xref: /dpdk/examples/ip_fragmentation/main.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <sys/param.h>
11 #include <string.h>
12 #include <sys/queue.h>
13 #include <stdarg.h>
14 #include <errno.h>
15 #include <getopt.h>
16 
17 #include <rte_common.h>
18 #include <rte_byteorder.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_memcpy.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_cycles.h>
25 #include <rte_prefetch.h>
26 #include <rte_lcore.h>
27 #include <rte_per_lcore.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_interrupts.h>
30 #include <rte_random.h>
31 #include <rte_debug.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_mempool.h>
35 #include <rte_mbuf.h>
36 #include <rte_lpm.h>
37 #include <rte_lpm6.h>
38 #include <rte_ip.h>
39 #include <rte_string_fns.h>
40 
41 #include <rte_ip_frag.h>
42 
43 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
44 
45 /* allow max jumbo frame 9.5 KB */
46 #define JUMBO_FRAME_MAX_SIZE	0x2600
47 
48 #define	ROUNDUP_DIV(a, b)	(((a) + (b) - 1) / (b))
49 
50 /*
51  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
52  * This value includes the size of IPv6 header.
53  */
54 #define	IPV4_MTU_DEFAULT	RTE_ETHER_MTU
55 #define	IPV6_MTU_DEFAULT	RTE_ETHER_MTU
56 
57 /*
58  * The overhead from max frame size to MTU.
59  * We have to consider the max possible overhead.
60  */
61 #define MTU_OVERHEAD	\
62 	(RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \
63 		2 * sizeof(struct rte_vlan_hdr))
64 
65 /*
66  * Default payload in bytes for the IPv6 packet.
67  */
68 #define	IPV4_DEFAULT_PAYLOAD	(IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr))
69 #define	IPV6_DEFAULT_PAYLOAD	(IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr))
70 
71 /*
72  * Max number of fragments per packet expected - defined by config file.
73  */
74 #define	MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
75 
76 #define NB_MBUF   8192
77 
78 #define MAX_PKT_BURST	32
79 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
80 
81 /* Configure how many packets ahead to prefetch, when reading packets */
82 #define PREFETCH_OFFSET	3
83 
84 /*
85  * Configurable number of RX/TX ring descriptors
86  */
87 #define RTE_TEST_RX_DESC_DEFAULT 1024
88 #define RTE_TEST_TX_DESC_DEFAULT 1024
89 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
90 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
91 
92 /* ethernet addresses of ports */
93 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
94 
95 #ifndef IPv4_BYTES
96 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
97 #define IPv4_BYTES(addr) \
98 		(uint8_t) (((addr) >> 24) & 0xFF),\
99 		(uint8_t) (((addr) >> 16) & 0xFF),\
100 		(uint8_t) (((addr) >> 8) & 0xFF),\
101 		(uint8_t) ((addr) & 0xFF)
102 #endif
103 
104 #ifndef IPv6_BYTES
105 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
106                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
107 #define IPv6_BYTES(addr) \
108 	addr[0],  addr[1], addr[2],  addr[3], \
109 	addr[4],  addr[5], addr[6],  addr[7], \
110 	addr[8],  addr[9], addr[10], addr[11],\
111 	addr[12], addr[13],addr[14], addr[15]
112 #endif
113 
114 #define IPV6_ADDR_LEN 16
115 
116 /* mask of enabled ports */
117 static int enabled_port_mask = 0;
118 
119 static int rx_queue_per_lcore = 1;
120 
121 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
122 
123 struct mbuf_table {
124 	uint16_t len;
125 	struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
126 };
127 
128 struct rx_queue {
129 	struct rte_mempool *direct_pool;
130 	struct rte_mempool *indirect_pool;
131 	struct rte_lpm *lpm;
132 	struct rte_lpm6 *lpm6;
133 	uint16_t portid;
134 };
135 
136 #define MAX_RX_QUEUE_PER_LCORE 16
137 #define MAX_TX_QUEUE_PER_PORT 16
138 struct lcore_queue_conf {
139 	uint16_t n_rx_queue;
140 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
141 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
