1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <sys/param.h> 11 #include <string.h> 12 #include <sys/queue.h> 13 #include <stdarg.h> 14 #include <errno.h> 15 #include <getopt.h> 16 17 #include <rte_common.h> 18 #include <rte_byteorder.h> 19 #include <rte_log.h> 20 #include <rte_memory.h> 21 #include <rte_memcpy.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_cycles.h> 25 #include <rte_prefetch.h> 26 #include <rte_lcore.h> 27 #include <rte_per_lcore.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_interrupts.h> 30 #include <rte_random.h> 31 #include <rte_debug.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_mempool.h> 35 #include <rte_mbuf.h> 36 #include <rte_lpm.h> 37 #include <rte_lpm6.h> 38 #include <rte_ip.h> 39 #include <rte_string_fns.h> 40 41 #include <rte_ip_frag.h> 42 43 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 44 45 /* allow max jumbo frame 9.5 KB */ 46 #define JUMBO_FRAME_MAX_SIZE 0x2600 47 48 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 49 50 /* 51 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 52 * This value includes the size of IPv6 header. 53 */ 54 #define IPV4_MTU_DEFAULT RTE_ETHER_MTU 55 #define IPV6_MTU_DEFAULT RTE_ETHER_MTU 56 57 /* 58 * The overhead from max frame size to MTU. 59 * We have to consider the max possible overhead. 60 */ 61 #define MTU_OVERHEAD \ 62 (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \ 63 2 * sizeof(struct rte_vlan_hdr)) 64 65 /* 66 * Default payload in bytes for the IPv6 packet. 67 */ 68 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr)) 69 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr)) 70 71 /* 72 * Max number of fragments per packet expected - defined by config file. 73 */ 74 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 75 76 #define NB_MBUF 8192 77 78 #define MAX_PKT_BURST 32 79 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 80 81 /* Configure how many packets ahead to prefetch, when reading packets */ 82 #define PREFETCH_OFFSET 3 83 84 /* 85 * Configurable number of RX/TX ring descriptors 86 */ 87 #define RX_DESC_DEFAULT 1024 88 #define TX_DESC_DEFAULT 1024 89 static uint16_t nb_rxd = RX_DESC_DEFAULT; 90 static uint16_t nb_txd = TX_DESC_DEFAULT; 91 92 /* ethernet addresses of ports */ 93 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 94 95 #ifndef IPv4_BYTES 96 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 97 #define IPv4_BYTES(addr) \ 98 (uint8_t) (((addr) >> 24) & 0xFF),\ 99 (uint8_t) (((addr) >> 16) & 0xFF),\ 100 (uint8_t) (((addr) >> 8) & 0xFF),\ 101 (uint8_t) ((addr) & 0xFF) 102 #endif 103 104 #ifndef IPv6_BYTES 105 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 106 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 107 #define IPv6_BYTES(addr) \ 108 addr[0], addr[1], addr[2], addr[3], \ 109 addr[4], addr[5], addr[6], addr[7], \ 110 addr[8], addr[9], addr[10], addr[11],\ 111 addr[12], addr[13],addr[14], addr[15] 112 #endif 113 114 #define IPV6_ADDR_LEN 16 115 116 /* mask of enabled ports */ 117 static int enabled_port_mask = 0; 118 119 static int rx_queue_per_lcore = 1; 120 121 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 122 123 struct mbuf_table { 124 uint16_t len; 125 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 126 }; 127 128 struct rx_queue { 129 struct rte_mempool *direct_pool; 130 struct rte_mempool *indirect_pool; 131 struct rte_lpm *lpm; 132 struct rte_lpm6 *lpm6; 133 uint16_t portid; 134 }; 135 136 #define MAX_RX_QUEUE_PER_LCORE 16 137 #define MAX_TX_QUEUE_PER_PORT 16 138 struct __rte_cache_aligned lcore_queue_conf { 139 uint16_t n_rx_queue; 140 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 141 