1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <sys/param.h> 11 #include <string.h> 12 #include <sys/queue.h> 13 #include <stdarg.h> 14 #include <errno.h> 15 #include <getopt.h> 16 17 #include <rte_common.h> 18 #include <rte_byteorder.h> 19 #include <rte_log.h> 20 #include <rte_memory.h> 21 #include <rte_memcpy.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_atomic.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_lpm.h> 38 #include <rte_lpm6.h> 39 #include <rte_ip.h> 40 #include <rte_string_fns.h> 41 42 #include <rte_ip_frag.h> 43 44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 45 46 /* allow max jumbo frame 9.5 KB */ 47 #define JUMBO_FRAME_MAX_SIZE 0x2600 48 49 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 50 51 /* 52 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 53 * This value includes the size of IPv6 header. 54 */ 55 #define IPV4_MTU_DEFAULT RTE_ETHER_MTU 56 #define IPV6_MTU_DEFAULT RTE_ETHER_MTU 57 58 /* 59 * The overhead from max frame size to MTU. 60 * We have to consider the max possible overhead. 61 */ 62 #define MTU_OVERHEAD \ 63 (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \ 64 2 * sizeof(struct rte_vlan_hdr)) 65 66 /* 67 * Default payload in bytes for the IPv6 packet. 68 */ 69 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr)) 70 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr)) 71 72 /* 73 * Max number of fragments per packet expected - defined by config file. 74 */ 75 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 76 77 #define NB_MBUF 8192 78 79 #define MAX_PKT_BURST 32 80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 81 82 /* Configure how many packets ahead to prefetch, when reading packets */ 83 #define PREFETCH_OFFSET 3 84 85 /* 86 * Configurable number of RX/TX ring descriptors 87 */ 88 #define RTE_TEST_RX_DESC_DEFAULT 1024 89 #define RTE_TEST_TX_DESC_DEFAULT 1024 90 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 91 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 92 93 /* ethernet addresses of ports */ 94 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 95 96 #ifndef IPv4_BYTES 97 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 98 #define IPv4_BYTES(addr) \ 99 (uint8_t) (((addr) >> 24) & 0xFF),\ 100 (uint8_t) (((addr) >> 16) & 0xFF),\ 101 (uint8_t) (((addr) >> 8) & 0xFF),\ 102 (uint8_t) ((addr) & 0xFF) 103 #endif 104 105 #ifndef IPv6_BYTES 106 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 107 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 108 #define IPv6_BYTES(addr) \ 109 addr[0], addr[1], addr[2], addr[3], \ 110 addr[4], addr[5], addr[6], addr[7], \ 111 addr[8], addr[9], addr[10], addr[11],\ 112 addr[12], addr[13],addr[14], addr[15] 113 #endif 114 115 #define IPV6_ADDR_LEN 16 116 117 /* mask of enabled ports */ 118 static int enabled_port_mask = 0; 119 120 static int rx_queue_per_lcore = 1; 121 122 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 123 124 struct mbuf_table { 125 uint16_t len; 126 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 127 }; 128 129 struct rx_queue { 130 struct rte_mempool *direct_pool; 131 struct rte_mempool *indirect_pool; 132 struct rte_lpm *lpm; 133 struct rte_lpm6 *lpm6; 134 uint16_t portid; 135 }; 136 137 #define MAX_RX_QUEUE_PER_LCORE 16 138 #define MAX_TX_QUEUE_PER_PORT 16 139 struct lcore_queue_conf { 140 uint16_t n_rx_queue; 141 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 142 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 143 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 144 } __rte_cache_aligned; 145 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 146 147 static struct rte_eth_conf port_conf = { 148 .rxmode = { 149 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 150 .split_hdr_size = 0, 151 .offloads = (DEV_RX_OFFLOAD_CHECKSUM | 152 DEV_RX_OFFLOAD_SCATTER | 153 DEV_RX_OFFLOAD_JUMBO_FRAME), 154 }, 155 .txmode = { 156 .mq_mode = ETH_MQ_TX_NONE, 157 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | 158 DEV_TX_OFFLOAD_MULTI_SEGS), 159 }, 160 }; 161 162 /* 163 * IPv4 forwarding table 164 */ 165 struct l3fwd_ipv4_route { 166 uint32_t ip; 167 