142 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
143 } __rte_cache_aligned;
144 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
145 
146 static struct rte_eth_conf port_conf = {
147 	.rxmode = {
148 		.mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN -
149 			RTE_ETHER_CRC_LEN,
150 		.split_hdr_size = 0,
151 		.offloads = (RTE_ETH_RX_OFFLOAD_CHECKSUM |
152 			     RTE_ETH_RX_OFFLOAD_SCATTER),
153 	},
154 	.txmode = {
155 		.mq_mode = RTE_ETH_MQ_TX_NONE,
156 		.offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
157 			     RTE_ETH_TX_OFFLOAD_MULTI_SEGS),
158 	},
159 };
160 
161 /*
162  * IPv4 forwarding table
163  */
164 struct l3fwd_ipv4_route {
165 	uint32_t ip;
166 	uint8_t  depth;
167 	uint8_t  if_out;
168 };
169 
170 /* Default l3fwd_ipv4_route_array table. 8< */
171 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
172 		{RTE_IPV4(100,10,0,0), 16, 0},
173 		{RTE_IPV4(100,20,0,0), 16, 1},
174 		{RTE_IPV4(100,30,0,0), 16, 2},
175 		{RTE_IPV4(100,40,0,0), 16, 3},
176 		{RTE_IPV4(100,50,0,0), 16, 4},
177 		{RTE_IPV4(100,60,0,0), 16, 5},
178 		{RTE_IPV4(100,70,0,0), 16, 6},
179 		{RTE_IPV4(100,80,0,0), 16, 7},
180 };
181 /* >8 End of default l3fwd_ipv4_route_array table */
182 
183 /*
184  * IPv6 forwarding table
185  */
186 
187 struct l3fwd_ipv6_route {
188 	uint8_t ip[IPV6_ADDR_LEN];
189 	uint8_t depth;
190 	uint8_t if_out;
191 };
192 
193 /* Default l3fwd_ipv6_route_array table. 8< */
194 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
195 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
196 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
197 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
198 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
199 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
200 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
201 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
202 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
203 };
204 /* >8 End of default l3fwd_ipv6_route_array table. */
205 
206 #define LPM_MAX_RULES         1024
207 #define LPM6_MAX_RULES         1024
208 #define LPM6_NUMBER_TBL8S (1 << 16)
209 
210 struct rte_lpm6_config lpm6_config = {
211 		.max_rules = LPM6_MAX_RULES,
212 		.number_tbl8s = LPM6_NUMBER_TBL8S,
213 		.flags = 0
214 };
215 
216 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
217 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
218 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
219 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
220 
221 /* Send burst of packets on an output interface */
222 static inline int
223 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
224 {
225 	struct rte_mbuf **m_table;
226 	int ret;
227 	uint16_t queueid;
228 
229 	queueid = qconf->tx_queue_id[port];
230 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
231 
232 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
233 	if (unlikely(ret < n)) {
234 		do {
235 			rte_pktmbuf_free(m_table[ret]);
236 		} while (++ret < n);
237 	}
238 
239 	return 0;
240 }
241 
242 static inline void
243 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
244 		uint8_t queueid, uint16_t port_in)
245 {
246 	struct rx_queue *rxq;
247 	uint32_t i, len, next_hop;
248 	uint16_t port_out, ether_type;
249 	int32_t len2;
250 	uint64_t ol_flags;
251 	const struct rte_ether_hdr *eth;
252 
253 	ol_flags = 0;
254 	rxq = &qconf->rx_queue_list[queueid];
255 
256 	/* by default, send everything back to the source port */
257 	port_out = port_in;
258 
259 	/* save ether type of the incoming packet */
260 	eth = rte_pktmbuf_mtod(m, const struct rte_ether_hdr *);
261 	ether_type = eth->ether_type;
262 
263 	/* Remove the Ethernet header and trailer from the input packet */
264 	rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
265 
266 	/* Build transmission burst */
267 	len = qconf->tx_mbufs[port_out].len;
268 
269 	/* if this is an IPv4 packet */
