1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <sys/param.h> 11 #include <string.h> 12 #include <sys/queue.h> 13 #include <stdarg.h> 14 #include <errno.h> 15 #include <getopt.h> 16 17 #include <rte_common.h> 18 #include <rte_byteorder.h> 19 #include <rte_log.h> 20 #include <rte_memory.h> 21 #include <rte_memcpy.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_atomic.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_lpm.h> 38 #include <rte_lpm6.h> 39 #include <rte_ip.h> 40 #include <rte_string_fns.h> 41 42 #include <rte_ip_frag.h> 43 44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 45 46 /* allow max jumbo frame 9.5 KB */ 47 #define JUMBO_FRAME_MAX_SIZE 0x2600 48 49 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 50 51 /* 52 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 53 * This value includes the size of IPv6 header. 54 */ 55 #define IPV4_MTU_DEFAULT RTE_ETHER_MTU 56 #define IPV6_MTU_DEFAULT RTE_ETHER_MTU 57 58 /* 59 * The overhead from max frame size to MTU. 60 * We have to consider the max possible overhead. 61 */ 62 #define MTU_OVERHEAD \ 63 (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \ 64 2 * sizeof(struct rte_vlan_hdr)) 65 66 /* 67 * Default payload in bytes for the IPv6 packet. 68 */ 69 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr)) 70 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr)) 71 72 /* 73 * Max number of fragments per packet expected - defined by config file. 74 */ 75 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 76 77 #define NB_MBUF 8192 78 79 #define MAX_PKT_BURST 32 80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 81 82 /* Configure how many packets ahead to prefetch, when reading packets */ 83 #define PREFETCH_OFFSET 3 84 85 /* 86 * Configurable number of RX/TX ring descriptors 87 */ 88 #define RTE_TEST_RX_DESC_DEFAULT 1024 89 #define RTE_TEST_TX_DESC_DEFAULT 1024 90 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 91 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 92 93 /* ethernet addresses of ports */ 94 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 95 96 #ifndef IPv4_BYTES 97 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 98 #define IPv4_BYTES(addr) \ 99 (uint8_t) (((addr) >> 24) & 0xFF),\ 100 (uint8_t) (((addr) >> 16) & 0xFF),\ 101 (uint8_t) (((addr) >> 8) & 0xFF),\ 102 (uint8_t) ((addr) & 0xFF) 103 #endif 104 105 #ifndef IPv6_BYTES 106 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 107 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 108 #define IPv6_BYTES(addr) \ 109 addr[0], addr[1], addr[2], addr[3], \ 110 addr[4], addr[5], addr[6], addr[7], \ 111 addr[8], addr[9], addr[10], addr[11],\ 112 addr[12], addr[13],addr[14], addr[15] 113 #endif 114 115 #define IPV6_ADDR_LEN 16 116 117 /* mask of enabled ports */ 118 static int enabled_port_mask = 0; 119 120 static int rx_queue_per_lcore = 1; 121 122 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 123 124 struct mbuf_table { 125 uint16_t len; 126 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 127 }; 128 129 struct rx_queue { 130 struct rte_mempool *direct_pool; 131 struct rte_mempool *indirect_pool; 132 struct rte_lpm *lpm; 133 struct rte_lpm6 *lpm6; 134 uint16_t portid; 135 }; 136 137 #define MAX_RX_QUEUE_PER_LCORE 16 138 #define MAX_TX_QUEUE_PER_PORT 16 139 struct lcore_queue_conf { 140 uint16_t n_rx_queue; 141 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 142 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 143 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 144 } __rte_cache_aligned; 145 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 146 147 static struct rte_eth_conf port_conf = { 148 .rxmode = { 149 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 150 .split_hdr_size = 0, 151 .offloads = (DEV_RX_OFFLOAD_CHECKSUM | 152 DEV_RX_OFFLOAD_SCATTER | 153 DEV_RX_OFFLOAD_JUMBO_FRAME), 154 }, 155 .txmode = { 156 .mq_mode = ETH_MQ_TX_NONE, 157 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | 158 DEV_TX_OFFLOAD_MULTI_SEGS), 159 }, 160 }; 161 