xref: /dpdk/examples/ip_fragmentation/main.c (revision d737e95480f4893f47b28acd7ac935d919456682)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <string.h>
41 #include <sys/queue.h>
42 #include <stdarg.h>
43 #include <errno.h>
44 #include <getopt.h>
45 
46 #include <rte_common.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_tailq.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_launch.h>
56 #include <rte_atomic.h>
57 #include <rte_cycles.h>
58 #include <rte_prefetch.h>
59 #include <rte_lcore.h>
60 #include <rte_per_lcore.h>
61 #include <rte_branch_prediction.h>
62 #include <rte_interrupts.h>
63 #include <rte_pci.h>
64 #include <rte_random.h>
65 #include <rte_debug.h>
66 #include <rte_ether.h>
67 #include <rte_ethdev.h>
68 #include <rte_ring.h>
69 #include <rte_mempool.h>
70 #include <rte_mbuf.h>
71 #include <rte_lpm.h>
72 #include <rte_lpm6.h>
73 #include <rte_ip.h>
74 #include <rte_string_fns.h>
75 
76 #include <rte_ip_frag.h>
77 
78 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
79 
80 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
81 
82 /* allow max jumbo frame 9.5 KB */
83 #define JUMBO_FRAME_MAX_SIZE	0x2600
84 
85 #define	ROUNDUP_DIV(a, b)	(((a) + (b) - 1) / (b))
86 
87 /*
88  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
89  * This value includes the size of IPv6 header.
90  */
91 #define	IPV4_MTU_DEFAULT	ETHER_MTU
92 #define	IPV6_MTU_DEFAULT	ETHER_MTU
93 
94 /*
95  * Default payload in bytes for the IPv6 packet.
96  */
97 #define	IPV4_DEFAULT_PAYLOAD	(IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr))
98 #define	IPV6_DEFAULT_PAYLOAD	(IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr))
99 
100 /*
101  * Max number of fragments per packet expected - defined by config file.
102  */
103 #define	MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
104 
105 #define NB_MBUF   8192
106 
107 #define MAX_PKT_BURST	32
108 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
109 
110 /* Configure how many packets ahead to prefetch, when reading packets */
111 #define PREFETCH_OFFSET	3
112 
113 /*
114  * Configurable number of RX/TX ring descriptors
115  */
116 #define RTE_TEST_RX_DESC_DEFAULT 128
117 #define RTE_TEST_TX_DESC_DEFAULT 512
118 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
119 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
120 
121 /* ethernet addresses of ports */
122 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
123 
124 #ifndef IPv4_BYTES
125 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
126 #define IPv4_BYTES(addr) \
127 		(uint8_t) (((addr) >> 24) & 0xFF),\
128 		(uint8_t) (((addr) >> 16) & 0xFF),\
129 		(uint8_t) (((addr) >> 8) & 0xFF),\
130 		(uint8_t) ((addr) & 0xFF)
131 #endif
132 
133 #ifndef IPv6_BYTES
134 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
135                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
136 #define IPv6_BYTES(addr) \
137 	addr[0],  addr[1], addr[2],  addr[3], \
138 	addr[4],  addr[5], addr[6],  addr[7], \
139 	addr[8],  addr[9], addr[10], addr[11],\
140 	addr[12], addr[13],addr[14], addr[15]
141 #endif
142 
143 #define IPV6_ADDR_LEN 16
144 
145 /* mask of enabled ports */
146 static int enabled_port_mask = 0;
147 
148 static int rx_queue_per_lcore = 1;
149 
150 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
151 
152 struct mbuf_table {
153 	uint16_t len;
154 	struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
155 };
156 
157 struct rx_queue {
158 	struct rte_mempool *direct_pool;
159 	struct rte_mempool *indirect_pool;
160 	struct rte_lpm *lpm;
161 	struct rte_lpm6 *lpm6;
162 	uint8_t portid;
163 };
164 
165 #define MAX_RX_QUEUE_PER_LCORE 16
166 #define MAX_TX_QUEUE_PER_PORT 16
167 struct lcore_queue_conf {
168 	uint16_t n_rx_queue;
169 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