uint8_t depth; 168 uint8_t if_out; 169 }; 170 171 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 172 {RTE_IPV4(100,10,0,0), 16, 0}, 173 {RTE_IPV4(100,20,0,0), 16, 1}, 174 {RTE_IPV4(100,30,0,0), 16, 2}, 175 {RTE_IPV4(100,40,0,0), 16, 3}, 176 {RTE_IPV4(100,50,0,0), 16, 4}, 177 {RTE_IPV4(100,60,0,0), 16, 5}, 178 {RTE_IPV4(100,70,0,0), 16, 6}, 179 {RTE_IPV4(100,80,0,0), 16, 7}, 180 }; 181 182 /* 183 * IPv6 forwarding table 184 */ 185 186 struct l3fwd_ipv6_route { 187 uint8_t ip[IPV6_ADDR_LEN]; 188 uint8_t depth; 189 uint8_t if_out; 190 }; 191 192 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 193 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 194 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 195 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 196 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 197 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 198 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 199 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 200 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 201 }; 202 203 #define LPM_MAX_RULES 1024 204 #define LPM6_MAX_RULES 1024 205 #define LPM6_NUMBER_TBL8S (1 << 16) 206 207 struct rte_lpm6_config lpm6_config = { 208 .max_rules = LPM6_MAX_RULES, 209 .number_tbl8s = LPM6_NUMBER_TBL8S, 210 .flags = 0 211 }; 212 213 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 214 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 215 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 216 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 217 218 /* Send burst of packets on an output interface */ 219 static inline int 220 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) 221 { 222 struct rte_mbuf **m_table; 223 int ret; 224 uint16_t queueid; 225 226 queueid = qconf->tx_queue_id[port]; 227 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 228 229 ret = rte_eth_tx_burst(port, queueid, m_table, n); 230 if (unlikely(ret < n)) { 231 do { 232 rte_pktmbuf_free(m_table[ret]); 233 } while (++ret < n); 234 } 235 236 return 0; 237 } 238 239 static inline void 240 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 241 uint8_t queueid, uint16_t port_in) 242 { 243 struct rx_queue *rxq; 244 uint32_t i, len, next_hop; 245 uint16_t port_out, ether_type; 246 int32_t len2; 247 uint64_t ol_flags; 248 const struct rte_ether_hdr *eth; 249 250 ol_flags = 0; 251 rxq = &qconf->rx_queue_list[queueid]; 252 253 /* by default, send everything back to the source port */ 254 port_out = port_in; 255 256 /* save ether type of the incoming packet */ 257 eth = rte_pktmbuf_mtod(m, const struct rte_ether_hdr *); 258 ether_type = eth->ether_type; 259 260 /* Remove the Ethernet header and trailer from the input packet */ 261 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr)); 262 263 /* Build transmission burst */ 264 len = qconf->tx_mbufs[port_out].len; 265 266 /* if this is an IPv4 packet */ 267 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 268 struct rte_ipv4_hdr *ip_hdr; 269 uint32_t ip_dst; 270 /* Read the lookup key (i.e. ip_dst) from the input packet */ 271 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *); 272 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 273 274 /* Find destination port */ 275 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 276 (enabled_port_mask & 1 << next_hop) != 0) { 277 port_out = next_hop; 278 279 /* Build transmission burst for new port */ 280 len = qconf->tx_mbufs[port_out].len; 281 } 282 283 /* if we don't need to do any fragmentation */ 284 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 285 qconf->tx_mbufs[port_out].m_table[len] = m; 286 len2 = 1; 287 } else { 288 len2 = rte_ipv4_fragment_packet(m, 289 &qconf->tx_mbufs[port_out].m_table[len], 290 (uint16_t)(MBUF_TABLE_SIZE - len), 291 IPV4_MTU_DEFAULT, 292 rxq->direct_pool, rxq->indirect_pool); 293 294 /* Free input packet */ 295 rte_pktmbuf_free(m); 296 297 /* request HW to regenerate IPv4 cksum */ 298 ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM); 299 300 /* If we fail to fragment the packet */ 301 if (unlikely (len2 < 0)) 302 return; 303 } 304 