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 142 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 143 }; 144 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 145 146 static struct rte_eth_conf port_conf = { 147 .rxmode = { 148 .mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN - 149 RTE_ETHER_CRC_LEN, 150 .offloads = (RTE_ETH_RX_OFFLOAD_CHECKSUM | 151 RTE_ETH_RX_OFFLOAD_SCATTER), 152 }, 153 .txmode = { 154 .mq_mode = RTE_ETH_MQ_TX_NONE, 155 .offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 156 RTE_ETH_TX_OFFLOAD_MULTI_SEGS), 157 }, 158 }; 159 160 /* 161 * IPv4 forwarding table 162 */ 163 struct l3fwd_ipv4_route { 164 uint32_t ip; 165 uint8_t depth; 166 uint8_t if_out; 167 }; 168 169 /* Default l3fwd_ipv4_route_array table. 8< */ 170 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 171 {RTE_IPV4(100,10,0,0), 16, 0}, 172 {RTE_IPV4(100,20,0,0), 16, 1}, 173 {RTE_IPV4(100,30,0,0), 16, 2}, 174 {RTE_IPV4(100,40,0,0), 16, 3}, 175 {RTE_IPV4(100,50,0,0), 16, 4}, 176 {RTE_IPV4(100,60,0,0), 16, 5}, 177 {RTE_IPV4(100,70,0,0), 16, 6}, 178 {RTE_IPV4(100,80,0,0), 16, 7}, 179 }; 180 /* >8 End of default l3fwd_ipv4_route_array table */ 181 182 /* 183 * IPv6 forwarding table 184 */ 185 186 struct l3fwd_ipv6_route { 187 struct rte_ipv6_addr ip; 188 uint8_t depth; 189 uint8_t if_out; 190 }; 191 192 /* Default l3fwd_ipv6_route_array table. 8< */ 193 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 194 {RTE_IPV6(0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 0}, 195 {RTE_IPV6(0x0201, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 1}, 196 {RTE_IPV6(0x0301, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 2}, 197 {RTE_IPV6(0x0401, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 3}, 198 {RTE_IPV6(0x0501, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 4}, 199 {RTE_IPV6(0x0601, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 5}, 200 {RTE_IPV6(0x0701, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101, 0x0101), 48, 6} 201 }; 202 /* >8 End of default l3fwd_ipv6_route_array table. */ 203 204 #define LPM_MAX_RULES 1024 205 #define LPM6_MAX_RULES 1024 206 #define LPM6_NUMBER_TBL8S (1 << 16) 207 208 struct rte_lpm6_config lpm6_config = { 209 .max_rules = LPM6_MAX_RULES, 210 .number_tbl8s = LPM6_NUMBER_TBL8S, 211 .flags = 0 212 }; 213 214 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 215 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 216 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 217 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 218 219 /* Send burst of packets on an output interface */ 220 static inline int 221 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) 222 { 223 struct rte_mbuf **m_table; 224 int ret; 225 uint16_t queueid; 226 227 queueid = qconf->tx_queue_id[port]; 228 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 229 230 ret = rte_eth_tx_burst(port, queueid, m_table, n); 231 if (unlikely(ret < n)) { 232 do { 233 rte_pktmbuf_free(m_table[ret]); 234 } while (++ret < n); 235 } 236 237 return 0; 238 } 239 240 static inline void 241 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 242 uint8_t queueid, uint16_t port_in) 243 { 244 struct rx_queue *rxq; 245 uint32_t i, len, next_hop; 246 uint16_t port_out, ether_type; 247 int32_t len2; 248 uint64_t ol_flags; 249 const struct rte_ether_hdr *eth; 250 251 ol_flags = 0; 252 rxq = &qconf->rx_queue_list[queueid]; 253 254 /* by default, send everything back to the source port */ 255 port_out = port_in; 256 257 /* save ether type of the incoming packet */ 258 eth = rte_pktmbuf_mtod(m, const struct rte_ether_hdr *); 259 ether_type = eth->ether_type; 260 261 /* Remove the Ethernet header and trailer