170 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
171 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
172 } __rte_cache_aligned;
173 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
174 
175 static const struct rte_eth_conf port_conf = {
176 	.rxmode = {
177 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
178 		.split_hdr_size = 0,
179 		.header_split   = 0, /**< Header Split disabled */
180 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
181 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
182 		.jumbo_frame    = 1, /**< Jumbo Frame Support enabled */
183 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
184 	},
185 	.txmode = {
186 		.mq_mode = ETH_MQ_TX_NONE,
187 	},
188 };
189 
190 /*
191  * IPv4 forwarding table
192  */
193 struct l3fwd_ipv4_route {
194 	uint32_t ip;
195 	uint8_t  depth;
196 	uint8_t  if_out;
197 };
198 
199 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
200 		{IPv4(100,10,0,0), 16, 0},
201 		{IPv4(100,20,0,0), 16, 1},
202 		{IPv4(100,30,0,0), 16, 2},
203 		{IPv4(100,40,0,0), 16, 3},
204 		{IPv4(100,50,0,0), 16, 4},
205 		{IPv4(100,60,0,0), 16, 5},
206 		{IPv4(100,70,0,0), 16, 6},
207 		{IPv4(100,80,0,0), 16, 7},
208 };
209 
210 /*
211  * IPv6 forwarding table
212  */
213 
214 struct l3fwd_ipv6_route {
215 	uint8_t ip[IPV6_ADDR_LEN];
216 	uint8_t depth;
217 	uint8_t if_out;
218 };
219 
220 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
221 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
222 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
223 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
224 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
225 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
226 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
227 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
228 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
229 };
230 
231 #define LPM_MAX_RULES         1024
232 #define LPM6_MAX_RULES         1024
233 #define LPM6_NUMBER_TBL8S (1 << 16)
234 
235 struct rte_lpm6_config lpm6_config = {
236 		.max_rules = LPM6_MAX_RULES,
237 		.number_tbl8s = LPM6_NUMBER_TBL8S,
238 		.flags = 0
239 };
240 
241 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
242 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
243 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
244 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
245 
246 /* Send burst of packets on an output interface */
247 static inline int
248 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port)
249 {
250 	struct rte_mbuf **m_table;
251 	int ret;
252 	uint16_t queueid;
253 
254 	queueid = qconf->tx_queue_id[port];
255 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
256 
257 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
258 	if (unlikely(ret < n)) {
259 		do {
260 			rte_pktmbuf_free(m_table[ret]);
261 		} while (++ret < n);
262 	}
263 
264 	return 0;
265 }
266 
267 static inline void
268 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
269 		uint8_t queueid, uint8_t port_in)
270 {
271 	struct rx_queue *rxq;
272 	uint32_t i, len;
273 	uint8_t next_hop, port_out, ipv6;
274 	int32_t len2;
275 
276 	ipv6 = 0;
277 	rxq = &qconf->rx_queue_list[queueid];
278 
279 	/* by default, send everything back to the source port */
280 	port_out = port_in;
281 
282 	/* Remove the Ethernet header and trailer from the input packet */
283 	rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
284 
285 	/* Build transmission burst */
286 	len = qconf->tx_mbufs[port_out].len;
287 
288 	/* if this is an IPv4 packet */
289 	if (m->ol_flags & PKT_RX_IPV4_HDR) {
290 		struct ipv4_hdr *ip_hdr;
291 		uint32_t ip_dst;
292 		/* Read the lookup key (i.e. ip_dst) from the input packet */
293 		ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *);
294 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