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 305 /* if this is an IPv6 packet */ 306 struct rte_ipv6_hdr *ip_hdr; 307 308 /* Read the lookup key (i.e. ip_dst) from the input packet */ 309 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *); 310 311 /* Find destination port */ 312 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 313 &next_hop) == 0 && 314 (enabled_port_mask & 1 << next_hop) != 0) { 315 port_out = next_hop; 316 317 /* Build transmission burst for new port */ 318 len = qconf->tx_mbufs[port_out].len; 319 } 320 321 /* if we don't need to do any fragmentation */ 322 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 323 qconf->tx_mbufs[port_out].m_table[len] = m; 324 len2 = 1; 325 } else { 326 len2 = rte_ipv6_fragment_packet(m, 327 &qconf->tx_mbufs[port_out].m_table[len], 328 (uint16_t)(MBUF_TABLE_SIZE - len), 329 IPV6_MTU_DEFAULT, 330 rxq->direct_pool, rxq->indirect_pool); 331 332 /* Free input packet */ 333 rte_pktmbuf_free(m); 334 335 /* If we fail to fragment the packet */ 336 if (unlikely (len2 < 0)) 337 return; 338 } 339 } 340 /* else, just forward the packet */ 341 else { 342 qconf->tx_mbufs[port_out].m_table[len] = m; 343 len2 = 1; 344 } 345 346 for (i = len; i < len + len2; i ++) { 347 void *d_addr_bytes; 348 349 m = qconf->tx_mbufs[port_out].m_table[i]; 350 struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *) 351 rte_pktmbuf_prepend(m, 352 (uint16_t)sizeof(struct rte_ether_hdr)); 353 if (eth_hdr == NULL) { 354 rte_panic("No headroom in mbuf.\n"); 355 } 356 357 m->ol_flags |= ol_flags; 358 m->l2_len = sizeof(struct rte_ether_hdr); 359 360 /* 02:00:00:00:00:xx */ 361 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 362 *((uint64_t *)d_addr_bytes) = 0x000000000002 + 363 ((uint64_t)port_out << 40); 364 365 /* src addr */ 366 rte_ether_addr_copy(&ports_eth_addr[port_out], 367 ð_hdr->s_addr); 368 eth_hdr->ether_type = ether_type; 369 } 370 371 len += len2; 372 373 if (likely(len < MAX_PKT_BURST)) { 374 qconf->tx_mbufs[port_out].len = (uint16_t)len; 375 return; 376 } 377 378 /* Transmit packets */ 379 send_burst(qconf, (uint16_t)len, port_out); 380 qconf->tx_mbufs[port_out].len = 0; 381 } 382 383 /* main processing loop */ 384 static int 385 main_loop(__rte_unused void *dummy) 386 { 387 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 388 unsigned lcore_id; 389 uint64_t prev_tsc, diff_tsc, cur_tsc; 390 int i, j, nb_rx; 391 uint16_t portid; 392 struct lcore_queue_conf *qconf; 393 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 394 395 prev_tsc = 0; 396 397 lcore_id = rte_lcore_id(); 398 qconf = &lcore_queue_conf[lcore_id]; 399 400 if (qconf->n_rx_queue == 0) { 401 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 402 return 0; 403 } 404 405 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 406 407 for (i = 0; i < qconf->n_rx_queue; i++) { 408 409 portid = qconf->rx_queue_list[i].portid; 410 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 411 portid); 412 } 413 414 while (1) { 415 416 cur_tsc = rte_rdtsc(); 417 418 /* 419 * TX burst queue drain 420 */ 421 diff_tsc = cur_tsc - prev_tsc; 422 if (unlikely(diff_tsc > drain_tsc)) { 423 424 /* 425 * This could be optimized (use queueid instead of 426 * portid), but it is not called so often 427 */ 428 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 429 if (qconf->tx_mbufs[portid].len == 0) 430 continue; 431 send_burst(&lcore_queue_conf[lcore_id], 432 qconf->tx_mbufs[portid].len, 433 portid); 434 qconf->tx_mbufs[portid].len = 0; 435 } 436 437 prev_tsc = cur_tsc; 438 } 439 440 /* 441 * Read packet from RX queues 442 */ 443 for (i = 0; i < qconf->n_rx_queue; i++) { 444 445 portid = qconf->rx_queue_list[i].portid; 446 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 447 MAX_PKT_BURST); 448 449 /* Prefetch first packets */ 450 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 451 rte_prefetch0(rte_pktmbuf_mtod( 452 pkts_burst[j], void *)); 453 } 454 455 /* Prefetch and forward already prefetched packets */ 456 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 457 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 458 j + PREFETCH_OFFSET], void *)); 