270 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
271 		struct rte_ipv4_hdr *ip_hdr;
272 		uint32_t ip_dst;
273 		/* Read the lookup key (i.e. ip_dst) from the input packet */
274 		ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
275 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
276 
277 		/* Find destination port */
278 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
279 				(enabled_port_mask & 1 << next_hop) != 0) {
280 			port_out = next_hop;
281 
282 			/* Build transmission burst for new port */
283 			len = qconf->tx_mbufs[port_out].len;
284 		}
285 
286 		/* if we don't need to do any fragmentation */
287 		if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
288 			qconf->tx_mbufs[port_out].m_table[len] = m;
289 			len2 = 1;
290 		} else {
291 			len2 = rte_ipv4_fragment_packet(m,
292 				&qconf->tx_mbufs[port_out].m_table[len],
293 				(uint16_t)(MBUF_TABLE_SIZE - len),
294 				IPV4_MTU_DEFAULT,
295 				rxq->direct_pool, rxq->indirect_pool);
296 
297 			/* Free input packet */
298 			rte_pktmbuf_free(m);
299 
300 			/* request HW to regenerate IPv4 cksum */
301 			ol_flags |= (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM);
302 
303 			/* If we fail to fragment the packet */
304 			if (unlikely (len2 < 0))
305 				return;
306 		}
307 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
308 		/* if this is an IPv6 packet */
309 		struct rte_ipv6_hdr *ip_hdr;
310 
311 		/* Read the lookup key (i.e. ip_dst) from the input packet */
312 		ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *);
313 
314 		/* Find destination port */
315 		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
316 						&next_hop) == 0 &&
317 				(enabled_port_mask & 1 << next_hop) != 0) {
318 			port_out = next_hop;
319 
320 			/* Build transmission burst for new port */
321 			len = qconf->tx_mbufs[port_out].len;
322 		}
323 
324 		/* if we don't need to do any fragmentation */
325 		if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
326 			qconf->tx_mbufs[port_out].m_table[len] = m;
327 			len2 = 1;
328 		} else {
329 			len2 = rte_ipv6_fragment_packet(m,
330 				&qconf->tx_mbufs[port_out].m_table[len],
331 				(uint16_t)(MBUF_TABLE_SIZE - len),
332 				IPV6_MTU_DEFAULT,
333 				rxq->direct_pool, rxq->indirect_pool);
334 
335 			/* Free input packet */
336 			rte_pktmbuf_free(m);
337 
338 			/* If we fail to fragment the packet */
339 			if (unlikely (len2 < 0))
340 				return;
341 		}
342 	}
343 	/* else, just forward the packet */
344 	else {
345 		qconf->tx_mbufs[port_out].m_table[len] = m;
346 		len2 = 1;
347 	}
348 
349 	for (i = len; i < len + len2; i ++) {
350 		void *d_addr_bytes;
351 
352 		m = qconf->tx_mbufs[port_out].m_table[i];
353 		struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *)
354 			rte_pktmbuf_prepend(m,
355 				(uint16_t)sizeof(struct rte_ether_hdr));
356 		if (eth_hdr == NULL) {
357 			rte_panic("No headroom in mbuf.\n");
358 		}
359 
360 		m->ol_flags |= ol_flags;
361 		m->l2_len = sizeof(struct rte_ether_hdr);
362 
363 		/* 02:00:00:00:00:xx */
364 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
365 		*((uint64_t *)d_addr_bytes) = 0x000000000002 +
366 			((uint64_t)port_out << 40);
367 
368 		/* src addr */
369 		rte_ether_addr_copy(&ports_eth_addr[port_out],
370 				&eth_hdr->src_addr);
371 		eth_hdr->ether_type = ether_type;
372 	}
373 
374 	len += len2;
375 
376 	if (likely(len < MAX_PKT_BURST)) {
377 		qconf->tx_mbufs[port_out].len = (uint16_t)len;
378 		return;
379 	}
380 
381 	/* Transmit packets */
382 	send_burst(qconf, (uint16_t)len, port_out);
383 	qconf->tx_mbufs[port_out].len = 0;
384 }
385 
386 /* main processing loop */
387 static int
388 main_loop(__rte_unused void *dummy)
389 {
390 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
391 	unsigned lcore_id;
392 	uint64_t prev_tsc, diff_tsc, cur_tsc;
393 	int i, j, nb_rx;
394 	uint16_t portid;