from the input packet */ 262 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr)); 263 264 /* Build transmission burst */ 265 len = qconf->tx_mbufs[port_out].len; 266 267 /* if this is an IPv4 packet */ 268 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 269 struct rte_ipv4_hdr *ip_hdr; 270 uint32_t ip_dst; 271 /* Read the lookup key (i.e. ip_dst) from the input packet */ 272 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *); 273 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 274 275 /* Find destination port */ 276 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 277 (enabled_port_mask & 1 << next_hop) != 0) { 278 port_out = next_hop; 279 280 /* Build transmission burst for new port */ 281 len = qconf->tx_mbufs[port_out].len; 282 } 283 284 /* if we don't need to do any fragmentation */ 285 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 286 qconf->tx_mbufs[port_out].m_table[len] = m; 287 len2 = 1; 288 } else { 289 len2 = rte_ipv4_fragment_packet(m, 290 &qconf->tx_mbufs[port_out].m_table[len], 291 (uint16_t)(MBUF_TABLE_SIZE - len), 292 IPV4_MTU_DEFAULT, 293 rxq->direct_pool, rxq->indirect_pool); 294 295 /* Free input packet */ 296 rte_pktmbuf_free(m); 297 298 /* request HW to regenerate IPv4 cksum */ 299 ol_flags |= (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM); 300 301 /* If we fail to fragment the packet */ 302 if (unlikely (len2 < 0)) 303 return; 304 } 305 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 306 /* if this is an IPv6 packet */ 307 struct rte_ipv6_hdr *ip_hdr; 308 309 /* Read the lookup key (i.e. ip_dst) from the input packet */ 310 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *); 311 312 /* Find destination port */ 313 if (rte_lpm6_lookup(rxq->lpm6, &ip_hdr->dst_addr, 314 &next_hop) == 0 && 315 (enabled_port_mask & 1 << next_hop) != 0) { 316 port_out = next_hop; 317 318 /* Build transmission burst for new port */ 319 len = qconf->tx_mbufs[port_out].len; 320 } 321 322 /* if we don't need to do any fragmentation */ 323 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 324 qconf->tx_mbufs[port_out].m_table[len] = m; 325 len2 = 1; 326 } else { 327 len2 = rte_ipv6_fragment_packet(m, 328 &qconf->tx_mbufs[port_out].m_table[len], 329 (uint16_t)(MBUF_TABLE_SIZE - len), 330 IPV6_MTU_DEFAULT, 331 rxq->direct_pool, rxq->indirect_pool); 332 333 /* Free input packet */ 334 rte_pktmbuf_free(m); 335 336 /* If we fail to fragment the packet */ 337 if (unlikely (len2 < 0)) 338 return; 339 } 340 } 341 /* else, just forward the packet */ 342 else { 343 qconf->tx_mbufs[port_out].m_table[len] = m; 344 len2 = 1; 345 } 346 347 for (i = len; i < len + len2; i ++) { 348 void *d_addr_bytes; 349 350 m = qconf->tx_mbufs[port_out].m_table[i]; 351 struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *) 352 rte_pktmbuf_prepend(m, 353 (uint16_t)sizeof(struct rte_ether_hdr)); 354 if (eth_hdr == NULL) { 355 rte_panic("No headroom in mbuf.\n"); 356 } 357 358 m->ol_flags |= ol_flags; 359 m->l2_len = sizeof(struct rte_ether_hdr); 360 361 /* 02:00:00:00:00:xx */ 362 d_addr_bytes = ð_hdr->dst_addr.addr_bytes[0]; 363 *((uint64_t *)d_addr_bytes) = 0x000000000002 + 364 ((uint64_t)port_out << 40); 365 366 /* src addr */ 367 rte_ether_addr_copy(&ports_eth_addr[port_out], 368 ð_hdr->src_addr); 369 eth_hdr->ether_type = ether_type; 370 } 371 372 len += len2; 373 374 if (likely(len < MAX_PKT_BURST)) { 375 qconf->tx_mbufs[port_out].len = (uint16_t)len; 376 return; 377 } 378 379 /* Transmit packets */ 380 send_burst(qconf, (uint16_t)len, port_out); 381 qconf->tx_mbufs[port_out].len = 0; 382 } 383 384 /* main processing loop */ 385 static int 386 main_loop(__rte_unused void *dummy) 387 { 