459 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 460 } 461 462 /* Forward remaining prefetched packets */ 463 for (; j < nb_rx; j++) { 464 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 465 } 466 } 467 } 468 } 469 470 /* display usage */ 471 static void 472 print_usage(const char *prgname) 473 { 474 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 475 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 476 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 477 prgname); 478 } 479 480 static int 481 parse_portmask(const char *portmask) 482 { 483 char *end = NULL; 484 unsigned long pm; 485 486 /* parse hexadecimal string */ 487 pm = strtoul(portmask, &end, 16); 488 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 489 return -1; 490 491 if (pm == 0) 492 return -1; 493 494 return pm; 495 } 496 497 static int 498 parse_nqueue(const char *q_arg) 499 { 500 char *end = NULL; 501 unsigned long n; 502 503 /* parse hexadecimal string */ 504 n = strtoul(q_arg, &end, 10); 505 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 506 return -1; 507 if (n == 0) 508 return -1; 509 if (n >= MAX_RX_QUEUE_PER_LCORE) 510 return -1; 511 512 return n; 513 } 514 515 /* Parse the argument given in the command line of the application */ 516 static int 517 parse_args(int argc, char **argv) 518 { 519 int opt, ret; 520 char **argvopt; 521 int option_index; 522 char *prgname = argv[0]; 523 static struct option lgopts[] = { 524 {NULL, 0, 0, 0} 525 }; 526 527 argvopt = argv; 528 529 while ((opt = getopt_long(argc, argvopt, "p:q:", 530 lgopts, &option_index)) != EOF) { 531 532 switch (opt) { 533 /* portmask */ 534 case 'p': 535 enabled_port_mask = parse_portmask(optarg); 536 if (enabled_port_mask < 0) { 537 printf("invalid portmask\n"); 538 print_usage(prgname); 539 return -1; 540 } 541 break; 542 543 /* nqueue */ 544 case 'q': 545 rx_queue_per_lcore = parse_nqueue(optarg); 546 if (rx_queue_per_lcore < 0) { 547 printf("invalid queue number\n"); 548 print_usage(prgname); 549 return -1; 550 } 551 break; 552 553 /* long options */ 554 case 0: 555 print_usage(prgname); 556 return -1; 557 558 default: 559 print_usage(prgname); 560 return -1; 561 } 562 } 563 564 if (enabled_port_mask == 0) { 565 printf("portmask not specified\n"); 566 print_usage(prgname); 567 return -1; 568 } 569 570 if (optind >= 0) 571 argv[optind-1] = prgname; 572 573 ret = optind-1; 574 optind = 1; /* reset getopt lib */ 575 return ret; 576 } 577 578 static void 579 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 580 { 581 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 582 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 583 printf("%s%s", name, buf); 584 } 585 586 /* Check the link status of all ports in up to 9s, and print them finally */ 587 static void 588 check_all_ports_link_status(uint32_t port_mask) 589 { 590 #define CHECK_INTERVAL 100 /* 100ms */ 591 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 592 uint16_t portid; 593 uint8_t count, all_ports_up, print_flag = 0; 594 struct rte_eth_link link; 595 int ret; 596 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN]; 597 598 printf("\nChecking link status"); 599 fflush(stdout); 600 for (count = 0; count <= MAX_CHECK_TIME; count++) { 601 all_ports_up = 1; 602 RTE_ETH_FOREACH_DEV(portid) { 603 if ((port_mask & (1 << portid)) == 0) 604 continue; 605 memset(&link, 0, sizeof(link)); 606 ret = rte_eth_link_get_nowait(portid, &link); 607 if (ret < 0) { 608 all_ports_up = 0; 609 if (print_flag == 1) 610 printf("Port %u link get failed: %s\n", 611 portid, rte_strerror(-ret)); 612 continue; 613 } 614 /* print link status if flag set */ 615 if (print_flag == 1) { 616 rte_eth_link_to_str(link_status_text, 617 sizeof(link_status_text), &link); 618 printf("Port %d %s\n", portid, 619 link_status_text); 620 continue; 621 } 622 /* clear all_ports_up flag if any link down */ 623 if (link.link_status == ETH_LINK_DOWN) { 624 all_ports_up = 0; 625 break; 626 } 627 } 628 /* after finally printing all link status, get out */ 629 if (print_flag == 1) 630 break; 631 632 if (all_ports_up == 0) { 633 printf("."); 634 fflush(stdout); 635 