395 	struct lcore_queue_conf *qconf;
396 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
397 
398 	prev_tsc = 0;
399 
400 	lcore_id = rte_lcore_id();
401 	qconf = &lcore_queue_conf[lcore_id];
402 
403 	if (qconf->n_rx_queue == 0) {
404 		RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
405 		return 0;
406 	}
407 
408 	RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
409 
410 	for (i = 0; i < qconf->n_rx_queue; i++) {
411 
412 		portid = qconf->rx_queue_list[i].portid;
413 		RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
414 				portid);
415 	}
416 
417 	while (1) {
418 
419 		cur_tsc = rte_rdtsc();
420 
421 		/*
422 		 * TX burst queue drain
423 		 */
424 		diff_tsc = cur_tsc - prev_tsc;
425 		if (unlikely(diff_tsc > drain_tsc)) {
426 
427 			/*
428 			 * This could be optimized (use queueid instead of
429 			 * portid), but it is not called so often
430 			 */
431 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
432 				if (qconf->tx_mbufs[portid].len == 0)
433 					continue;
434 				send_burst(&lcore_queue_conf[lcore_id],
435 					   qconf->tx_mbufs[portid].len,
436 					   portid);
437 				qconf->tx_mbufs[portid].len = 0;
438 			}
439 
440 			prev_tsc = cur_tsc;
441 		}
442 
443 		/*
444 		 * Read packet from RX queues
445 		 */
446 		for (i = 0; i < qconf->n_rx_queue; i++) {
447 
448 			portid = qconf->rx_queue_list[i].portid;
449 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
450 						 MAX_PKT_BURST);
451 
452 			/* Prefetch first packets */
453 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
454 				rte_prefetch0(rte_pktmbuf_mtod(
455 						pkts_burst[j], void *));
456 			}
457 
458 			/* Prefetch and forward already prefetched packets */
459 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
460 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
461 						j + PREFETCH_OFFSET], void *));
462 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
463 			}
464 
465 			/* Forward remaining prefetched packets */
466 			for (; j < nb_rx; j++) {
467 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
468 			}
469 		}
470 	}
471 }
472 
473 /* display usage */
474 static void
475 print_usage(const char *prgname)
476 {
477 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
478 	       "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
479 	       "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
480 	       prgname);
481 }
482 
483 static int
484 parse_portmask(const char *portmask)
485 {
486 	char *end = NULL;
487 	unsigned long pm;
488 
489 	/* parse hexadecimal string */
490 	pm = strtoul(portmask, &end, 16);
491 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
492 		return -1;
493 
494 	if (pm == 0)
495 		return -1;
496 
497 	return pm;
498 }
499 
500 static int
501 parse_nqueue(const char *q_arg)
502 {
503 	char *end = NULL;
504 	unsigned long n;
505 
506 	/* parse hexadecimal string */
507 	n = strtoul(q_arg, &end, 10);
508 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
509 		return -1;
510 	if (n == 0)
511 		return -1;
512 	if (n >= MAX_RX_QUEUE_PER_LCORE)
513 		return -1;
514 
515 	return n;
516 }
517 
518 /* Parse the argument given in the command line of the application */
519 static int
520 parse_args(int argc, char **argv)
521 {
522 	int opt, ret;
523 	char **argvopt;
524 	int option_index;
525 	char *prgname = argv[0];
526 	static struct option lgopts[] = {
527 		{NULL, 0, 0, 0}
528 	};
529 
530 	argvopt = argv;
531 
532 	while ((opt = getopt_long(argc, argvopt, "p:q:",
533 				  lgopts, &option_index)) != EOF) {
534 
535 		switch (opt) {
536 		/* portmask */
537 		case 'p':
538 			enabled_port_mask = parse_portmask(optarg);
539 			if (enabled_port_mask < 0) {
540 				printf("invalid portmask\n");
541 				print_usage(prgname);
542 				return -1;
543 			}
544 			break;
545 
546 		/* nqueue */
547 		case 'q':
548 			rx_queue_per_lcore = parse_nqueue(optarg);