388 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 389 unsigned lcore_id; 390 uint64_t prev_tsc, diff_tsc, cur_tsc; 391 int i, j, nb_rx; 392 uint16_t portid; 393 struct lcore_queue_conf *qconf; 394 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 395 396 prev_tsc = 0; 397 398 lcore_id = rte_lcore_id(); 399 qconf = &lcore_queue_conf[lcore_id]; 400 401 if (qconf->n_rx_queue == 0) { 402 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 403 return 0; 404 } 405 406 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 407 408 for (i = 0; i < qconf->n_rx_queue; i++) { 409 410 portid = qconf->rx_queue_list[i].portid; 411 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 412 portid); 413 } 414 415 while (1) { 416 417 cur_tsc = rte_rdtsc(); 418 419 /* 420 * TX burst queue drain 421 */ 422 diff_tsc = cur_tsc - prev_tsc; 423 if (unlikely(diff_tsc > drain_tsc)) { 424 425 /* 426 * This could be optimized (use queueid instead of 427 * portid), but it is not called so often 428 */ 429 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 430 if (qconf->tx_mbufs[portid].len == 0) 431 continue; 432 send_burst(&lcore_queue_conf[lcore_id], 433 qconf->tx_mbufs[portid].len, 434 portid); 435 qconf->tx_mbufs[portid].len = 0; 436 } 437 438 prev_tsc = cur_tsc; 439 } 440 441 /* 442 * Read packet from RX queues 443 */ 444 for (i = 0; i < qconf->n_rx_queue; i++) { 445 446 portid = qconf->rx_queue_list[i].portid; 447 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 448 MAX_PKT_BURST); 449 450 /* Prefetch first packets */ 451 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 452 rte_prefetch0(rte_pktmbuf_mtod( 453 pkts_burst[j], void *)); 454 } 455 456 /* Prefetch and forward already prefetched packets */ 457 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 458 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 459 j + PREFETCH_OFFSET], void *)); 460 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 461 } 462 463 /* Forward remaining prefetched packets */ 464 for (; j < nb_rx; j++) { 465 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 466 } 467 } 468 } 469 } 470 471 /* display usage */ 472 static void 473 print_usage(const char *prgname) 474 { 475 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 476 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 477 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 478 prgname); 479 } 480 481 static int 482 parse_portmask(const char *portmask) 483 { 484 char *end = NULL; 485 unsigned long pm; 486 487 /* parse hexadecimal string */ 488 pm = strtoul(portmask, &end, 16); 489 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 490 return -1; 491 492 if (pm == 0) 493 return -1; 494 495 return pm; 496 } 497 498 static int 499 parse_nqueue(const char *q_arg) 500 { 501 char *end = NULL; 502 unsigned long n; 503 504 /* parse hexadecimal string */ 505 n = strtoul(q_arg, &end, 10); 506 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 507 return -1; 508 if (n == 0) 509 return -1; 510 if (n >= MAX_RX_QUEUE_PER_LCORE) 511 return -1; 512 513 return n; 514 } 515 516 /* Parse the argument given in the command line of the application */ 517 static int 518 parse_args(int argc, char **argv) 519 { 520 int opt, ret; 521 char **argvopt; 522 int option_index; 523 char *prgname = argv[0]; 524 static struct option lgopts[] = { 525 {NULL, 0, 0, 0} 526 }; 527 528 argvopt = argv; 529 530 while ((opt = getopt_long(argc, argvopt, "p:q:", 531 lgopts, &option_index)) != EOF) { 532 533 switch (opt) { 534 /* portmask */ 535 case 'p': 536 enabled_port_mask = parse_portmask(optarg); 537 if (enabled_port_mask < 0) { 538 printf("invalid portmask\n"); 539 print_usage(prgname); 540 return -1; 541 } 542 break; 543 544 /* nqueue */ 545 case 'q': 546 rx_queue_per_lcore = parse_nqueue(optarg); 547 if (rx_queue_per_lcore < 0) { 548 printf("invalid queue number\n"); 549 print_usage(prgname); 550 return -1; 551 } 552 break; 553 554 /* long options */ 555 case 0: 556 print_usage(prgname); 557 return -1; 558 559 default: 560 print_usage(prgname); 561 return -1; 562 } 563 } 564 565 if (enabled_port_mask == 0) { 566 printf("portmask not specified\n"); 567 print_usage(prgname); 568 return -1; 569 } 570 571 if (optind >= 0) 572 argv[optind-1] = prgname; 573 574 ret = optind-1; 575 optind = 1; /* reset getopt lib */ 576 return ret; 577 } 578 579 static void 580 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 581 { 582 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 583 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 584 printf("%s%s", name, buf); 585 } 586 587 /* Check the link status of all ports in up to 9s, and print them finally */ 588 static void 589 check_all_ports_link_status(uint32_t port_mask) 590 { 591 #define CHECK_INTERVAL 100 /* 100ms */ 592 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 593 uint16_t portid; 594 uint8_t count, all_ports_up, print_flag = 0; 595 struct rte_eth_link link; 596 int ret; 597 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN]; 598 599 printf("\nChecking link status"); 600 fflush(stdout); 601 for (count = 0; count <= MAX_CHECK_TIME; count++) { 602 all_ports_up = 1; 603 RTE_ETH_FOREACH_DEV(portid) { 604 if ((port_mask & (1 << portid)) == 0) 605 continue; 606 memset(&link, 0, sizeof(link)); 607 ret = rte_eth_link_get_nowait(portid, &link); 608 if (ret < 0) { 609 all_ports_up = 0; 610 if (print_flag == 1) 611 printf("Port %u link get failed: %s\n", 612 portid, rte_strerror(-ret)); 613 continue; 614 } 615 /* print link status if flag set */ 616 if (print_flag == 1) { 617 rte_eth_link_to_str(link_status_text, 618 sizeof(link_status_text), &link); 619 printf("Port %d %s\n", portid, 620 link_status_text); 621 continue; 622 } 623 /* clear all_ports_up flag if any link down */ 624 if (link.link_status == RTE_ETH_LINK_DOWN) { 625 all_ports_up = 0; 626 break; 627 } 628 } 629 /* after finally printing all link status, get out */ 630 if (print_flag == 1) 631 break; 632 633 if (all_ports_up == 0) { 634 printf("."); 635 fflush(stdout); 636 rte_delay_ms(CHECK_INTERVAL); 637 } 638 639 /* set the print_flag if all ports up or timeout */ 640 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 641 print_flag = 1; 642 printf("\ndone\n"); 643 } 644 } 645 } 646 647 /* Check L3 packet type detection capability of the NIC port */ 648 static int 649 check_ptype(int portid) 650 { 651 int i, ret; 652 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 653 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 654 655 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 656 if (ret <= 0) 657 return 0; 658 659 uint32_t ptypes[ret]; 660 661 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 662 for (i = 0; i < ret; ++i) { 663 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 664 ptype_l3_ipv4 = 1; 665 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 666 ptype_l3_ipv6 = 1; 667 } 668 669 if (ptype_l3_ipv4 == 0) 670 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 671 672 if (ptype_l3_ipv6 == 0) 673 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 674 675 if (ptype_l3_ipv4 && ptype_l3_ipv6) 676 return 1; 677 678 return 0; 679 680 } 681 682 /* Parse packet type of a packet by SW */ 683 static inline void 684 parse_ptype(struct rte_mbuf *m) 685 { 686 struct rte_ether_hdr *eth_hdr; 687 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 688 uint16_t