295 
296 		/* Find destination port */
297 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
298 				(enabled_port_mask & 1 << next_hop) != 0) {
299 			port_out = next_hop;
300 
301 			/* Build transmission burst for new port */
302 			len = qconf->tx_mbufs[port_out].len;
303 		}
304 
305 		/* if we don't need to do any fragmentation */
306 		if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
307 			qconf->tx_mbufs[port_out].m_table[len] = m;
308 			len2 = 1;
309 		} else {
310 			len2 = rte_ipv4_fragment_packet(m,
311 				&qconf->tx_mbufs[port_out].m_table[len],
312 				(uint16_t)(MBUF_TABLE_SIZE - len),
313 				IPV4_MTU_DEFAULT,
314 				rxq->direct_pool, rxq->indirect_pool);
315 
316 			/* Free input packet */
317 			rte_pktmbuf_free(m);
318 
319 			/* If we fail to fragment the packet */
320 			if (unlikely (len2 < 0))
321 				return;
322 		}
323 	}
324 	/* if this is an IPv6 packet */
325 	else if (m->ol_flags & PKT_RX_IPV6_HDR) {
326 		struct ipv6_hdr *ip_hdr;
327 
328 		ipv6 = 1;
329 
330 		/* Read the lookup key (i.e. ip_dst) from the input packet */
331 		ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *);
332 
333 		/* Find destination port */
334 		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop) == 0 &&
335 				(enabled_port_mask & 1 << next_hop) != 0) {
336 			port_out = next_hop;
337 
338 			/* Build transmission burst for new port */
339 			len = qconf->tx_mbufs[port_out].len;
340 		}
341 
342 		/* if we don't need to do any fragmentation */
343 		if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
344 			qconf->tx_mbufs[port_out].m_table[len] = m;
345 			len2 = 1;
346 		} else {
347 			len2 = rte_ipv6_fragment_packet(m,
348 				&qconf->tx_mbufs[port_out].m_table[len],
349 				(uint16_t)(MBUF_TABLE_SIZE - len),
350 				IPV6_MTU_DEFAULT,
351 				rxq->direct_pool, rxq->indirect_pool);
352 
353 			/* Free input packet */
354 			rte_pktmbuf_free(m);
355 
356 			/* If we fail to fragment the packet */
357 			if (unlikely (len2 < 0))
358 				return;
359 		}
360 	}
361 	/* else, just forward the packet */
362 	else {
363 		qconf->tx_mbufs[port_out].m_table[len] = m;
364 		len2 = 1;
365 	}
366 
367 	for (i = len; i < len + len2; i ++) {
368 		void *d_addr_bytes;
369 
370 		m = qconf->tx_mbufs[port_out].m_table[i];
371 		struct ether_hdr *eth_hdr = (struct ether_hdr *)
372 			rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr));
373 		if (eth_hdr == NULL) {
374 			rte_panic("No headroom in mbuf.\n");
375 		}
376 
377 		m->l2_len = sizeof(struct ether_hdr);
378 
379 		/* 02:00:00:00:00:xx */
380 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
381 		*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40);
382 
383 		/* src addr */
384 		ether_addr_copy(&ports_eth_addr[port_out], &eth_hdr->s_addr);
385 		if (ipv6)
386 			eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6);
387 		else
388 			eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
389 	}
390 
391 	len += len2;
392 
393 	if (likely(len < MAX_PKT_BURST)) {
394 		qconf->tx_mbufs[port_out].len = (uint16_t)len;
395 		return;
396 	}
397 
398 	/* Transmit packets */
399 	send_burst(qconf, (uint16_t)len, port_out);
400 	qconf->tx_mbufs[port_out].len = 0;
401 }
402 
403 /* main processing loop */
404 static int
405 main_loop(__attribute__((unused)) void *dummy)
406 {
407 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
408 	unsigned lcore_id;
409 	uint64_t prev_tsc, diff_tsc, cur_tsc;
410 	int i, j, nb_rx;
411 	uint8_t portid;
412 	struct lcore_queue_conf *qconf;
413 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
414 
415 	prev_tsc = 0;
416 
417 	lcore_id = rte_lcore_id();
418 	qconf = &lcore_queue_conf[lcore_id];
419 
420 	if (qconf->n_rx_queue == 0) {
421 		RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
422 		return 0;
423 	}
424 