549 			if (rx_queue_per_lcore < 0) {
550 				printf("invalid queue number\n");
551 				print_usage(prgname);
552 				return -1;
553 			}
554 			break;
555 
556 		/* long options */
557 		case 0:
558 			print_usage(prgname);
559 			return -1;
560 
561 		default:
562 			print_usage(prgname);
563 			return -1;
564 		}
565 	}
566 
567 	if (enabled_port_mask == 0) {
568 		printf("portmask not specified\n");
569 		print_usage(prgname);
570 		return -1;
571 	}
572 
573 	if (optind >= 0)
574 		argv[optind-1] = prgname;
575 
576 	ret = optind-1;
577 	optind = 1; /* reset getopt lib */
578 	return ret;
579 }
580 
581 static void
582 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
583 {
584 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
585 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
586 	printf("%s%s", name, buf);
587 }
588 
589 /* Check the link status of all ports in up to 9s, and print them finally */
590 static void
591 check_all_ports_link_status(uint32_t port_mask)
592 {
593 #define CHECK_INTERVAL 100 /* 100ms */
594 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
595 	uint16_t portid;
596 	uint8_t count, all_ports_up, print_flag = 0;
597 	struct rte_eth_link link;
598 	int ret;
599 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
600 
601 	printf("\nChecking link status");
602 	fflush(stdout);
603 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
604 		all_ports_up = 1;
605 		RTE_ETH_FOREACH_DEV(portid) {
606 			if ((port_mask & (1 << portid)) == 0)
607 				continue;
608 			memset(&link, 0, sizeof(link));
609 			ret = rte_eth_link_get_nowait(portid, &link);
610 			if (ret < 0) {
611 				all_ports_up = 0;
612 				if (print_flag == 1)
613 					printf("Port %u link get failed: %s\n",
614 						portid, rte_strerror(-ret));
615 				continue;
616 			}
617 			/* print link status if flag set */
618 			if (print_flag == 1) {
619 				rte_eth_link_to_str(link_status_text,
620 					sizeof(link_status_text), &link);
621 				printf("Port %d %s\n", portid,
622 				       link_status_text);
623 				continue;
624 			}
625 			/* clear all_ports_up flag if any link down */
626 			if (link.link_status == RTE_ETH_LINK_DOWN) {
627 				all_ports_up = 0;
628 				break;
629 			}
630 		}
631 		/* after finally printing all link status, get out */
632 		if (print_flag == 1)
633 			break;
634 
635 		if (all_ports_up == 0) {
636 			printf(".");
637 			fflush(stdout);
638 			rte_delay_ms(CHECK_INTERVAL);
639 		}
640 
641 		/* set the print_flag if all ports up or timeout */
642 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
643 			print_flag = 1;
644 			printf("\ndone\n");
645 		}
646 	}
647 }
648 
649 /* Check L3 packet type detection capability of the NIC port */
650 static int
651 check_ptype(int portid)
652 {
653 	int i, ret;
654 	int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
655 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
656 
657 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
658 	if (ret <= 0)
659 		return 0;
660 
661 	uint32_t ptypes[ret];
662 
663 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
664 	for (i = 0; i < ret; ++i) {
665 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
666 			ptype_l3_ipv4 = 1;
667 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
668 			ptype_l3_ipv6 = 1;
669 	}
670 
671 	if (ptype_l3_ipv4 == 0)
672 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
673 
674 	if (ptype_l3_ipv6 == 0)
675 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
676 
677 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
678 		return 1;
679 
680 	return 0;
681 
682 }
683 
684 /* Parse packet type of a packet by SW */
685 static inline void
686 parse_ptype(struct rte_mbuf *m)
687 {
688 	struct rte_ether_hdr *eth_hdr;
689 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
690 	uint16_t ether_type;
691 
692 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
693 	ether_type = eth_hdr->ether_type;