ether_type; 689 690 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 691 ether_type = eth_hdr->ether_type; 692 if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) 693 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 694 else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) 695 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 696 697 m->packet_type = packet_type; 698 } 699 700 /* callback function to detect packet type for a queue of a port */ 701 static uint16_t 702 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, 703 struct rte_mbuf *pkts[], uint16_t nb_pkts, 704 uint16_t max_pkts __rte_unused, 705 void *user_param __rte_unused) 706 { 707 uint16_t i; 708 709 for (i = 0; i < nb_pkts; ++i) 710 parse_ptype(pkts[i]); 711 712 return nb_pkts; 713 } 714 715 static int 716 init_routing_table(void) 717 { 718 struct rte_lpm *lpm; 719 struct rte_lpm6 *lpm6; 720 int socket, ret; 721 unsigned i; 722 723 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 724 if (socket_lpm[socket]) { 725 lpm = socket_lpm[socket]; 726 /* populate the LPM table */ 727 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 728 ret = rte_lpm_add(lpm, 729 l3fwd_ipv4_route_array[i].ip, 730 l3fwd_ipv4_route_array[i].depth, 731 l3fwd_ipv4_route_array[i].if_out); 732 733 if (ret < 0) { 734 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 735 "LPM table\n", i); 736 return -1; 737 } 738 739 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 740 "/%d (port %d)\n", 741 socket, 742 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 743 l3fwd_ipv4_route_array[i].depth, 744 l3fwd_ipv4_route_array[i].if_out); 745 } 746 } 747 748 if (socket_lpm6[socket]) { 749 lpm6 = socket_lpm6[socket]; 750 /* populate the LPM6 table */ 751 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 752 ret = rte_lpm6_add(lpm6, 753 &l3fwd_ipv6_route_array[i].ip, 754 l3fwd_ipv6_route_array[i].depth, 755 l3fwd_ipv6_route_array[i].if_out); 756 757 if (ret < 0) { 758 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 759 "LPM6 table\n", i); 760 return -1; 761 } 762 763 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 764 "/%d (port %d)\n", 765 socket, 766 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip.a), 767 l3fwd_ipv6_route_array[i].depth, 768 l3fwd_ipv6_route_array[i].if_out); 769 } 770 } 771 } 772 return 0; 773 } 774 775 static int 776 init_mem(void) 777 { 778 char buf[PATH_MAX]; 779 struct rte_mempool *mp; 780 struct rte_lpm *lpm; 781 struct rte_lpm6 *lpm6; 782 struct rte_lpm_config lpm_config; 783 int socket; 784 unsigned lcore_id; 785 786 /* traverse through lcores and initialize structures on each socket */ 787 788 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 789 790 if (rte_lcore_is_enabled(lcore_id) == 0) 791 continue; 792 793 socket = rte_lcore_to_socket_id(lcore_id); 794 795 if (socket == SOCKET_ID_ANY) 796 socket = 0; 797 798 if (socket_direct_pool[socket] == NULL) { 799 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 800 socket); 801 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 802 803 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 804 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 805 if (mp == NULL) { 806 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 807 return -1; 808 } 809 socket_direct_pool[socket] = mp; 810 } 811 812 if (socket_indirect_pool[socket] == NULL) { 813 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 814 socket); 815 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 816 817 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 818 socket); 819 if (mp == NULL) { 820 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 821 return -1; 822 } 823 