162 /* 163 * IPv4 forwarding table 164 */ 165 struct l3fwd_ipv4_route { 166 uint32_t ip; 167 uint8_t depth; 168 uint8_t if_out; 169 }; 170 171 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 172 {RTE_IPV4(100,10,0,0), 16, 0}, 173 {RTE_IPV4(100,20,0,0), 16, 1}, 174 {RTE_IPV4(100,30,0,0), 16, 2}, 175 {RTE_IPV4(100,40,0,0), 16, 3}, 176 {RTE_IPV4(100,50,0,0), 16, 4}, 177 {RTE_IPV4(100,60,0,0), 16, 5}, 178 {RTE_IPV4(100,70,0,0), 16, 6}, 179 {RTE_IPV4(100,80,0,0), 16, 7}, 180 }; 181 182 /* 183 * IPv6 forwarding table 184 */ 185 186 struct l3fwd_ipv6_route { 187 uint8_t ip[IPV6_ADDR_LEN]; 188 uint8_t depth; 189 uint8_t if_out; 190 }; 191 192 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 193 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 194 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 195 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 196 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 197 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 198 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 199 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 200 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 201 }; 202 203 #define LPM_MAX_RULES 1024 204 #define LPM6_MAX_RULES 1024 205 #define LPM6_NUMBER_TBL8S (1 << 16) 206 207 struct rte_lpm6_config lpm6_config = { 208 .max_rules = LPM6_MAX_RULES, 209 .number_tbl8s = LPM6_NUMBER_TBL8S, 210 .flags = 0 211 }; 212 213 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 214 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 215 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 216 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 217 218 /* Send burst of packets on an output interface */ 219 static inline int 220 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) 221 { 222 struct rte_mbuf **m_table; 223 int ret; 224 uint16_t queueid; 225 226 queueid = qconf->tx_queue_id[port]; 227 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 228 229 ret = rte_eth_tx_burst(port, queueid, m_table, n); 230 if (unlikely(ret < n)) { 231 do { 232 rte_pktmbuf_free(m_table[ret]); 233 } while (++ret < n); 234 } 235 236 return 0; 237 } 238 239 static inline void 240 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 241 uint8_t queueid, uint16_t port_in) 242 { 243 struct rx_queue *rxq; 244 uint32_t i, len, next_hop; 245 uint8_t ipv6; 246 uint16_t port_out; 247 int32_t len2; 248 249 ipv6 = 0; 250 rxq = &qconf->rx_queue_list[queueid]; 251 252 /* by default, send everything back to the source port */ 253 port_out = port_in; 254 255 /* Remove the Ethernet header and trailer from the input packet */ 256 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr)); 257 258 /* Build transmission burst */ 259 len = qconf->tx_mbufs[port_out].len; 260 261 /* if this is an IPv4 packet */ 262 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 263 struct rte_ipv4_hdr *ip_hdr; 264 uint32_t ip_dst; 265 /* Read the lookup key (i.e. ip_dst) from the input packet */ 266 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *); 267 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 268 269 /* Find destination port */ 270 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 271 (enabled_port_mask & 1 << next_hop) != 0) { 272 port_out = next_hop; 273 274 /* Build transmission burst for new port */ 275 len = qconf->tx_mbufs[port_out].len; 276 } 277 278 /* if we don't need to do any fragmentation */ 279 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 280 qconf->tx_mbufs[port_out].m_table[len] = m; 281 len2 = 1; 282 } else { 283 len2 = rte_ipv4_fragment_packet(m, 284 &qconf->tx_mbufs[port_out].m_table[len], 285 (uint16_t)(MBUF_TABLE_SIZE - len), 286 IPV4_MTU_DEFAULT, 287 rxq->direct_pool, rxq->indirect_pool); 288 289 /* Free input packet */ 290 rte_pktmbuf_free(m); 291 292 /* If we fail to fragment the packet */ 293 if (unlikely (len2 < 0)) 294 return; 295 } 296 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 297 /* if this is an IPv6 packet */ 298 struct rte_ipv6_hdr *ip_hdr; 299 300 ipv6 = 