694 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
695 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
696 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
697 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
698 
699 	m->packet_type = packet_type;
700 }
701 
702 /* callback function to detect packet type for a queue of a port */
703 static uint16_t
704 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
705 		   struct rte_mbuf *pkts[], uint16_t nb_pkts,
706 		   uint16_t max_pkts __rte_unused,
707 		   void *user_param __rte_unused)
708 {
709 	uint16_t i;
710 
711 	for (i = 0; i < nb_pkts; ++i)
712 		parse_ptype(pkts[i]);
713 
714 	return nb_pkts;
715 }
716 
717 static int
718 init_routing_table(void)
719 {
720 	struct rte_lpm *lpm;
721 	struct rte_lpm6 *lpm6;
722 	int socket, ret;
723 	unsigned i;
724 
725 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
726 		if (socket_lpm[socket]) {
727 			lpm = socket_lpm[socket];
728 			/* populate the LPM table */
729 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
730 				ret = rte_lpm_add(lpm,
731 					l3fwd_ipv4_route_array[i].ip,
732 					l3fwd_ipv4_route_array[i].depth,
733 					l3fwd_ipv4_route_array[i].if_out);
734 
735 				if (ret < 0) {
736 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
737 						"LPM table\n", i);
738 					return -1;
739 				}
740 
741 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
742 						"/%d (port %d)\n",
743 					socket,
744 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
745 					l3fwd_ipv4_route_array[i].depth,
746 					l3fwd_ipv4_route_array[i].if_out);
747 			}
748 		}
749 
750 		if (socket_lpm6[socket]) {
751 			lpm6 = socket_lpm6[socket];
752 			/* populate the LPM6 table */
753 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
754 				ret = rte_lpm6_add(lpm6,
755 					l3fwd_ipv6_route_array[i].ip,
756 					l3fwd_ipv6_route_array[i].depth,
757 					l3fwd_ipv6_route_array[i].if_out);
758 
759 				if (ret < 0) {
760 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
761 						"LPM6 table\n", i);
762 					return -1;
763 				}
764 
765 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
766 						"/%d (port %d)\n",
767 					socket,
768 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
769 					l3fwd_ipv6_route_array[i].depth,
770 					l3fwd_ipv6_route_array[i].if_out);
771 			}
772 		}
773 	}
774 	return 0;
775 }
776 
777 static int
778 init_mem(void)
779 {
780 	char buf[PATH_MAX];
781 	struct rte_mempool *mp;
782 	struct rte_lpm *lpm;
783 	struct rte_lpm6 *lpm6;
784 	struct rte_lpm_config lpm_config;
785 	int socket;
786 	unsigned lcore_id;
787 
788 	/* traverse through lcores and initialize structures on each socket */
789 
790 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
791 
792 		if (rte_lcore_is_enabled(lcore_id) == 0)
793 			continue;
794 
795 		socket = rte_lcore_to_socket_id(lcore_id);
796 
797 		if (socket == SOCKET_ID_ANY)
798 			socket = 0;
799 
800 		if (socket_direct_pool[socket] == NULL) {
801 			RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
802 					socket);
803 			snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
804 
805 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
806 				0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
807 			if (mp == NULL) {
808 				RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
809 				return -1;
810 			}
811 			socket_direct_pool[socket] = mp;
812 		}
813 
814 		if (socket_indirect_pool[socket] == NULL) {
815 			RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
816 					socket);
817 			snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
818 
819 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
820 				socket);
821 			if (mp == NULL) {
822 				RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
823 				return -1;
824 			}
825 			socket_indirect_pool[socket] = mp;
826 		}
827 
