xref: /dpdk/examples/ip_fragmentation/main.c (revision af0785a2447b307965377b62f46a5f39457a85a3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <sys/param.h>
11 #include <string.h>
12 #include <sys/queue.h>
13 #include <stdarg.h>
14 #include <errno.h>
15 #include <getopt.h>
16 
17 #include <rte_common.h>
18 #include <rte_byteorder.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_memcpy.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_cycles.h>
25 #include <rte_prefetch.h>
26 #include <rte_lcore.h>
27 #include <rte_per_lcore.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_interrupts.h>
30 #include <rte_random.h>
31 #include <rte_debug.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_mempool.h>
35 #include <rte_mbuf.h>
36 #include <rte_lpm.h>
37 #include <rte_lpm6.h>
38 #include <rte_ip.h>
39 #include <rte_string_fns.h>
40 
41 #include <rte_ip_frag.h>
42 
43 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
44 
45 /* allow max jumbo frame 9.5 KB */
46 #define JUMBO_FRAME_MAX_SIZE	0x2600
47 
48 #define	ROUNDUP_DIV(a, b)	(((a) + (b) - 1) / (b))
49 
50 /*
51  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
52  * This value includes the size of IPv6 header.
53  */
54 #define	IPV4_MTU_DEFAULT	RTE_ETHER_MTU
55 #define	IPV6_MTU_DEFAULT	RTE_ETHER_MTU
56 
57 /*
58  * The overhead from max frame size to MTU.
59  * We have to consider the max possible overhead.
60  */
61 #define MTU_OVERHEAD	\
62 	(RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \
63 		2 * sizeof(struct rte_vlan_hdr))
64 
65 /*
66  * Default payload in bytes for the IPv6 packet.
67  */
68 #define	IPV4_DEFAULT_PAYLOAD	(IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr))
69 #define	IPV6_DEFAULT_PAYLOAD	(IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr))
70 
71 /*
72  * Max number of fragments per packet expected - defined by config file.
73  */
74 #define	MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
75 
76 #define NB_MBUF   8192
77 
78 #define MAX_PKT_BURST	32
79 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
80 
81 /* Configure how many packets ahead to prefetch, when reading packets */
82 #define PREFETCH_OFFSET	3
83 
84 /*
85  * Configurable number of RX/TX ring descriptors
86  */
87 #define RX_DESC_DEFAULT 1024
88 #define TX_DESC_DEFAULT 1024
89 static uint16_t nb_rxd = RX_DESC_DEFAULT;
90 static uint16_t nb_txd = TX_DESC_DEFAULT;
91 
92 /* ethernet addresses of ports */
93 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
94 
95 #ifndef IPv4_BYTES
96 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
97 #define IPv4_BYTES(addr) \
98 		(uint8_t) (((addr) >> 24) & 0xFF),\
99 		(uint8_t) (((addr) >> 16) & 0xFF),\
100 		(uint8_t) (((addr) >> 8) & 0xFF),\
101 		(uint8_t) ((addr) & 0xFF)
102 #endif
103 
104 #ifndef IPv6_BYTES
105 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
106                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
107 #define IPv6_BYTES(addr) \
108 	addr[0],  addr[1], addr[2],  addr[3], \
109 	addr[4],  addr[5], addr[6],  addr[7], \
110 	addr[8],  addr[9], addr[10], addr[11],\
111 	addr[12], addr[13],addr[14], addr[15]
112 #endif
113 
114 #define IPV6_ADDR_LEN 16
115 
116 /* mask of enabled ports */
117 static int enabled_port_mask = 0;
118 
119 static int rx_queue_per_lcore = 1;
120 
121 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
122 
123 struct mbuf_table {
124 	uint16_t len;
125 	struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
126 };
127 
128 struct rx_queue {
129 	struct rte_mempool *direct_pool;
130 	struct rte_mempool *indirect_pool;
131 	struct rte_lpm *lpm;
132 	struct rte_lpm6 *lpm6;
133 	uint16_t portid;
134 };
135 
136 #define MAX_RX_QUEUE_PER_LCORE 16
137 #define MAX_TX_QUEUE_PER_PORT 16
138 struct lcore_queue_conf {
139 	uint16_t n_rx_queue;
140 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
141 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