1; 301 302 /* Read the lookup key (i.e. ip_dst) from the input packet */ 303 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *); 304 305 /* Find destination port */ 306 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 307 &next_hop) == 0 && 308 (enabled_port_mask & 1 << next_hop) != 0) { 309 port_out = next_hop; 310 311 /* Build transmission burst for new port */ 312 len = qconf->tx_mbufs[port_out].len; 313 } 314 315 /* if we don't need to do any fragmentation */ 316 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 317 qconf->tx_mbufs[port_out].m_table[len] = m; 318 len2 = 1; 319 } else { 320 len2 = rte_ipv6_fragment_packet(m, 321 &qconf->tx_mbufs[port_out].m_table[len], 322 (uint16_t)(MBUF_TABLE_SIZE - len), 323 IPV6_MTU_DEFAULT, 324 rxq->direct_pool, rxq->indirect_pool); 325 326 /* Free input packet */ 327 rte_pktmbuf_free(m); 328 329 /* If we fail to fragment the packet */ 330 if (unlikely (len2 < 0)) 331 return; 332 } 333 } 334 /* else, just forward the packet */ 335 else { 336 qconf->tx_mbufs[port_out].m_table[len] = m; 337 len2 = 1; 338 } 339 340 for (i = len; i < len + len2; i ++) { 341 void *d_addr_bytes; 342 343 m = qconf->tx_mbufs[port_out].m_table[i]; 344 struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *) 345 rte_pktmbuf_prepend(m, 346 (uint16_t)sizeof(struct rte_ether_hdr)); 347 if (eth_hdr == NULL) { 348 rte_panic("No headroom in mbuf.\n"); 349 } 350 351 m->l2_len = sizeof(struct rte_ether_hdr); 352 353 /* 02:00:00:00:00:xx */ 354 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 355 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 356 357 /* src addr */ 358 rte_ether_addr_copy(&ports_eth_addr[port_out], 359 ð_hdr->s_addr); 360 if (ipv6) { 361 eth_hdr->ether_type = 362 rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6); 363 } else { 364 eth_hdr->ether_type = 365 rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4); 366 m->ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM); 367 } 368 } 369 370 len += len2; 371 372 if (likely(len < MAX_PKT_BURST)) { 373 qconf->tx_mbufs[port_out].len = (uint16_t)len; 374 return; 375 } 376 377 /* Transmit packets */ 378 send_burst(qconf, (uint16_t)len, port_out); 379 qconf->tx_mbufs[port_out].len = 0; 380 } 381 382 /* main processing loop */ 383 static int 384 main_loop(__attribute__((unused)) void *dummy) 385 { 386 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 387 unsigned lcore_id; 388 uint64_t prev_tsc, diff_tsc, cur_tsc; 389 int i, j, nb_rx; 390 uint16_t portid; 391 struct lcore_queue_conf *qconf; 392 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 393 394 prev_tsc = 0; 395 396 lcore_id = rte_lcore_id(); 397 qconf = &lcore_queue_conf[lcore_id]; 398 399 if (qconf->n_rx_queue == 0) { 400 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 401 return 0; 402 } 403 404 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 405 406 for (i = 0; i < qconf->n_rx_queue; i++) { 407 408 portid = qconf->rx_queue_list[i].portid; 409 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 410 portid); 411 } 412 413 while (1) { 414 415 cur_tsc = rte_rdtsc(); 416 417 /* 418 * TX burst queue drain 419 */ 420 diff_tsc = cur_tsc - prev_tsc; 421 if (unlikely(diff_tsc > drain_tsc)) { 422 423 /* 424 * This could be optimized (use queueid instead of 425 * portid), but it is not called so often 426 */ 427 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 428 if (qconf->tx_mbufs[portid].len == 0) 429 continue; 430 send_burst(&lcore_queue_conf[lcore_id], 431 qconf->tx_mbufs[portid].len, 432 portid); 433 qconf->tx_mbufs[portid].len = 0; 434 } 435 436 prev_tsc = cur_tsc; 437 } 438 439 /* 440 * Read packet from RX queues 441 */ 442 for (i = 0; i < qconf->n_rx_queue; i++) { 443 444 portid = qconf->rx_queue_list[i].portid; 445 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 446 MAX_PKT_BURST); 447 448 /* Prefetch first packets */ 449 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 450 rte_prefetch0(rte_pktmbuf_mtod( 451 pkts_burst[j], void *)); 452 } 453 454 /* Prefetch and forward