socket_indirect_pool[socket] = mp; 824 } 825 826 if (socket_lpm[socket] == NULL) { 827 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 828 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 829 830 lpm_config.max_rules = LPM_MAX_RULES; 831 lpm_config.number_tbl8s = 256; 832 lpm_config.flags = 0; 833 834 lpm = rte_lpm_create(buf, socket, &lpm_config); 835 if (lpm == NULL) { 836 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 837 return -1; 838 } 839 socket_lpm[socket] = lpm; 840 } 841 842 if (socket_lpm6[socket] == NULL) { 843 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 844 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 845 846 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 847 if (lpm6 == NULL) { 848 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 849 return -1; 850 } 851 socket_lpm6[socket] = lpm6; 852 } 853 } 854 855 return 0; 856 } 857 858 int 859 main(int argc, char **argv) 860 { 861 struct lcore_queue_conf *qconf; 862 struct rte_eth_dev_info dev_info; 863 struct rte_eth_txconf *txconf; 864 struct rx_queue *rxq; 865 int socket, ret; 866 uint16_t nb_ports; 867 uint16_t queueid = 0; 868 unsigned lcore_id = 0, rx_lcore_id = 0; 869 uint32_t n_tx_queue, nb_lcores; 870 uint16_t portid; 871 872 /* init EAL */ 873 ret = rte_eal_init(argc, argv); 874 if (ret < 0) 875 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 876 argc -= ret; 877 argv += ret; 878 879 /* parse application arguments (after the EAL ones) */ 880 ret = parse_args(argc, argv); 881 if (ret < 0) 882 rte_exit(EXIT_FAILURE, "Invalid arguments"); 883 884 nb_ports = rte_eth_dev_count_avail(); 885 if (nb_ports == 0) 886 rte_exit(EXIT_FAILURE, "No ports found!\n"); 887 888 nb_lcores = rte_lcore_count(); 889 890 /* initialize structures (mempools, lpm etc.) */ 891 if (init_mem() < 0) 892 rte_panic("Cannot initialize memory structures!\n"); 893 894 /* check if portmask has non-existent ports */ 895 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 896 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 897 898 /* initialize all ports */ 899 RTE_ETH_FOREACH_DEV(portid) { 900 struct rte_eth_conf local_port_conf = port_conf; 901 struct rte_eth_rxconf rxq_conf; 902 903 /* skip ports that are not enabled */ 904 if ((enabled_port_mask & (1 << portid)) == 0) { 905 printf("Skipping disabled port %d\n", portid); 906 continue; 907 } 908 909 qconf = &lcore_queue_conf[rx_lcore_id]; 910 911 /* limit the frame size to the maximum supported by NIC */ 912 ret = rte_eth_dev_info_get(portid, &dev_info); 913 if (ret != 0) 914 rte_exit(EXIT_FAILURE, 915 "Error during getting device (port %u) info: %s\n", 916 portid, strerror(-ret)); 917 918 local_port_conf.rxmode.mtu = RTE_MIN( 919 dev_info.max_mtu, 920 local_port_conf.rxmode.mtu); 921 922 /* get the lcore_id for this port */ 923 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 924 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 925 926 rx_lcore_id ++; 927 if (rx_lcore_id >= RTE_MAX_LCORE) 928 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 929 930 qconf = &lcore_queue_conf[rx_lcore_id]; 931 } 932 933 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 934 if (socket == SOCKET_ID_ANY) 935 socket = 0; 936 937 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 938 rxq->portid = portid; 939 rxq->direct_pool = socket_direct_pool[socket]; 940 rxq->indirect_pool = socket_indirect_pool[socket]; 941 rxq->lpm = socket_lpm[socket]; 942 rxq->lpm6 = socket_lpm6[socket]; 943 qconf->n_rx_queue++; 944 945 /* init port */ 946 printf("Initializing port %d on lcore %u...", portid, 947 rx_lcore_id); 948 fflush(stdout); 949 950 n_tx_queue = nb_lcores; 951 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 