142 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
143 } __rte_cache_aligned;
144 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
145 
146 static struct rte_eth_conf port_conf = {
147 	.rxmode = {
148 		.mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN -
149 			RTE_ETHER_CRC_LEN,
150 		.offloads = (RTE_ETH_RX_OFFLOAD_CHECKSUM |
151 			     RTE_ETH_RX_OFFLOAD_SCATTER),
152 	},
153 	.txmode = {
154 		.mq_mode = RTE_ETH_MQ_TX_NONE,
155 		.offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
156 			     RTE_ETH_TX_OFFLOAD_MULTI_SEGS),
157 	},
158 };
159 
160 /*
161  * IPv4 forwarding table
162  */
163 struct l3fwd_ipv4_route {
164 	uint32_t ip;
165 	uint8_t  depth;
166 	uint8_t  if_out;
167 };
168 
169 /* Default l3fwd_ipv4_route_array table. 8< */
170 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
171 		{RTE_IPV4(100,10,0,0), 16, 0},
172 		{RTE_IPV4(100,20,0,0), 16, 1},
173 		{RTE_IPV4(100,30,0,0), 16, 2},
174 		{RTE_IPV4(100,40,0,0), 16, 3},
175 		{RTE_IPV4(100,50,0,0), 16, 4},
176 		{RTE_IPV4(100,60,0,0), 16, 5},
177 		{RTE_IPV4(100,70,0,0), 16, 6},
178 		{RTE_IPV4(100,80,0,0), 16, 7},
179 };
180 /* >8 End of default l3fwd_ipv4_route_array table */
181 
182 /*
183  * IPv6 forwarding table
184  */
185 
186 struct l3fwd_ipv6_route {
187 	uint8_t ip[IPV6_ADDR_LEN];
188 	uint8_t depth;
189 	uint8_t if_out;
190 };
191 
192 /* Default l3fwd_ipv6_route_array table. 8< */
193 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
194 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
195 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
196 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
197 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
198 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
199 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
200 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
201 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
202 };
203 /* >8 End of default l3fwd_ipv6_route_array table. */
204 
205 #define LPM_MAX_RULES         1024
206 #define LPM6_MAX_RULES         1024
207 #define LPM6_NUMBER_TBL8S (1 << 16)
208 
209 struct rte_lpm6_config lpm6_config = {
210 		.max_rules = LPM6_MAX_RULES,
211 		.number_tbl8s = LPM6_NUMBER_TBL8S,
212 		.flags = 0
213 };
214 
215 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
216 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
217 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
218 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
219 
220 /* Send burst of packets on an output interface */
221 static inline int
222 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
223 {
224 	struct rte_mbuf **m_table;
225 	int ret;
226 	uint16_t queueid;
227 
228 	queueid = qconf->tx_queue_id[port];
229 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
230 
231 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
232 	if (unlikely(ret < n)) {
233 		do {
234 			rte_pktmbuf_free(m_table[ret]);
235 		} while (++ret < n);
236 	}
237 
238 	return 0;
239 }
240 
241 static inline void
242 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
243 		uint8_t queueid, uint16_t port_in)
244 {
245 	struct rx_queue *rxq;
246 	uint32_t i, len, next_hop;
247 	uint16_t port_out, ether_type;
248 	int32_t len2;
249 	uint64_t ol_flags;
250 	const struct rte_ether_hdr *eth;
251 
252 	ol_flags = 0;
253 	rxq = &qconf->rx_queue_list[queueid];
254 
255 	/* by default, send everything back to the source port */
256 	port_out = port_in;
257 
258 	/* save ether type of the incoming packet */
259 	eth = rte_pktmbuf_mtod(m, const struct rte_ether_hdr *);
260 	ether_type = eth->ether_type;
261 
262 	/* Remove the Ethernet header and trailer from the input packet */
263 	rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
264 
265 	/* Build transmission burst */
266 	len = qconf->tx_mbufs[port_out].len;
267 
268 	/* if this is an IPv4 packet */