already prefetched packets */ 455 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 456 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 457 j + PREFETCH_OFFSET], void *)); 458 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 459 } 460 461 /* Forward remaining prefetched packets */ 462 for (; j < nb_rx; j++) { 463 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 464 } 465 } 466 } 467 } 468 469 /* display usage */ 470 static void 471 print_usage(const char *prgname) 472 { 473 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 474 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 475 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 476 prgname); 477 } 478 479 static int 480 parse_portmask(const char *portmask) 481 { 482 char *end = NULL; 483 unsigned long pm; 484 485 /* parse hexadecimal string */ 486 pm = strtoul(portmask, &end, 16); 487 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 488 return -1; 489 490 if (pm == 0) 491 return -1; 492 493 return pm; 494 } 495 496 static int 497 parse_nqueue(const char *q_arg) 498 { 499 char *end = NULL; 500 unsigned long n; 501 502 /* parse hexadecimal string */ 503 n = strtoul(q_arg, &end, 10); 504 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 505 return -1; 506 if (n == 0) 507 return -1; 508 if (n >= MAX_RX_QUEUE_PER_LCORE) 509 return -1; 510 511 return n; 512 } 513 514 /* Parse the argument given in the command line of the application */ 515 static int 516 parse_args(int argc, char **argv) 517 { 518 int opt, ret; 519 char **argvopt; 520 int option_index; 521 char *prgname = argv[0]; 522 static struct option lgopts[] = { 523 {NULL, 0, 0, 0} 524 }; 525 526 argvopt = argv; 527 528 while ((opt = getopt_long(argc, argvopt, "p:q:", 529 lgopts, &option_index)) != EOF) { 530 531 switch (opt) { 532 /* portmask */ 533 case 'p': 534 enabled_port_mask = parse_portmask(optarg); 535 if (enabled_port_mask < 0) { 536 printf("invalid portmask\n"); 537 print_usage(prgname); 538 return -1; 539 } 540 break; 541 542 /* nqueue */ 543 case 'q': 544 rx_queue_per_lcore = parse_nqueue(optarg); 545 if (rx_queue_per_lcore < 0) { 546 printf("invalid queue number\n"); 547 print_usage(prgname); 548 return -1; 549 } 550 break; 551 552 /* long options */ 553 case 0: 554 print_usage(prgname); 555 return -1; 556 557 default: 558 print_usage(prgname); 559 return -1; 560 } 561 } 562 563 if (enabled_port_mask == 0) { 564 printf("portmask not specified\n"); 565 print_usage(prgname); 566 return -1; 567 } 568 569 if (optind >= 0) 570 argv[optind-1] = prgname; 571 572 ret = optind-1; 573 optind = 1; /* reset getopt lib */ 574 return ret; 575 } 576 577 static void 578 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 579 { 580 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 581 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 582 printf("%s%s", name, buf); 583 } 584 585 /* Check the link status of all ports in up to 9s, and print them finally */ 586 static void 587 check_all_ports_link_status(uint32_t port_mask) 588 { 589 #define CHECK_INTERVAL 100 /* 100ms */ 590 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 591 uint16_t portid; 592 uint8_t count, all_ports_up, print_flag = 0; 593 struct rte_eth_link link; 594 595 printf("\nChecking link status"); 596 fflush(stdout); 597 for (count = 0; count <= MAX_CHECK_TIME; count++) { 598 all_ports_up = 1; 599 RTE_ETH_FOREACH_DEV(portid) { 600 if ((port_mask & (1 << portid)) == 0) 601 continue; 602 memset(&link, 0, sizeof(link)); 603 rte_eth_link_get_nowait(portid, &link); 604 /* print link status if flag set */ 605 if (print_flag == 1) { 606 if (link.link_status) 607 printf( 608 "Port%d Link Up .Speed %u Mbps - %s\n", 609 portid, link.link_speed, 610 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 611 ("full-duplex") : ("half-duplex\n")); 612 else 613 printf("Port %d Link Down\n", portid); 614 continue; 615 } 616 /* clear all_ports_up flag if any link down */ 617 if (link.link_status == ETH_LINK_DOWN) { 618 all_ports_up = 0; 619 break; 620 } 621 } 622 /* after