828 		if (socket_lpm[socket] == NULL) {
829 			RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
830 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
831 
832 			lpm_config.max_rules = LPM_MAX_RULES;
833 			lpm_config.number_tbl8s = 256;
834 			lpm_config.flags = 0;
835 
836 			lpm = rte_lpm_create(buf, socket, &lpm_config);
837 			if (lpm == NULL) {
838 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
839 				return -1;
840 			}
841 			socket_lpm[socket] = lpm;
842 		}
843 
844 		if (socket_lpm6[socket] == NULL) {
845 			RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
846 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
847 
848 			lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
849 			if (lpm6 == NULL) {
850 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
851 				return -1;
852 			}
853 			socket_lpm6[socket] = lpm6;
854 		}
855 	}
856 
857 	return 0;
858 }
859 
860 int
861 main(int argc, char **argv)
862 {
863 	struct lcore_queue_conf *qconf;
864 	struct rte_eth_dev_info dev_info;
865 	struct rte_eth_txconf *txconf;
866 	struct rx_queue *rxq;
867 	int socket, ret;
868 	uint16_t nb_ports;
869 	uint16_t queueid = 0;
870 	unsigned lcore_id = 0, rx_lcore_id = 0;
871 	uint32_t n_tx_queue, nb_lcores;
872 	uint16_t portid;
873 
874 	/* init EAL */
875 	ret = rte_eal_init(argc, argv);
876 	if (ret < 0)
877 		rte_exit(EXIT_FAILURE, "rte_eal_init failed");
878 	argc -= ret;
879 	argv += ret;
880 
881 	/* parse application arguments (after the EAL ones) */
882 	ret = parse_args(argc, argv);
883 	if (ret < 0)
884 		rte_exit(EXIT_FAILURE, "Invalid arguments");
885 
886 	nb_ports = rte_eth_dev_count_avail();
887 	if (nb_ports == 0)
888 		rte_exit(EXIT_FAILURE, "No ports found!\n");
889 
890 	nb_lcores = rte_lcore_count();
891 
892 	/* initialize structures (mempools, lpm etc.) */
893 	if (init_mem() < 0)
894 		rte_panic("Cannot initialize memory structures!\n");
895 
896 	/* check if portmask has non-existent ports */
897 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
898 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
899 
900 	/* initialize all ports */
901 	RTE_ETH_FOREACH_DEV(portid) {
902 		struct rte_eth_conf local_port_conf = port_conf;
903 		struct rte_eth_rxconf rxq_conf;
904 
905 		/* skip ports that are not enabled */
906 		if ((enabled_port_mask & (1 << portid)) == 0) {
907 			printf("Skipping disabled port %d\n", portid);
908 			continue;
909 		}
910 
911 		qconf = &lcore_queue_conf[rx_lcore_id];
912 
913 		/* limit the frame size to the maximum supported by NIC */
914 		ret = rte_eth_dev_info_get(portid, &dev_info);
915 		if (ret != 0)
916 			rte_exit(EXIT_FAILURE,
917 				"Error during getting device (port %u) info: %s\n",
918 				portid, strerror(-ret));
919 
920 		local_port_conf.rxmode.mtu = RTE_MIN(
921 		    dev_info.max_mtu,
922 		    local_port_conf.rxmode.mtu);
923 
924 		/* get the lcore_id for this port */
925 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
926 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
927 
928 			rx_lcore_id ++;
929 			if (rx_lcore_id >= RTE_MAX_LCORE)
930 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
931 
932 			qconf = &lcore_queue_conf[rx_lcore_id];
933 		}
934 
935 		socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
936 		if (socket == SOCKET_ID_ANY)
937 			socket = 0;
938 
939 		rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
940 		rxq->portid = portid;
941 		rxq->direct_pool = socket_direct_pool[socket];
942 		rxq->indirect_pool = socket_indirect_pool[socket];
943 		rxq->lpm = socket_lpm[socket];
944 		rxq->lpm6 = socket_lpm6[socket];
945 		qconf->n_rx_queue++;
946 
947 		/* init port */
948 		printf("Initializing port %d on lcore %u...", portid,
949 		       rx_lcore_id);
950 		fflush(stdout);
951 
952 		n_tx_queue = nb_lcores;
953 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
954 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