rte_delay_ms(CHECK_INTERVAL); 636 } 637 638 /* set the print_flag if all ports up or timeout */ 639 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 640 print_flag = 1; 641 printf("\ndone\n"); 642 } 643 } 644 } 645 646 /* Check L3 packet type detection capability of the NIC port */ 647 static int 648 check_ptype(int portid) 649 { 650 int i, ret; 651 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 652 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 653 654 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 655 if (ret <= 0) 656 return 0; 657 658 uint32_t ptypes[ret]; 659 660 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 661 for (i = 0; i < ret; ++i) { 662 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 663 ptype_l3_ipv4 = 1; 664 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 665 ptype_l3_ipv6 = 1; 666 } 667 668 if (ptype_l3_ipv4 == 0) 669 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 670 671 if (ptype_l3_ipv6 == 0) 672 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 673 674 if (ptype_l3_ipv4 && ptype_l3_ipv6) 675 return 1; 676 677 return 0; 678 679 } 680 681 /* Parse packet type of a packet by SW */ 682 static inline void 683 parse_ptype(struct rte_mbuf *m) 684 { 685 struct rte_ether_hdr *eth_hdr; 686 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 687 uint16_t ether_type; 688 689 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 690 ether_type = eth_hdr->ether_type; 691 if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) 692 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 693 else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) 694 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 695 696 m->packet_type = packet_type; 697 } 698 699 /* callback function to detect packet type for a queue of a port */ 700 static uint16_t 701 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, 702 struct rte_mbuf *pkts[], uint16_t nb_pkts, 703 uint16_t max_pkts __rte_unused, 704 void *user_param __rte_unused) 705 { 706 uint16_t i; 707 708 for (i = 0; i < nb_pkts; ++i) 709 parse_ptype(pkts[i]); 710 711 return nb_pkts; 712 } 713 714 static int 715 init_routing_table(void) 716 { 717 struct rte_lpm *lpm; 718 struct rte_lpm6 *lpm6; 719 int socket, ret; 720 unsigned i; 721 722 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 723 if (socket_lpm[socket]) { 724 lpm = socket_lpm[socket]; 725 /* populate the LPM table */ 726 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 727 ret = rte_lpm_add(lpm, 728 l3fwd_ipv4_route_array[i].ip, 729 l3fwd_ipv4_route_array[i].depth, 730 l3fwd_ipv4_route_array[i].if_out); 731 732 if (ret < 0) { 733 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 734 "LPM table\n", i); 735 return -1; 736 } 737 738 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 739 "/%d (port %d)\n", 740 socket, 741 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 742 l3fwd_ipv4_route_array[i].depth, 743 l3fwd_ipv4_route_array[i].if_out); 744 } 745 } 746 747 if (socket_lpm6[socket]) { 748 lpm6 = socket_lpm6[socket]; 749 /* populate the LPM6 table */ 750 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 751 ret = rte_lpm6_add(lpm6, 752 l3fwd_ipv6_route_array[i].ip, 753 l3fwd_ipv6_route_array[i].depth, 754 l3fwd_ipv6_route_array[i].if_out); 755 756 if (ret < 0) { 757 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 758 "LPM6 table\n", i); 759 return -1; 760 } 761 762 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 763 "/%d (port %d)\n", 764 socket, 765 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 766 l3fwd_ipv6_route_array[i].depth, 767 l3fwd_ipv6_route_array[i].if_out); 768 } 769 } 770 } 771 return 0; 772 } 773 774 static int 775 init_mem(void) 776 { 777 char buf[PATH_MAX]; 778 struct rte_mempool *mp; 779 struct rte_lpm *lpm; 780 struct rte_lpm6 *lpm6; 781 struct rte_lpm_config lpm_config; 782 int socket; 783 unsigned lcore_id; 784 785 /* traverse through lcores and initialize structures on each socket */ 786 787 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 788 789 if (rte_lcore_is_enabled(lcore_id) == 0) 790 continue; 791 792 socket = rte_lcore_to_socket_id(lcore_id); 