425 	RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
426 
427 	for (i = 0; i < qconf->n_rx_queue; i++) {
428 
429 		portid = qconf->rx_queue_list[i].portid;
430 		RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
431 				(int) portid);
432 	}
433 
434 	while (1) {
435 
436 		cur_tsc = rte_rdtsc();
437 
438 		/*
439 		 * TX burst queue drain
440 		 */
441 		diff_tsc = cur_tsc - prev_tsc;
442 		if (unlikely(diff_tsc > drain_tsc)) {
443 
444 			/*
445 			 * This could be optimized (use queueid instead of
446 			 * portid), but it is not called so often
447 			 */
448 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
449 				if (qconf->tx_mbufs[portid].len == 0)
450 					continue;
451 				send_burst(&lcore_queue_conf[lcore_id],
452 					   qconf->tx_mbufs[portid].len,
453 					   portid);
454 				qconf->tx_mbufs[portid].len = 0;
455 			}
456 
457 			prev_tsc = cur_tsc;
458 		}
459 
460 		/*
461 		 * Read packet from RX queues
462 		 */
463 		for (i = 0; i < qconf->n_rx_queue; i++) {
464 
465 			portid = qconf->rx_queue_list[i].portid;
466 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
467 						 MAX_PKT_BURST);
468 
469 			/* Prefetch first packets */
470 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
471 				rte_prefetch0(rte_pktmbuf_mtod(
472 						pkts_burst[j], void *));
473 			}
474 
475 			/* Prefetch and forward already prefetched packets */
476 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
477 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
478 						j + PREFETCH_OFFSET], void *));
479 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
480 			}
481 
482 			/* Forward remaining prefetched packets */
483 			for (; j < nb_rx; j++) {
484 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
485 			}
486 		}
487 	}
488 }
489 
490 /* display usage */
491 static void
492 print_usage(const char *prgname)
493 {
494 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
495 	       "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
496 	       "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
497 	       prgname);
498 }
499 
500 static int
501 parse_portmask(const char *portmask)
502 {
503 	char *end = NULL;
504 	unsigned long pm;
505 
506 	/* parse hexadecimal string */
507 	pm = strtoul(portmask, &end, 16);
508 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
509 		return -1;
510 
511 	if (pm == 0)
512 		return -1;
513 
514 	return pm;
515 }
516 
517 static int
518 parse_nqueue(const char *q_arg)
519 {
520 	char *end = NULL;
521 	unsigned long n;
522 
523 	/* parse hexadecimal string */
524 	n = strtoul(q_arg, &end, 10);
525 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
526 		return -1;
527 	if (n == 0)
528 		return -1;
529 	if (n >= MAX_RX_QUEUE_PER_LCORE)
530 		return -1;
531 
532 	return n;
533 }
534 
535 /* Parse the argument given in the command line of the application */
536 static int
537 parse_args(int argc, char **argv)
538 {
539 	int opt, ret;
540 	char **argvopt;
541 	int option_index;
542 	char *prgname = argv[0];
543 	static struct option lgopts[] = {
544 		{NULL, 0, 0, 0}
545 	};
546 
547 	argvopt = argv;
548 
549 	while ((opt = getopt_long(argc, argvopt, "p:q:",
550 				  lgopts, &option_index)) != EOF) {
551 
552 		switch (opt) {
553 		/* portmask */
554 		case 'p':
555 			enabled_port_mask = parse_portmask(optarg);
556 			if (enabled_port_mask < 0) {
557 				printf("invalid portmask\n");
558 				print_usage(prgname);
559 				return -1;
560 			}
561 			break;
562 
563 		/* nqueue */
564 		case 'q':
565 			rx_queue_per_lcore = parse_nqueue(optarg);
566 			if (rx_queue_per_lcore < 0) {
567 				printf("invalid queue number\n");
568 				print_usage(prgname);
569 				return -1;
570 			}
571 			break;
572 
573 		/* long options */
574 		case 0:
575 			print_usage(prgname);
576 			return -1;
577 