269 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
270 		struct rte_ipv4_hdr *ip_hdr;
271 		uint32_t ip_dst;
272 		/* Read the lookup key (i.e. ip_dst) from the input packet */
273 		ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
274 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
275 
276 		/* Find destination port */
277 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
278 				(enabled_port_mask & 1 << next_hop) != 0) {
279 			port_out = next_hop;
280 
281 			/* Build transmission burst for new port */
282 			len = qconf->tx_mbufs[port_out].len;
283 		}
284 
285 		/* if we don't need to do any fragmentation */
286 		if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
287 			qconf->tx_mbufs[port_out].m_table[len] = m;
288 			len2 = 1;
289 		} else {
290 			len2 = rte_ipv4_fragment_packet(m,
291 				&qconf->tx_mbufs[port_out].m_table[len],
292 				(uint16_t)(MBUF_TABLE_SIZE - len),
293 				IPV4_MTU_DEFAULT,
294 				rxq->direct_pool, rxq->indirect_pool);
295 
296 			/* Free input packet */
297 			rte_pktmbuf_free(m);
298 
299 			/* request HW to regenerate IPv4 cksum */
300 			ol_flags |= (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM);
301 
302 			/* If we fail to fragment the packet */
303 			if (unlikely (len2 < 0))
304 				return;
305 		}
306 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
307 		/* if this is an IPv6 packet */
308 		struct rte_ipv6_hdr *ip_hdr;
309 
310 		/* Read the lookup key (i.e. ip_dst) from the input packet */
311 		ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *);
312 
313 		/* Find destination port */
314 		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
315 						&next_hop) == 0 &&
316 				(enabled_port_mask & 1 << next_hop) != 0) {
317 			port_out = next_hop;
318 
319 			/* Build transmission burst for new port */
320 			len = qconf->tx_mbufs[port_out].len;
321 		}
322 
323 		/* if we don't need to do any fragmentation */
324 		if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
325 			qconf->tx_mbufs[port_out].m_table[len] = m;
326 			len2 = 1;
327 		} else {
328 			len2 = rte_ipv6_fragment_packet(m,
329 				&qconf->tx_mbufs[port_out].m_table[len],
330 				(uint16_t)(MBUF_TABLE_SIZE - len),
331 				IPV6_MTU_DEFAULT,
332 				rxq->direct_pool, rxq->indirect_pool);
333 
334 			/* Free input packet */
335 			rte_pktmbuf_free(m);
336 
337 			/* If we fail to fragment the packet */
338 			if (unlikely (len2 < 0))
339 				return;
340 		}
341 	}
342 	/* else, just forward the packet */
343 	else {
344 		qconf->tx_mbufs[port_out].m_table[len] = m;
345 		len2 = 1;
346 	}
347 
348 	for (i = len; i < len + len2; i ++) {
349 		void *d_addr_bytes;
350 
351 		m = qconf->tx_mbufs[port_out].m_table[i];
352 		struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *)
353 			rte_pktmbuf_prepend(m,
354 				(uint16_t)sizeof(struct rte_ether_hdr));
355 		if (eth_hdr == NULL) {
356 			rte_panic("No headroom in mbuf.\n");
357 		}
358 
359 		m->ol_flags |= ol_flags;
360 		m->l2_len = sizeof(struct rte_ether_hdr);
361 
362 		/* 02:00:00:00:00:xx */
363 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
364 		*((uint64_t *)d_addr_bytes) = 0x000000000002 +
365 			((uint64_t)port_out << 40);
366 
367 		/* src addr */
368 		rte_ether_addr_copy(&ports_eth_addr[port_out],
369 				&eth_hdr->src_addr);
370 		eth_hdr->ether_type = ether_type;
371 	}
372 
373 	len += len2;
374 
375 	if (likely(len < MAX_PKT_BURST)) {
376 		qconf->tx_mbufs[port_out].len = (uint16_t)len;
377 		return;
378 	}
379 
380 	/* Transmit packets */
381 	send_burst(qconf, (uint16_t)len, port_out);
382 	qconf->tx_mbufs[port_out].len = 0;
383 }
384 
385 /* main processing loop */
386 static int
387 main_loop(__rte_unused void *dummy)
388 {
389 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
390 	unsigned lcore_id;
391 	uint64_t prev_tsc, diff_tsc, cur_tsc;
392 	int i, j, nb_rx;
393 	uint16_t portid;
