled_port_mask & (1 << portid)) == 0) {
705 			printf("Skipping disabled port %d\n", portid);
706 			continue;
707 		}
708 
709 		qconf = &lcore_queue_conf[rx_lcore_id];
710 
711 		/* limit the frame size to the maximum supported by NIC */
712 		ret = rte_eth_dev_info_get(portid, &dev_info);
713 		if (ret != 0)
714 			rte_exit(EXIT_FAILURE,
715 				"Error during getting device (port %u) info: %s\n",
716 				portid, strerror(-ret));
717 
718 		local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
719 		    dev_info.max_rx_pktlen,
720 		    local_port_conf.rxmode.max_rx_pkt_len);
721 
722 		/* get the lcore_id for this port */
723 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
724 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
725 
726 			rx_lcore_id ++;
727 			qconf = &lcore_queue_conf[rx_lcore_id];
728 
729 			if (rx_lcore_id >= RTE_MAX_LCORE)
730 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
731 		}
732 		qconf->rx_queue_list[qconf->n_rx_queue] = portid;
733 		qconf->n_rx_queue++;
734 
735 		/* init port */
736 		printf("Initializing port %d on lcore %u... ", portid,
737 		       rx_lcore_id);
738 		fflush(stdout);
739 
740 		n_tx_queue = nb_lcores;
741 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
742 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
743 
744 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
745 					    &local_port_conf);
746 		if (ret < 0)
747 			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
748 				  ret, portid);
749 
750 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
751 						       &nb_txd);
752 		if (ret < 0)
753 			rte_exit(EXIT_FAILURE,
754 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
755 				 ret, portid);
756 
757 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
758 		if (ret < 0)
759 			rte_exit(EXIT_FAILURE,
760 				 "Cannot get MAC address: err=%d, port=%d\n",
761 				 ret, portid);
762 
763 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
764 		printf(", ");
765 
766 		/* init one RX queue */
767 		queueid = 0;
768 		printf("rxq=%hu ", queueid);
769 		fflush(stdout);
770 		rxq_conf = dev_info.default_rxconf;
771 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
772 		ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
773 					     rte_eth_dev_socket_id(portid),
774 					     &rxq_conf,
775 					     packet_pool);
776 		if (ret < 0)
777 			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
778 				  ret, portid);
779 
780 		/* init one TX queue per couple (lcore,port) */
781 		queueid = 0;
782 
783 		RTE_LCORE_FOREACH(lcore_id) {
784 			if (rte_lcore_is_enabled(lcore_id) == 0)
785 				continue;
786 			printf("txq=%u,%hu ", lcore_id, queueid);
787 			fflush(stdout);
788 
789 			txconf = &dev_info.default_txconf;
790 			txconf->offloads = local_port_conf.txmode.offloads;
791 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
792 						     rte_lcore_to_socket_id(lcore_id), txconf);
793 			if (ret < 0)
794 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
795 					  "port=%d\n", ret, portid);
796 
797 			qconf = &lcore_queue_conf[lcore_id];
798 			qconf->tx_queue_id[portid] = queueid;
799 			queueid++;
800 		}
801 		ret = rte_eth_allmulticast_enable(portid);
802 		if (ret < 0)
803 			rte_exit(EXIT_FAILURE,
804 				"rte_eth_allmulticast_enable: err=%d, port=%d\n",
805 				ret, portid);
806 		/* Start device */
807 		ret = rte_eth_dev_start(portid);
808 		if (ret < 0)
809 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
810 				  ret, portid);
811 
812 		printf("done:\n");
813 	}
814 
815 	check_all_ports_link_status(enabled_port_mask);
816 
817 	/* initialize the multicast hash */
818 	int retval = init_mcast_hash();
819 	if (retval != 0)
820 		rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
821 
822 	/* launch per-lcore init on every lcore */
823 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
824 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
825 		if (rte_eal_wait_lcore(lcore_id) < 0)
826 			return -1;
827 	}
828 
829 	/* clean up the EAL */
830 	rte_eal_cleanup();
831 
832 	return 0;
833 }
834