578 		default:
579 			print_usage(prgname);
580 			return -1;
581 		}
582 	}
583 
584 	if (enabled_port_mask == 0) {
585 		printf("portmask not specified\n");
586 		print_usage(prgname);
587 		return -1;
588 	}
589 
590 	if (optind >= 0)
591 		argv[optind-1] = prgname;
592 
593 	ret = optind-1;
594 	optind = 0; /* reset getopt lib */
595 	return ret;
596 }
597 
598 static void
599 print_ethaddr(const char *name, struct ether_addr *eth_addr)
600 {
601 	char buf[ETHER_ADDR_FMT_SIZE];
602 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
603 	printf("%s%s", name, buf);
604 }
605 
606 /* Check the link status of all ports in up to 9s, and print them finally */
607 static void
608 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
609 {
610 #define CHECK_INTERVAL 100 /* 100ms */
611 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
612 	uint8_t portid, count, all_ports_up, print_flag = 0;
613 	struct rte_eth_link link;
614 
615 	printf("\nChecking link status");
616 	fflush(stdout);
617 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
618 		all_ports_up = 1;
619 		for (portid = 0; portid < port_num; portid++) {
620 			if ((port_mask & (1 << portid)) == 0)
621 				continue;
622 			memset(&link, 0, sizeof(link));
623 			rte_eth_link_get_nowait(portid, &link);
624 			/* print link status if flag set */
625 			if (print_flag == 1) {
626 				if (link.link_status)
627 					printf("Port %d Link Up - speed %u "
628 						"Mbps - %s\n", (uint8_t)portid,
629 						(unsigned)link.link_speed,
630 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
631 					("full-duplex") : ("half-duplex\n"));
632 				else
633 					printf("Port %d Link Down\n",
634 							(uint8_t)portid);
635 				continue;
636 			}
637 			/* clear all_ports_up flag if any link down */
638 			if (link.link_status == 0) {
639 				all_ports_up = 0;
640 				break;
641 			}
642 		}
643 		/* after finally printing all link status, get out */
644 		if (print_flag == 1)
645 			break;
646 
647 		if (all_ports_up == 0) {
648 			printf(".");
649 			fflush(stdout);
650 			rte_delay_ms(CHECK_INTERVAL);
651 		}
652 
653 		/* set the print_flag if all ports up or timeout */
654 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
655 			print_flag = 1;
656 			printf("\ndone\n");
657 		}
658 	}
659 }
660 
661 static int
662 init_routing_table(void)
663 {
664 	struct rte_lpm *lpm;
665 	struct rte_lpm6 *lpm6;
666 	int socket, ret;
667 	unsigned i;
668 
669 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
670 		if (socket_lpm[socket]) {
671 			lpm = socket_lpm[socket];
672 			/* populate the LPM table */
673 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
674 				ret = rte_lpm_add(lpm,
675 					l3fwd_ipv4_route_array[i].ip,
676 					l3fwd_ipv4_route_array[i].depth,
677 					l3fwd_ipv4_route_array[i].if_out);
678 
679 				if (ret < 0) {
680 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
681 						"LPM table\n", i);
682 					return -1;
683 				}
684 
685 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
686 						"/%d (port %d)\n",
687 					socket,
688 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
689 					l3fwd_ipv4_route_array[i].depth,
690 					l3fwd_ipv4_route_array[i].if_out);
691 			}
692 		}
693 
694 		if (socket_lpm6[socket]) {
695 			lpm6 = socket_lpm6[socket];
696 			/* populate the LPM6 table */
697 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
698 				ret = rte_lpm6_add(lpm6,
699 					l3fwd_ipv6_route_array[i].ip,
700 					l3fwd_ipv6_route_array[i].depth,
701 					l3fwd_ipv6_route_array[i].if_out);
702 
703 				if (ret < 0) {
704 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
705 						"LPM6 table\n", i);
706 					return -1;
707 				}
708 
709 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
710 						"/%d (port %d)\n",
711 					socket,
712 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