394 	struct lcore_queue_conf *qconf;
395 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
396 
397 	prev_tsc = 0;
398 
399 	lcore_id = rte_lcore_id();
400 	qconf = &lcore_queue_conf[lcore_id];
401 
402 	if (qconf->n_rx_queue == 0) {
403 		RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
404 		return 0;
405 	}
406 
407 	RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
408 
409 	for (i = 0; i < qconf->n_rx_queue; i++) {
410 
411 		portid = qconf->rx_queue_list[i].portid;
412 		RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
413 				portid);
414 	}
415 
416 	while (1) {
417 
418 		cur_tsc = rte_rdtsc();
419 
420 		/*
421 		 * TX burst queue drain
422 		 */
423 		diff_tsc = cur_tsc - prev_tsc;
424 		if (unlikely(diff_tsc > drain_tsc)) {
425 
426 			/*
427 			 * This could be optimized (use queueid instead of
428 			 * portid), but it is not called so often
429 			 */
430 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
431 				if (qconf->tx_mbufs[portid].len == 0)
432 					continue;
433 				send_burst(&lcore_queue_conf[lcore_id],
434 					   qconf->tx_mbufs[portid].len,
435 					   portid);
436 				qconf->tx_mbufs[portid].len = 0;
437 			}
438 
439 			prev_tsc = cur_tsc;
440 		}
441 
442 		/*
443 		 * Read packet from RX queues
444 		 */
445 		for (i = 0; i < qconf->n_rx_queue; i++) {
446 
447 			portid = qconf->rx_queue_list[i].portid;
448 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
449 						 MAX_PKT_BURST);
450 
451 			/* Prefetch first packets */
452 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
453 				rte_prefetch0(rte_pktmbuf_mtod(
454 						pkts_burst[j], void *));
455 			}
456 
457 			/* Prefetch and forward already prefetched packets */
458 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
459 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
460 						j + PREFETCH_OFFSET], void *));
461 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
462 			}
463 
464 			/* Forward remaining prefetched packets */
465 			for (; j < nb_rx; j++) {
466 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
467 			}
468 		}
469 	}
470 }
471 
472 /* display usage */
473 static void
474 print_usage(const char *prgname)
475 {
476 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
477 	       "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
478 	       "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
479 	       prgname);
480 }
481 
482 static int
483 parse_portmask(const char *portmask)
484 {
485 	char *end = NULL;
486 	unsigned long pm;
487 
488 	/* parse hexadecimal string */
489 	pm = strtoul(portmask, &end, 16);
490 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
491 		return -1;
492 
493 	if (pm == 0)
494 		return -1;
495 
496 	return pm;
497 }
498 
499 static int
500 parse_nqueue(const char *q_arg)
501 {
502 	char *end = NULL;
503 	unsigned long n;
504 
505 	/* parse hexadecimal string */
506 	n = strtoul(q_arg, &end, 10);
507 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
508 		return -1;
509 	if (n == 0)
510 		return -1;
511 	if (n >= MAX_RX_QUEUE_PER_LCORE)
512 		return -1;
513 
514 	return n;
515 }
516 
517 /* Parse the argument given in the command line of the application */
518 static int
519 parse_args(int argc, char **argv)
520 {
521 	int opt, ret;
522 	char **argvopt;
523 	int option_index;
524 	char *prgname = argv[0];
525 	static struct option lgopts[] = {
526 		{NULL, 0, 0, 0}
527 	};
528 
529 	argvopt = argv;
530 
531 	while ((opt = getopt_long(argc, argvopt, "p:q:",
532 				  lgopts, &option_index)) != EOF) {
533 
534 		switch (opt) {
535 		/* portmask */
536 		case 'p':
537 			enabled_port_mask = parse_portmask(optarg);
538 			if (enabled_port_mask < 0) {
539 				printf("invalid portmask\n");
540 				print_usage(prgname);
541 				return -1;
542 			}
543 			break;
544 
545 		/* nqueue */
546 		case 'q':
547 			rx_queue_per_lcore = parse_nqueue(optarg);
548 			if (rx_queue_per_lcore < 0) {