finally printing all link status, get out */ 623 if (print_flag == 1) 624 break; 625 626 if (all_ports_up == 0) { 627 printf("."); 628 fflush(stdout); 629 rte_delay_ms(CHECK_INTERVAL); 630 } 631 632 /* set the print_flag if all ports up or timeout */ 633 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 634 print_flag = 1; 635 printf("\ndone\n"); 636 } 637 } 638 } 639 640 /* Check L3 packet type detection capablity of the NIC port */ 641 static int 642 check_ptype(int portid) 643 { 644 int i, ret; 645 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 646 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 647 648 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 649 if (ret <= 0) 650 return 0; 651 652 uint32_t ptypes[ret]; 653 654 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 655 for (i = 0; i < ret; ++i) { 656 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 657 ptype_l3_ipv4 = 1; 658 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 659 ptype_l3_ipv6 = 1; 660 } 661 662 if (ptype_l3_ipv4 == 0) 663 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 664 665 if (ptype_l3_ipv6 == 0) 666 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 667 668 if (ptype_l3_ipv4 && ptype_l3_ipv6) 669 return 1; 670 671 return 0; 672 673 } 674 675 /* Parse packet type of a packet by SW */ 676 static inline void 677 parse_ptype(struct rte_mbuf *m) 678 { 679 struct rte_ether_hdr *eth_hdr; 680 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 681 uint16_t ether_type; 682 683 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 684 ether_type = eth_hdr->ether_type; 685 if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) 686 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 687 else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) 688 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 689 690 m->packet_type = packet_type; 691 } 692 693 /* callback function to detect packet type for a queue of a port */ 694 static uint16_t 695 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, 696 struct rte_mbuf *pkts[], uint16_t nb_pkts, 697 uint16_t max_pkts __rte_unused, 698 void *user_param __rte_unused) 699 { 700 uint16_t i; 701 702 for (i = 0; i < nb_pkts; ++i) 703 parse_ptype(pkts[i]); 704 705 return nb_pkts; 706 } 707 708 static int 709 init_routing_table(void) 710 { 711 struct rte_lpm *lpm; 712 struct rte_lpm6 *lpm6; 713 int socket, ret; 714 unsigned i; 715 716 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 717 if (socket_lpm[socket]) { 718 lpm = socket_lpm[socket]; 719 /* populate the LPM table */ 720 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 721 ret = rte_lpm_add(lpm, 722 l3fwd_ipv4_route_array[i].ip, 723 l3fwd_ipv4_route_array[i].depth, 724 l3fwd_ipv4_route_array[i].if_out); 725 726 if (ret < 0) { 727 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 728 "LPM table\n", i); 729 return -1; 730 } 731 732 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 733 "/%d (port %d)\n", 734 socket, 735 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 736 l3fwd_ipv4_route_array[i].depth, 737 l3fwd_ipv4_route_array[i].if_out); 738 } 739 } 740 741 if (socket_lpm6[socket]) { 742 lpm6 = socket_lpm6[socket]; 743 /* populate the LPM6 table */ 744 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 745 ret = rte_lpm6_add(lpm6, 746 l3fwd_ipv6_route_array[i].ip, 747 l3fwd_ipv6_route_array[i].depth, 748 l3fwd_ipv6_route_array[i].if_out); 749 750 if (ret < 0) { 751 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 752 "LPM6 table\n", i); 753 return -1; 754 } 755 756 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 757 "/%d (port %d)\n", 758 socket, 759 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 760 l3fwd_ipv6_route_array[i].depth, 761 l3fwd_ipv6_route_array[i].if_out); 762 } 763 } 764 } 765 return 0; 766 } 767 768 static int 769 init_mem(void) 770 { 771 char buf[PATH_MAX]; 772 struct rte_mempool *mp; 773 struct rte_lpm *lpm; 774 struct rte_lpm6 *lpm6; 775 struct rte_lpm_config lpm_config; 776 int socket; 777 