713 					l3fwd_ipv6_route_array[i].depth,
714 					l3fwd_ipv6_route_array[i].if_out);
715 			}
716 		}
717 	}
718 	return 0;
719 }
720 
721 static int
722 init_mem(void)
723 {
724 	char buf[PATH_MAX];
725 	struct rte_mempool *mp;
726 	struct rte_lpm *lpm;
727 	struct rte_lpm6 *lpm6;
728 	int socket;
729 	unsigned lcore_id;
730 
731 	/* traverse through lcores and initialize structures on each socket */
732 
733 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
734 
735 		if (rte_lcore_is_enabled(lcore_id) == 0)
736 			continue;
737 
738 		socket = rte_lcore_to_socket_id(lcore_id);
739 
740 		if (socket == SOCKET_ID_ANY)
741 			socket = 0;
742 
743 		if (socket_direct_pool[socket] == NULL) {
744 			RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
745 					socket);
746 			snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
747 
748 			mp = rte_mempool_create(buf, NB_MBUF,
749 						   MBUF_SIZE, 32,
750 						   sizeof(struct rte_pktmbuf_pool_private),
751 						   rte_pktmbuf_pool_init, NULL,
752 						   rte_pktmbuf_init, NULL,
753 						   socket, 0);
754 			if (mp == NULL) {
755 				RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
756 				return -1;
757 			}
758 			socket_direct_pool[socket] = mp;
759 		}
760 
761 		if (socket_indirect_pool[socket] == NULL) {
762 			RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
763 					socket);
764 			snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
765 
766 			mp = rte_mempool_create(buf, NB_MBUF,
767 							   sizeof(struct rte_mbuf), 32,
768 							   0,
769 							   NULL, NULL,
770 							   rte_pktmbuf_init, NULL,
771 							   socket, 0);
772 			if (mp == NULL) {
773 				RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
774 				return -1;
775 			}
776 			socket_indirect_pool[socket] = mp;
777 		}
778 
779 		if (socket_lpm[socket] == NULL) {
780 			RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
781 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
782 
783 			lpm = rte_lpm_create(buf, socket, LPM_MAX_RULES, 0);
784 			if (lpm == NULL) {
785 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
786 				return -1;
787 			}
788 			socket_lpm[socket] = lpm;
789 		}
790 
791 		if (socket_lpm6[socket] == NULL) {
792 			RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
793 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
794 
795 			lpm6 = rte_lpm6_create("IP_FRAG_LPM6", socket, &lpm6_config);
796 			if (lpm6 == NULL) {
797 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
798 				return -1;
799 			}
800 			socket_lpm6[socket] = lpm6;
801 		}
802 	}
803 
804 	return 0;
805 }
806 
807 int
808 main(int argc, char **argv)
809 {
810 	struct lcore_queue_conf *qconf;
811 	struct rte_eth_dev_info dev_info;
812 	struct rte_eth_txconf *txconf;
813 	struct rx_queue *rxq;
814 	int socket, ret;
815 	unsigned nb_ports;
816 	uint16_t queueid = 0;
817 	unsigned lcore_id = 0, rx_lcore_id = 0;
818 	uint32_t n_tx_queue, nb_lcores;
819 	uint8_t portid;
820 
821 	/* init EAL */
822 	ret = rte_eal_init(argc, argv);
823 	if (ret < 0)
824 		rte_exit(EXIT_FAILURE, "rte_eal_init failed");
825 	argc -= ret;
826 	argv += ret;
827 
828 	/* parse application arguments (after the EAL ones) */
829 	ret = parse_args(argc, argv);
830 	if (ret < 0)
831 		rte_exit(EXIT_FAILURE, "Invalid arguments");
832 
833 	nb_ports = rte_eth_dev_count();
834 	if (nb_ports > RTE_MAX_ETHPORTS)
835 		nb_ports = RTE_MAX_ETHPORTS;
836 	else if (nb_ports == 0)
837 		rte_exit(EXIT_FAILURE, "No ports found!\n");
838 
839 	nb_lcores = rte_lcore_count();
840 
841 	/* initialize structures (mempools, lpm etc.) */
842 	if (init_mem() < 0)
843 		rte_panic("Cannot initialize memory structures!\n");
844 
845 	/* check if portmask has non-existent ports */
846 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