549 				printf("invalid queue number\n");
550 				print_usage(prgname);
551 				return -1;
552 			}
553 			break;
554 
555 		/* long options */
556 		case 0:
557 			print_usage(prgname);
558 			return -1;
559 
560 		default:
561 			print_usage(prgname);
562 			return -1;
563 		}
564 	}
565 
566 	if (enabled_port_mask == 0) {
567 		printf("portmask not specified\n");
568 		print_usage(prgname);
569 		return -1;
570 	}
571 
572 	if (optind >= 0)
573 		argv[optind-1] = prgname;
574 
575 	ret = optind-1;
576 	optind = 1; /* reset getopt lib */
577 	return ret;
578 }
579 
580 static void
581 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
582 {
583 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
584 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
585 	printf("%s%s", name, buf);
586 }
587 
588 /* Check the link status of all ports in up to 9s, and print them finally */
589 static void
590 check_all_ports_link_status(uint32_t port_mask)
591 {
592 #define CHECK_INTERVAL 100 /* 100ms */
593 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
594 	uint16_t portid;
595 	uint8_t count, all_ports_up, print_flag = 0;
596 	struct rte_eth_link link;
597 	int ret;
598 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
599 
600 	printf("\nChecking link status");
601 	fflush(stdout);
602 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
603 		all_ports_up = 1;
604 		RTE_ETH_FOREACH_DEV(portid) {
605 			if ((port_mask & (1 << portid)) == 0)
606 				continue;
607 			memset(&link, 0, sizeof(link));
608 			ret = rte_eth_link_get_nowait(portid, &link);
609 			if (ret < 0) {
610 				all_ports_up = 0;
611 				if (print_flag == 1)
612 					printf("Port %u link get failed: %s\n",
613 						portid, rte_strerror(-ret));
614 				continue;
615 			}
616 			/* print link status if flag set */
617 			if (print_flag == 1) {
618 				rte_eth_link_to_str(link_status_text,
619 					sizeof(link_status_text), &link);
620 				printf("Port %d %s\n", portid,
621 				       link_status_text);
622 				continue;
623 			}
624 			/* clear all_ports_up flag if any link down */
625 			if (link.link_status == RTE_ETH_LINK_DOWN) {
626 				all_ports_up = 0;
627 				break;
628 			}
629 		}
630 		/* after finally printing all link status, get out */
631 		if (print_flag == 1)
632 			break;
633 
634 		if (all_ports_up == 0) {
635 			printf(".");
636 			fflush(stdout);
637 			rte_delay_ms(CHECK_INTERVAL);
638 		}
639 
640 		/* set the print_flag if all ports up or timeout */
641 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
642 			print_flag = 1;
643 			printf("\ndone\n");
644 		}
645 	}
646 }
647 
648 /* Check L3 packet type detection capability of the NIC port */
649 static int
650 check_ptype(int portid)
651 {
652 	int i, ret;
653 	int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
654 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
655 
656 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
657 	if (ret <= 0)
658 		return 0;
659 
660 	uint32_t ptypes[ret];
661 
662 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
663 	for (i = 0; i < ret; ++i) {
664 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
665 			ptype_l3_ipv4 = 1;
666 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
667 			ptype_l3_ipv6 = 1;
668 	}
669 
670 	if (ptype_l3_ipv4 == 0)
671 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
672 
673 	if (ptype_l3_ipv6 == 0)
674 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
675 
676 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
677 		return 1;
678 
679 	return 0;
680 
681 }
682 
683 /* Parse packet type of a packet by SW */
684 static inline void
685 parse_ptype(struct rte_mbuf *m)
686 {
687 	struct rte_ether_hdr *eth_hdr;
688 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
689 	uint16_t ether_type;
690 
691 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
692 	ether_type = eth_hdr->ether_type;