952 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 953 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 954 &local_port_conf); 955 if (ret < 0) { 956 printf("\n"); 957 rte_exit(EXIT_FAILURE, "Cannot configure device: " 958 "err=%d, port=%d\n", 959 ret, portid); 960 } 961 962 /* set the mtu to the maximum received packet size */ 963 ret = rte_eth_dev_set_mtu(portid, local_port_conf.rxmode.mtu); 964 if (ret < 0) { 965 printf("\n"); 966 rte_exit(EXIT_FAILURE, "Set MTU failed: " 967 "err=%d, port=%d\n", 968 ret, portid); 969 } 970 971 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 972 &nb_txd); 973 if (ret < 0) { 974 printf("\n"); 975 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 976 "descriptors: err=%d, port=%d\n", ret, portid); 977 } 978 979 /* init one RX queue */ 980 rxq_conf = dev_info.default_rxconf; 981 rxq_conf.offloads = local_port_conf.rxmode.offloads; 982 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 983 socket, &rxq_conf, 984 socket_direct_pool[socket]); 985 if (ret < 0) { 986 printf("\n"); 987 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 988 "err=%d, port=%d\n", 989 ret, portid); 990 } 991 992 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 993 if (ret < 0) { 994 printf("\n"); 995 rte_exit(EXIT_FAILURE, 996 "rte_eth_macaddr_get: err=%d, port=%d\n", 997 ret, portid); 998 } 999 1000 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1001 printf("\n"); 1002 1003 /* init one TX queue per couple (lcore,port) */ 1004 ret = rte_eth_dev_info_get(portid, &dev_info); 1005 if (ret != 0) 1006 rte_exit(EXIT_FAILURE, 1007 "Error during getting device (port %u) info: %s\n", 1008 portid, strerror(-ret)); 1009 1010 queueid = 0; 1011 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1012 if (rte_lcore_is_enabled(lcore_id) == 0) 1013 continue; 1014 1015 if (queueid >= dev_info.nb_tx_queues) 1016 break; 1017 1018 socket = (int) rte_lcore_to_socket_id(lcore_id); 1019 printf("txq=%u,%d ", lcore_id, queueid); 1020 fflush(stdout); 1021 1022 txconf = &dev_info.default_txconf; 1023 txconf->offloads = local_port_conf.txmode.offloads; 1024 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1025 socket, txconf); 1026 if (ret < 0) { 1027 printf("\n"); 1028 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 1029 "err=%d, port=%d\n", ret, portid); 1030 } 1031 1032 qconf = &lcore_queue_conf[lcore_id]; 1033 qconf->tx_queue_id[portid] = queueid; 1034 queueid++; 1035 } 1036 1037 printf("\n"); 1038 } 1039 1040 printf("\n"); 1041 1042 /* start ports */ 1043 RTE_ETH_FOREACH_DEV(portid) { 1044 if ((enabled_port_mask & (1 << portid)) == 0) { 1045 continue; 1046 } 1047 /* Start device */ 1048 ret = rte_eth_dev_start(portid); 1049 if (ret < 0) 1050 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1051 ret, portid); 1052 1053 ret = rte_eth_promiscuous_enable(portid); 1054 if (ret != 0) 1055 rte_exit(EXIT_FAILURE, 1056 "rte_eth_promiscuous_enable: err=%s, port=%d\n", 1057 rte_strerror(-ret), portid); 1058 1059 if (check_ptype(portid) == 0) { 1060 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1061 printf("Add Rx callback function to detect L3 packet type by SW :" 1062 " port = %d\n", portid); 1063 } 1064 } 1065 1066 if (init_routing_table() < 0) 1067 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1068 1069 check_all_ports_link_status(enabled_port_mask); 1070 1071 /* launch per-lcore init on every lcore */ 1072 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN); 1073 RTE_LCORE_FOREACH_WORKER(lcore_id) { 1074 if (rte_eal_wait_lcore(lcore_id) < 0) 1075 return -1; 1076 } 1077 1078 /* clean up the EAL */ 1079 rte_eal_cleanup(); 1080 1081 return 0; 1082 } 1083