847 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
848 
849 	/* initialize all ports */
850 	for (portid = 0; portid < nb_ports; portid++) {
851 		/* skip ports that are not enabled */
852 		if ((enabled_port_mask & (1 << portid)) == 0) {
853 			printf("Skipping disabled port %d\n", portid);
854 			continue;
855 		}
856 
857 		qconf = &lcore_queue_conf[rx_lcore_id];
858 
859 		/* get the lcore_id for this port */
860 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
861 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
862 
863 			rx_lcore_id ++;
864 			if (rx_lcore_id >= RTE_MAX_LCORE)
865 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
866 
867 			qconf = &lcore_queue_conf[rx_lcore_id];
868 		}
869 
870 		socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
871 		if (socket == SOCKET_ID_ANY)
872 			socket = 0;
873 
874 		rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
875 		rxq->portid = portid;
876 		rxq->direct_pool = socket_direct_pool[socket];
877 		rxq->indirect_pool = socket_indirect_pool[socket];
878 		rxq->lpm = socket_lpm[socket];
879 		rxq->lpm6 = socket_lpm6[socket];
880 		qconf->n_rx_queue++;
881 
882 		/* init port */
883 		printf("Initializing port %d on lcore %u...", portid,
884 		       rx_lcore_id);
885 		fflush(stdout);
886 
887 		n_tx_queue = nb_lcores;
888 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
889 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
890 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
891 					    &port_conf);
892 		if (ret < 0) {
893 			printf("\n");
894 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
895 				"err=%d, port=%d\n",
896 				ret, portid);
897 		}
898 
899 		/* init one RX queue */
900 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
901 					     socket, NULL,
902 					     socket_direct_pool[socket]);
903 		if (ret < 0) {
904 			printf("\n");
905 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
906 				"err=%d, port=%d\n",
907 				ret, portid);
908 		}
909 
910 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
911 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
912 		printf("\n");
913 
914 		/* init one TX queue per couple (lcore,port) */
915 		queueid = 0;
916 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
917 			if (rte_lcore_is_enabled(lcore_id) == 0)
918 				continue;
919 
920 			socket = (int) rte_lcore_to_socket_id(lcore_id);
921 			printf("txq=%u,%d ", lcore_id, queueid);
922 			fflush(stdout);
923 
924 			rte_eth_dev_info_get(portid, &dev_info);
925 			txconf = &dev_info.default_txconf;
926 			txconf->txq_flags = 0;
927 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
928 						     socket, txconf);
929 			if (ret < 0) {
930 				printf("\n");
931 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
932 					"err=%d, port=%d\n", ret, portid);
933 			}
934 
935 			qconf = &lcore_queue_conf[lcore_id];
936 			qconf->tx_queue_id[portid] = queueid;
937 			queueid++;
938 		}
939 
940 		printf("\n");
941 	}
942 
943 	printf("\n");
944 
945 	/* start ports */
946 	for (portid = 0; portid < nb_ports; portid++) {
947 		if ((enabled_port_mask & (1 << portid)) == 0) {
948 			continue;
949 		}
950 		/* Start device */
951 		ret = rte_eth_dev_start(portid);
952 		if (ret < 0)
953 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
954 				ret, portid);
955 
956 		rte_eth_promiscuous_enable(portid);
957 	}
958 
959 	if (init_routing_table() < 0)
960 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
961 
962 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
963 
964 	/* launch per-lcore init on every lcore */
965 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
966 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
967 		if (rte_eal_wait_lcore(lcore_id) < 0)
968 			return -1;
969 	}
970 
971 	return 0;
972 }
973