693 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
694 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
695 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
696 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
697 
698 	m->packet_type = packet_type;
699 }
700 
701 /* callback function to detect packet type for a queue of a port */
702 static uint16_t
703 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
704 		   struct rte_mbuf *pkts[], uint16_t nb_pkts,
705 		   uint16_t max_pkts __rte_unused,
706 		   void *user_param __rte_unused)
707 {
708 	uint16_t i;
709 
710 	for (i = 0; i < nb_pkts; ++i)
711 		parse_ptype(pkts[i]);
712 
713 	return nb_pkts;
714 }
715 
716 static int
717 init_routing_table(void)
718 {
719 	struct rte_lpm *lpm;
720 	struct rte_lpm6 *lpm6;
721 	int socket, ret;
722 	unsigned i;
723 
724 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
725 		if (socket_lpm[socket]) {
726 			lpm = socket_lpm[socket];
727 			/* populate the LPM table */
728 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
729 				ret = rte_lpm_add(lpm,
730 					l3fwd_ipv4_route_array[i].ip,
731 					l3fwd_ipv4_route_array[i].depth,
732 					l3fwd_ipv4_route_array[i].if_out);
733 
734 				if (ret < 0) {
735 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
736 						"LPM table\n", i);
737 					return -1;
738 				}
739 
740 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
741 						"/%d (port %d)\n",
742 					socket,
743 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
744 					l3fwd_ipv4_route_array[i].depth,
745 					l3fwd_ipv4_route_array[i].if_out);
746 			}
747 		}
748 
749 		if (socket_lpm6[socket]) {
750 			lpm6 = socket_lpm6[socket];
751 			/* populate the LPM6 table */
752 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
753 				ret = rte_lpm6_add(lpm6,
754 					l3fwd_ipv6_route_array[i].ip,
755 					l3fwd_ipv6_route_array[i].depth,
756 					l3fwd_ipv6_route_array[i].if_out);
757 
758 				if (ret < 0) {
759 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
760 						"LPM6 table\n", i);
761 					return -1;
762 				}
763 
764 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
765 						"/%d (port %d)\n",
766 					socket,
767 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
768 					l3fwd_ipv6_route_array[i].depth,
769 					l3fwd_ipv6_route_array[i].if_out);
770 			}
771 		}
772 	}
773 	return 0;
774 }
775 
776 static int
777 init_mem(void)
778 {
779 	char buf[PATH_MAX];
780 	struct rte_mempool *mp;
781 	struct rte_lpm *lpm;
782 	struct rte_lpm6 *lpm6;
783 	struct rte_lpm_config lpm_config;
784 	int socket;
785 	unsigned lcore_id;
786 
787 	/* traverse through lcores and initialize structures on each socket */
788 
789 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
790 
791 		if (rte_lcore_is_enabled(lcore_id) == 0)
792 			continue;
793 
794 		socket = rte_lcore_to_socket_id(lcore_id);
795 
796 		if (socket == SOCKET_ID_ANY)
797 			socket = 0;
798 
799 		if (socket_direct_pool[socket] == NULL) {
800 			RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
801 					socket);
802 			snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
803 
804 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
805 				0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
806 			if (mp == NULL) {
807 				RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
808 				return -1;
809 			}
810 			socket_direct_pool[socket] = mp;
811 		}
812 
813 		if (socket_indirect_pool[socket] == NULL) {
814 			RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
815 					socket);
816 			snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
817 
818 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
819 				socket);
820 			if (mp == NULL) {
821 				RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
822 				return -1;
823 			}
824 			socket_indirect_pool[socket] = mp;
825 		}
826 
827 		if (socket_lpm[socket] == NULL) {