793 794 if (socket == SOCKET_ID_ANY) 795 socket = 0; 796 797 if (socket_direct_pool[socket] == NULL) { 798 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 799 socket); 800 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 801 802 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 803 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 804 if (mp == NULL) { 805 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 806 return -1; 807 } 808 socket_direct_pool[socket] = mp; 809 } 810 811 if (socket_indirect_pool[socket] == NULL) { 812 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 813 socket); 814 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 815 816 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 817 socket); 818 if (mp == NULL) { 819 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 820 return -1; 821 } 822 socket_indirect_pool[socket] = mp; 823 } 824 825 if (socket_lpm[socket] == NULL) { 826 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 827 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 828 829 lpm_config.max_rules = LPM_MAX_RULES; 830 lpm_config.number_tbl8s = 256; 831 lpm_config.flags = 0; 832 833 lpm = rte_lpm_create(buf, socket, &lpm_config); 834 if (lpm == NULL) { 835 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 836 return -1; 837 } 838 socket_lpm[socket] = lpm; 839 } 840 841 if (socket_lpm6[socket] == NULL) { 842 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 843 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 844 845 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 846 if (lpm6 == NULL) { 847 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 848 return -1; 849 } 850 socket_lpm6[socket] = lpm6; 851 } 852 } 853 854 return 0; 855 } 856 857 int 858 main(int argc, char **argv) 859 { 860 struct lcore_queue_conf *qconf; 861 struct rte_eth_dev_info dev_info; 862 struct rte_eth_txconf *txconf; 863 struct rx_queue *rxq; 864 int socket, ret; 865 uint16_t nb_ports; 866 uint16_t queueid = 0; 867 unsigned lcore_id = 0, rx_lcore_id = 0; 868 uint32_t n_tx_queue, nb_lcores; 869 uint16_t portid; 870 871 /* init EAL */ 872 ret = rte_eal_init(argc, argv); 873 if (ret < 0) 874 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 875 argc -= ret; 876 argv += ret; 877 878 /* parse application arguments (after the EAL ones) */ 879 ret = parse_args(argc, argv); 880 if (ret < 0) 881 rte_exit(EXIT_FAILURE, "Invalid arguments"); 882 883 nb_ports = rte_eth_dev_count_avail(); 884 if (nb_ports == 0) 885 rte_exit(EXIT_FAILURE, "No ports found!\n"); 886 887 nb_lcores = rte_lcore_count(); 888 889 /* initialize structures (mempools, lpm etc.) */ 890 if (init_mem() < 0) 891 rte_panic("Cannot initialize memory structures!\n"); 892 893 /* check if portmask has non-existent ports */ 894 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 895 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 896 897 /* initialize all ports */ 898 RTE_ETH_FOREACH_DEV(portid) { 899 struct rte_eth_conf local_port_conf = port_conf; 900 struct rte_eth_rxconf rxq_conf; 901 902 /* skip ports that are not enabled */ 903 if ((enabled_port_mask & (1 << portid)) == 0) { 904 printf("Skipping disabled port %d\n", portid); 905 continue; 906 } 907 908 qconf = &lcore_queue_conf[rx_lcore_id]; 909 910 /* limit the frame size to the maximum supported by NIC */ 911 ret = rte_eth_dev_info_get(portid, &dev_info); 912 if (ret != 0) 913 rte_exit(EXIT_FAILURE, 914 "Error during getting device (port %u) info: %s\n", 915 portid, strerror(-ret)); 916 917 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 918 dev_info.max_rx_pktlen, 919 local_port_conf.rxmode.max_rx_pkt_len); 920 921 /* get the lcore_id for this port */ 922 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 923 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 924 925 rx_lcore_id ++; 926 if (rx_lcore_id >= RTE_MAX_LCORE) 927 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 928 929 qconf = &lcore_queue_conf[rx_lcore_id]; 930 } 931 932 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 933 if (socket == SOCKET_ID_ANY) 934 socket = 0; 935 936 