unsigned lcore_id; 778 779 /* traverse through lcores and initialize structures on each socket */ 780 781 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 782 783 if (rte_lcore_is_enabled(lcore_id) == 0) 784 continue; 785 786 socket = rte_lcore_to_socket_id(lcore_id); 787 788 if (socket == SOCKET_ID_ANY) 789 socket = 0; 790 791 if (socket_direct_pool[socket] == NULL) { 792 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 793 socket); 794 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 795 796 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 797 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 798 if (mp == NULL) { 799 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 800 return -1; 801 } 802 socket_direct_pool[socket] = mp; 803 } 804 805 if (socket_indirect_pool[socket] == NULL) { 806 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 807 socket); 808 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 809 810 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 811 socket); 812 if (mp == NULL) { 813 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 814 return -1; 815 } 816 socket_indirect_pool[socket] = mp; 817 } 818 819 if (socket_lpm[socket] == NULL) { 820 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 821 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 822 823 lpm_config.max_rules = LPM_MAX_RULES; 824 lpm_config.number_tbl8s = 256; 825 lpm_config.flags = 0; 826 827 lpm = rte_lpm_create(buf, socket, &lpm_config); 828 if (lpm == NULL) { 829 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 830 return -1; 831 } 832 socket_lpm[socket] = lpm; 833 } 834 835 if (socket_lpm6[socket] == NULL) { 836 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 837 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 838 839 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 840 if (lpm6 == NULL) { 841 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 842 return -1; 843 } 844 socket_lpm6[socket] = lpm6; 845 } 846 } 847 848 return 0; 849 } 850 851 int 852 main(int argc, char **argv) 853 { 854 struct lcore_queue_conf *qconf; 855 struct rte_eth_dev_info dev_info; 856 struct rte_eth_txconf *txconf; 857 struct rx_queue *rxq; 858 int socket, ret; 859 uint16_t nb_ports; 860 uint16_t queueid = 0; 861 unsigned lcore_id = 0, rx_lcore_id = 0; 862 uint32_t n_tx_queue, nb_lcores; 863 uint16_t portid; 864 865 /* init EAL */ 866 ret = rte_eal_init(argc, argv); 867 if (ret < 0) 868 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 869 argc -= ret; 870 argv += ret; 871 872 /* parse application arguments (after the EAL ones) */ 873 ret = parse_args(argc, argv); 874 if (ret < 0) 875 rte_exit(EXIT_FAILURE, "Invalid arguments"); 876 877 nb_ports = rte_eth_dev_count_avail(); 878 if (nb_ports == 0) 879 rte_exit(EXIT_FAILURE, "No ports found!\n"); 880 881 nb_lcores = rte_lcore_count(); 882 883 /* initialize structures (mempools, lpm etc.) */ 884 if (init_mem() < 0) 885 rte_panic("Cannot initialize memory structures!\n"); 886 887 /* check if portmask has non-existent ports */ 888 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 889 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 890 891 /* initialize all ports */ 892 RTE_ETH_FOREACH_DEV(portid) { 893 struct rte_eth_conf local_port_conf = port_conf; 894 struct rte_eth_rxconf rxq_conf; 895 896 /* skip ports that are not enabled */ 897 if ((enabled_port_mask & (1 << portid)) == 0) { 898 printf("Skipping disabled port %d\n", portid); 899 continue; 900 } 901 902 qconf = &lcore_queue_conf[rx_lcore_id]; 903 904 /* limit the frame size to the maximum supported by NIC */ 905 rte_eth_dev_info_get(portid, &dev_info); 906 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 907 dev_info.max_rx_pktlen, 908 local_port_conf.rxmode.max_rx_pkt_len); 909 910 /* get the lcore_id for this port */ 911 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 912 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 913 914 rx_lcore_id ++; 915 if (rx_lcore_id >= RTE_MAX_LCORE) 916 