828 			RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
829 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
830 
831 			lpm_config.max_rules = LPM_MAX_RULES;
832 			lpm_config.number_tbl8s = 256;
833 			lpm_config.flags = 0;
834 
835 			lpm = rte_lpm_create(buf, socket, &lpm_config);
836 			if (lpm == NULL) {
837 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
838 				return -1;
839 			}
840 			socket_lpm[socket] = lpm;
841 		}
842 
843 		if (socket_lpm6[socket] == NULL) {
844 			RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
845 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
846 
847 			lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
848 			if (lpm6 == NULL) {
849 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
850 				return -1;
851 			}
852 			socket_lpm6[socket] = lpm6;
853 		}
854 	}
855 
856 	return 0;
857 }
858 
859 int
860 main(int argc, char **argv)
861 {
862 	struct lcore_queue_conf *qconf;
863 	struct rte_eth_dev_info dev_info;
864 	struct rte_eth_txconf *txconf;
865 	struct rx_queue *rxq;
866 	int socket, ret;
867 	uint16_t nb_ports;
868 	uint16_t queueid = 0;
869 	unsigned lcore_id = 0, rx_lcore_id = 0;
870 	uint32_t n_tx_queue, nb_lcores;
871 	uint16_t portid;
872 
873 	/* init EAL */
874 	ret = rte_eal_init(argc, argv);
875 	if (ret < 0)
876 		rte_exit(EXIT_FAILURE, "rte_eal_init failed");
877 	argc -= ret;
878 	argv += ret;
879 
880 	/* parse application arguments (after the EAL ones) */
881 	ret = parse_args(argc, argv);
882 	if (ret < 0)
883 		rte_exit(EXIT_FAILURE, "Invalid arguments");
884 
885 	nb_ports = rte_eth_dev_count_avail();
886 	if (nb_ports == 0)
887 		rte_exit(EXIT_FAILURE, "No ports found!\n");
888 
889 	nb_lcores = rte_lcore_count();
890 
891 	/* initialize structures (mempools, lpm etc.) */
892 	if (init_mem() < 0)
893 		rte_panic("Cannot initialize memory structures!\n");
894 
895 	/* check if portmask has non-existent ports */
896 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
897 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
898 
899 	/* initialize all ports */
900 	RTE_ETH_FOREACH_DEV(portid) {
901 		struct rte_eth_conf local_port_conf = port_conf;
902 		struct rte_eth_rxconf rxq_conf;
903 
904 		/* skip ports that are not enabled */
905 		if ((enabled_port_mask & (1 << portid)) == 0) {
906 			printf("Skipping disabled port %d\n", portid);
907 			continue;
908 		}
909 
910 		qconf = &lcore_queue_conf[rx_lcore_id];
911 
912 		/* limit the frame size to the maximum supported by NIC */
913 		ret = rte_eth_dev_info_get(portid, &dev_info);
914 		if (ret != 0)
915 			rte_exit(EXIT_FAILURE,
916 				"Error during getting device (port %u) info: %s\n",
917 				portid, strerror(-ret));
918 
919 		local_port_conf.rxmode.mtu = RTE_MIN(
920 		    dev_info.max_mtu,
921 		    local_port_conf.rxmode.mtu);
922 
923 		/* get the lcore_id for this port */
924 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
925 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
926 
927 			rx_lcore_id ++;
928 			if (rx_lcore_id >= RTE_MAX_LCORE)
929 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
930 
931 			qconf = &lcore_queue_conf[rx_lcore_id];
932 		}
933 
934 		socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
935 		if (socket == SOCKET_ID_ANY)
936 			socket = 0;
937 
938 		rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
939 		rxq->portid = portid;
940 		rxq->direct_pool = socket_direct_pool[socket];
941 		rxq->indirect_pool = socket_indirect_pool[socket];
942 		rxq->lpm = socket_lpm[socket];
943 		rxq->lpm6 = socket_lpm6[socket];
944 		qconf->n_rx_queue++;
945 
946 		/* init port */
947 		printf("Initializing port %d on lcore %u...", portid,
948 		       rx_lcore_id);
949 		fflush(stdout);
950 
951 		n_tx_queue = nb_lcores;
952 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
953 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