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 937 rxq->portid = portid; 938 rxq->direct_pool = socket_direct_pool[socket]; 939 rxq->indirect_pool = socket_indirect_pool[socket]; 940 rxq->lpm = socket_lpm[socket]; 941 rxq->lpm6 = socket_lpm6[socket]; 942 qconf->n_rx_queue++; 943 944 /* init port */ 945 printf("Initializing port %d on lcore %u...", portid, 946 rx_lcore_id); 947 fflush(stdout); 948 949 n_tx_queue = nb_lcores; 950 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 951 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 952 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 953 &local_port_conf); 954 if (ret < 0) { 955 printf("\n"); 956 rte_exit(EXIT_FAILURE, "Cannot configure device: " 957 "err=%d, port=%d\n", 958 ret, portid); 959 } 960 961 /* set the mtu to the maximum received packet size */ 962 ret = rte_eth_dev_set_mtu(portid, 963 local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD); 964 if (ret < 0) { 965 printf("\n"); 966 rte_exit(EXIT_FAILURE, "Set MTU failed: " 967 "err=%d, port=%d\n", 968 ret, portid); 969 } 970 971 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 972 &nb_txd); 973 if (ret < 0) { 974 printf("\n"); 975 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 976 "descriptors: err=%d, port=%d\n", ret, portid); 977 } 978 979 /* init one RX queue */ 980 rxq_conf = dev_info.default_rxconf; 981 rxq_conf.offloads = local_port_conf.rxmode.offloads; 982 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 983 socket, &rxq_conf, 984 socket_direct_pool[socket]); 985 if (ret < 0) { 986 printf("\n"); 987 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 988 "err=%d, port=%d\n", 989 ret, portid); 990 } 991 992 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 993 if (ret < 0) { 994 printf("\n"); 995 rte_exit(EXIT_FAILURE, 996 "rte_eth_macaddr_get: err=%d, port=%d\n", 997 ret, portid); 998 } 999 1000 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1001 printf("\n"); 1002 1003 /* init one TX queue per couple (lcore,port) */ 1004 ret = rte_eth_dev_info_get(portid, &dev_info); 1005 if (ret != 0) 1006 rte_exit(EXIT_FAILURE, 1007 "Error during getting device (port %u) info: %s\n", 1008 portid, strerror(-ret)); 1009 1010 queueid = 0; 1011 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1012 if (rte_lcore_is_enabled(lcore_id) == 0) 1013 continue; 1014 1015 if (queueid >= dev_info.nb_tx_queues) 1016 break; 1017 1018 socket = (int) rte_lcore_to_socket_id(lcore_id); 1019 printf("txq=%u,%d ", lcore_id, queueid); 1020 fflush(stdout); 1021 1022 txconf = &dev_info.default_txconf; 1023 txconf->offloads = local_port_conf.txmode.offloads; 1024 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1025 socket, txconf); 1026 if (ret < 0) { 1027 printf("\n"); 1028 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 1029 "err=%d, port=%d\n", ret, portid); 1030 } 1031 1032 qconf = &lcore_queue_conf[lcore_id]; 1033 qconf->tx_queue_id[portid] = queueid; 1034 queueid++; 1035 } 1036 1037 printf("\n"); 1038 } 1039 1040 printf("\n"); 1041 1042 /* start ports */ 1043 RTE_ETH_FOREACH_DEV(portid) { 1044 if ((enabled_port_mask & (1 << portid)) == 0) { 1045 continue; 1046 } 1047 /* Start device */ 1048 ret = rte_eth_dev_start(portid); 1049 if (ret < 0) 1050 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1051 ret, portid); 1052 1053 ret = rte_eth_promiscuous_enable(portid); 1054 if (ret != 0) 1055 rte_exit(EXIT_FAILURE, 1056 "rte_eth_promiscuous_enable: err=%s, port=%d\n", 1057 rte_strerror(-ret), portid); 1058 1059 if (check_ptype(portid) == 0) { 1060 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1061 printf("Add Rx callback function to detect L3 packet type by SW :" 1062 " port = %d\n", portid); 1063 } 1064 } 1065 1066 if (init_routing_table() < 0) 1067 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1068 1069 check_all_ports_link_status(enabled_port_mask); 1070 1071 /* launch per-lcore init on every lcore */ 1072 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1073 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1074 if (rte_eal_wait_lcore(lcore_id) < 0) 1075 return -1; 1076 } 1077 1078 return 0; 1079 } 1080