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 917 918 qconf = &lcore_queue_conf[rx_lcore_id]; 919 } 920 921 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 922 if (socket == SOCKET_ID_ANY) 923 socket = 0; 924 925 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 926 rxq->portid = portid; 927 rxq->direct_pool = socket_direct_pool[socket]; 928 rxq->indirect_pool = socket_indirect_pool[socket]; 929 rxq->lpm = socket_lpm[socket]; 930 rxq->lpm6 = socket_lpm6[socket]; 931 qconf->n_rx_queue++; 932 933 /* init port */ 934 printf("Initializing port %d on lcore %u...", portid, 935 rx_lcore_id); 936 fflush(stdout); 937 938 n_tx_queue = nb_lcores; 939 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 940 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 941 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 942 local_port_conf.txmode.offloads |= 943 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 944 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 945 &local_port_conf); 946 if (ret < 0) { 947 printf("\n"); 948 rte_exit(EXIT_FAILURE, "Cannot configure device: " 949 "err=%d, port=%d\n", 950 ret, portid); 951 } 952 953 /* set the mtu to the maximum received packet size */ 954 ret = rte_eth_dev_set_mtu(portid, 955 local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD); 956 if (ret < 0) { 957 printf("\n"); 958 rte_exit(EXIT_FAILURE, "Set MTU failed: " 959 "err=%d, port=%d\n", 960 ret, portid); 961 } 962 963 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 964 &nb_txd); 965 if (ret < 0) { 966 printf("\n"); 967 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 968 "descriptors: err=%d, port=%d\n", ret, portid); 969 } 970 971 /* init one RX queue */ 972 rxq_conf = dev_info.default_rxconf; 973 rxq_conf.offloads = local_port_conf.rxmode.offloads; 974 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 975 socket, &rxq_conf, 976 socket_direct_pool[socket]); 977 if (ret < 0) { 978 printf("\n"); 979 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 980 "err=%d, port=%d\n", 981 ret, portid); 982 } 983 984 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 985 print_ethaddr(" Address:", &ports_eth_addr[portid]); 986 printf("\n"); 987 988 /* init one TX queue per couple (lcore,port) */ 989 queueid = 0; 990 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 991 if (rte_lcore_is_enabled(lcore_id) == 0) 992 continue; 993 994 if (queueid >= rte_eth_devices[portid].data->nb_tx_queues) 995 break; 996 997 socket = (int) rte_lcore_to_socket_id(lcore_id); 998 printf("txq=%u,%d ", lcore_id, queueid); 999 fflush(stdout); 1000 1001 txconf = &dev_info.default_txconf; 1002 txconf->offloads = local_port_conf.txmode.offloads; 1003 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1004 socket, txconf); 1005 if (ret < 0) { 1006 printf("\n"); 1007 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 1008 "err=%d, port=%d\n", ret, portid); 1009 } 1010 1011 qconf = &lcore_queue_conf[lcore_id]; 1012 qconf->tx_queue_id[portid] = queueid; 1013 queueid++; 1014 } 1015 1016 printf("\n"); 1017 } 1018 1019 printf("\n"); 1020 1021 /* start ports */ 1022 RTE_ETH_FOREACH_DEV(portid) { 1023 if ((enabled_port_mask & (1 << portid)) == 0) { 1024 continue; 1025 } 1026 /* Start device */ 1027 ret = rte_eth_dev_start(portid); 1028 if (ret < 0) 1029 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1030 ret, portid); 1031 1032 rte_eth_promiscuous_enable(portid); 1033 1034 if (check_ptype(portid) == 0) { 1035 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1036 printf("Add Rx callback function to detect L3 packet type by SW :" 1037 " port = %d\n", portid); 1038 } 1039 } 1040 1041 if (init_routing_table() < 0) 1042 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1043 1044 check_all_ports_link_status(enabled_port_mask); 1045 1046 /* launch per-lcore init on every lcore */ 1047 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1048 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1049 if (rte_eal_wait_lcore(lcore_id) < 0) 1050 return -1; 1051 } 1052 1053 return 0; 1054 } 1055