954 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
955 					    &local_port_conf);
956 		if (ret < 0) {
957 			printf("\n");
958 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
959 				"err=%d, port=%d\n",
960 				ret, portid);
961 		}
962 
963 		/* set the mtu to the maximum received packet size */
964 		ret = rte_eth_dev_set_mtu(portid, local_port_conf.rxmode.mtu);
965 		if (ret < 0) {
966 			printf("\n");
967 			rte_exit(EXIT_FAILURE, "Set MTU failed: "
968 				"err=%d, port=%d\n",
969 			ret, portid);
970 		}
971 
972 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
973 					    &nb_txd);
974 		if (ret < 0) {
975 			printf("\n");
976 			rte_exit(EXIT_FAILURE, "Cannot adjust number of "
977 				"descriptors: err=%d, port=%d\n", ret, portid);
978 		}
979 
980 		/* init one RX queue */
981 		rxq_conf = dev_info.default_rxconf;
982 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
983 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
984 					     socket, &rxq_conf,
985 					     socket_direct_pool[socket]);
986 		if (ret < 0) {
987 			printf("\n");
988 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
989 				"err=%d, port=%d\n",
990 				ret, portid);
991 		}
992 
993 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
994 		if (ret < 0) {
995 			printf("\n");
996 			rte_exit(EXIT_FAILURE,
997 				"rte_eth_macaddr_get: err=%d, port=%d\n",
998 				ret, portid);
999 		}
1000 
1001 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1002 		printf("\n");
1003 
1004 		/* init one TX queue per couple (lcore,port) */
1005 		ret = rte_eth_dev_info_get(portid, &dev_info);
1006 		if (ret != 0)
1007 			rte_exit(EXIT_FAILURE,
1008 				"Error during getting device (port %u) info: %s\n",
1009 				portid, strerror(-ret));
1010 
1011 		queueid = 0;
1012 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1013 			if (rte_lcore_is_enabled(lcore_id) == 0)
1014 				continue;
1015 
1016 			if (queueid >= dev_info.nb_tx_queues)
1017 				break;
1018 
1019 			socket = (int) rte_lcore_to_socket_id(lcore_id);
1020 			printf("txq=%u,%d ", lcore_id, queueid);
1021 			fflush(stdout);
1022 
1023 			txconf = &dev_info.default_txconf;
1024 			txconf->offloads = local_port_conf.txmode.offloads;
1025 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1026 						     socket, txconf);
1027 			if (ret < 0) {
1028 				printf("\n");
1029 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1030 					"err=%d, port=%d\n", ret, portid);
1031 			}
1032 
1033 			qconf = &lcore_queue_conf[lcore_id];
1034 			qconf->tx_queue_id[portid] = queueid;
1035 			queueid++;
1036 		}
1037 
1038 		printf("\n");
1039 	}
1040 
1041 	printf("\n");
1042 
1043 	/* start ports */
1044 	RTE_ETH_FOREACH_DEV(portid) {
1045 		if ((enabled_port_mask & (1 << portid)) == 0) {
1046 			continue;
1047 		}
1048 		/* Start device */
1049 		ret = rte_eth_dev_start(portid);
1050 		if (ret < 0)
1051 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1052 				ret, portid);
1053 
1054 		ret = rte_eth_promiscuous_enable(portid);
1055 		if (ret != 0)
1056 			rte_exit(EXIT_FAILURE,
1057 				"rte_eth_promiscuous_enable: err=%s, port=%d\n",
1058 				rte_strerror(-ret), portid);
1059 
1060 		if (check_ptype(portid) == 0) {
1061 			rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
1062 			printf("Add Rx callback function to detect L3 packet type by SW :"
1063 				" port = %d\n", portid);
1064 		}
1065 	}
1066 
1067 	if (init_routing_table() < 0)
1068 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1069 
1070 	check_all_ports_link_status(enabled_port_mask);
1071 
1072 	/* launch per-lcore init on every lcore */
1073 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
1074 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
1075 		if (rte_eal_wait_lcore(lcore_id) < 0)
1076 			return -1;
1077 	}
1078 
1079 	/* clean up the EAL */
1080 	rte_eal_cleanup();
1081 
1082 	return 0;
1083 }
1084