955 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
956 					    &local_port_conf);
957 		if (ret < 0) {
958 			printf("\n");
959 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
960 				"err=%d, port=%d\n",
961 				ret, portid);
962 		}
963 
964 		/* set the mtu to the maximum received packet size */
965 		ret = rte_eth_dev_set_mtu(portid, local_port_conf.rxmode.mtu);
966 		if (ret < 0) {
967 			printf("\n");
968 			rte_exit(EXIT_FAILURE, "Set MTU failed: "
969 				"err=%d, port=%d\n",
970 			ret, portid);
971 		}
972 
973 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
974 					    &nb_txd);
975 		if (ret < 0) {
976 			printf("\n");
977 			rte_exit(EXIT_FAILURE, "Cannot adjust number of "
978 				"descriptors: err=%d, port=%d\n", ret, portid);
979 		}
980 
981 		/* init one RX queue */
982 		rxq_conf = dev_info.default_rxconf;
983 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
984 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
985 					     socket, &rxq_conf,
986 					     socket_direct_pool[socket]);
987 		if (ret < 0) {
988 			printf("\n");
989 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
990 				"err=%d, port=%d\n",
991 				ret, portid);
992 		}
993 
994 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
995 		if (ret < 0) {
996 			printf("\n");
997 			rte_exit(EXIT_FAILURE,
998 				"rte_eth_macaddr_get: err=%d, port=%d\n",
999 				ret, portid);
1000 		}
1001 
1002 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1003 		printf("\n");
1004 
1005 		/* init one TX queue per couple (lcore,port) */
1006 		ret = rte_eth_dev_info_get(portid, &dev_info);
1007 		if (ret != 0)
1008 			rte_exit(EXIT_FAILURE,
1009 				"Error during getting device (port %u) info: %s\n",
1010 				portid, strerror(-ret));
1011 
1012 		queueid = 0;
1013 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1014 			if (rte_lcore_is_enabled(lcore_id) == 0)
1015 				continue;
1016 
1017 			if (queueid >= dev_info.nb_tx_queues)
1018 				break;
1019 
1020 			socket = (int) rte_lcore_to_socket_id(lcore_id);
1021 			printf("txq=%u,%d ", lcore_id, queueid);
1022 			fflush(stdout);
1023 
1024 			txconf = &dev_info.default_txconf;
1025 			txconf->offloads = local_port_conf.txmode.offloads;
1026 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1027 						     socket, txconf);
1028 			if (ret < 0) {
1029 				printf("\n");
1030 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1031 					"err=%d, port=%d\n", ret, portid);
1032 			}
1033 
1034 			qconf = &lcore_queue_conf[lcore_id];
1035 			qconf->tx_queue_id[portid] = queueid;
1036 			queueid++;
1037 		}
1038 
1039 		printf("\n");
1040 	}
1041 
1042 	printf("\n");
1043 
1044 	/* start ports */
1045 	RTE_ETH_FOREACH_DEV(portid) {
1046 		if ((enabled_port_mask & (1 << portid)) == 0) {
1047 			continue;
1048 		}
1049 		/* Start device */
1050 		ret = rte_eth_dev_start(portid);
1051 		if (ret < 0)
1052 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1053 				ret, portid);
1054 
1055 		ret = rte_eth_promiscuous_enable(portid);
1056 		if (ret != 0)
1057 			rte_exit(EXIT_FAILURE,
1058 				"rte_eth_promiscuous_enable: err=%s, port=%d\n",
1059 				rte_strerror(-ret), portid);
1060 
1061 		if (check_ptype(portid) == 0) {
1062 			rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
1063 			printf("Add Rx callback function to detect L3 packet type by SW :"
1064 				" port = %d\n", portid);
1065 		}
1066 	}
1067 
1068 	if (init_routing_table() < 0)
1069 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1070 
1071 	check_all_ports_link_status(enabled_port_mask);
1072 
1073 	/* launch per-lcore init on every lcore */
1074 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
1075 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
1076 		if (rte_eal_wait_lcore(lcore_id) < 0)
1077 			return -1;
1078 	}
1079 
1080 	/* clean up the EAL */
1081 	rte_eal_cleanup();
1082 
1083 	return 0;
1084 }
1085