1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <string.h> 41 #include <sys/queue.h> 42 #include <stdarg.h> 43 #include <errno.h> 44 #include <getopt.h> 45 46 #include <rte_common.h> 47 #include <rte_byteorder.h> 48 #include <rte_log.h> 49 #include <rte_memory.h> 50 #include <rte_memcpy.h> 51 #include <rte_memzone.h> 52 #include <rte_eal.h> 53 #include <rte_per_lcore.h> 54 #include <rte_launch.h> 55 #include <rte_atomic.h> 56 #include <rte_cycles.h> 57 #include <rte_prefetch.h> 58 #include <rte_lcore.h> 59 #include <rte_per_lcore.h> 60 #include <rte_branch_prediction.h> 61 #include <rte_interrupts.h> 62 #include <rte_pci.h> 63 #include <rte_random.h> 64 #include <rte_debug.h> 65 #include <rte_ether.h> 66 #include <rte_ethdev.h> 67 #include <rte_ring.h> 68 #include <rte_mempool.h> 69 #include <rte_mbuf.h> 70 #include <rte_lpm.h> 71 #include <rte_lpm6.h> 72 #include <rte_ip.h> 73 #include <rte_string_fns.h> 74 75 #include <rte_ip_frag.h> 76 77 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 78 79 /* allow max jumbo frame 9.5 KB */ 80 #define JUMBO_FRAME_MAX_SIZE 0x2600 81 82 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 83 84 /* 85 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 86 * This value includes the size of IPv6 header. 87 */ 88 #define IPV4_MTU_DEFAULT ETHER_MTU 89 #define IPV6_MTU_DEFAULT ETHER_MTU 90 91 /* 92 * Default payload in bytes for the IPv6 packet. 93 */ 94 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) 95 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) 96 97 /* 98 * Max number of fragments per packet expected - defined by config file. 99 */ 100 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 101 102 #define NB_MBUF 8192 103 104 #define MAX_PKT_BURST 32 105 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 106 107 /* Configure how many packets ahead to prefetch, when reading packets */ 108 #define PREFETCH_OFFSET 3 109 110 /* 111 * Configurable number of RX/TX ring descriptors 112 */ 113 #define RTE_TEST_RX_DESC_DEFAULT 128 114 #define RTE_TEST_TX_DESC_DEFAULT 512 115 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 116 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 117 118 /* ethernet addresses of ports */ 119 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 120 121 #ifndef IPv4_BYTES 122 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 123 #define IPv4_BYTES(addr) \ 124 (uint8_t) (((addr) >> 24) & 0xFF),\ 125 (uint8_t) (((addr) >> 16) & 0xFF),\ 126 (uint8_t) (((addr) >> 8) & 0xFF),\ 127 (uint8_t) ((addr) & 0xFF) 128 #endif 129 130 #ifndef IPv6_BYTES 131 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 132 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 133 #define IPv6_BYTES(addr) \ 134 addr[0], addr[1], addr[2], addr[3], \ 135 addr[4], addr[5], addr[6], addr[7], \ 136 addr[8], addr[9], addr[10], addr[11],\ 137 addr[12], addr[13],addr[14], addr[15] 138 #endif 139 140 #define IPV6_ADDR_LEN 16 141 142 /* mask of enabled ports */ 143 static int enabled_port_mask = 0; 144 145 static int rx_queue_per_lcore = 1; 146 147 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 148 149 struct mbuf_table { 150 uint16_t len; 151 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 152 }; 153 154 struct rx_queue { 155 struct rte_mempool *direct_pool; 156 struct rte_mempool *indirect_pool; 157 struct rte_lpm *lpm; 158 struct rte_lpm6 *lpm6; 159 uint8_t portid; 160 }; 161 162 #define MAX_RX_QUEUE_PER_LCORE 16 163 #define MAX_TX_QUEUE_PER_PORT 16 164 struct lcore_queue_conf { 165 uint16_t n_rx_queue; 166 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 167 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 168 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 169 } __rte_cache_aligned; 170 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 171 172 static const struct rte_eth_conf port_conf = { 173 .rxmode = { 174 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 175 .split_hdr_size = 0, 176 .header_split = 0, /**< Header Split disabled */ 177 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 178 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 179 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 180 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 181 }, 182 .txmode = { 183 .mq_mode = ETH_MQ_TX_NONE, 184 }, 185 }; 186 187 /* 188 * IPv4 forwarding table 189 */ 190 struct l3fwd_ipv4_route { 191 uint32_t ip; 192 uint8_t depth; 193 uint8_t if_out; 194 }; 195 196 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 197 {IPv4(100,10,0,0), 16, 0}, 198 {IPv4(100,20,0,0), 16, 1}, 199 {IPv4(100,30,0,0), 16, 2}, 200 {IPv4(100,40,0,0), 16, 3}, 201 {IPv4(100,50,0,0), 16, 4}, 202 {IPv4(100,60,0,0), 16, 5}, 203 {IPv4(100,70,0,0), 16, 6}, 204 {IPv4(100,80,0,0), 16, 7}, 205 }; 206 207 /* 208 * IPv6 forwarding table 209 */ 210 211 struct l3fwd_ipv6_route { 212 uint8_t ip[IPV6_ADDR_LEN]; 213 uint8_t depth; 214 uint8_t if_out; 215 }; 216 217 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 218 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 219 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 220 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 221 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 222 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 223 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 224 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 225 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 226 }; 227 228 #define LPM_MAX_RULES 1024 229 #define LPM6_MAX_RULES 1024 230 #define LPM6_NUMBER_TBL8S (1 << 16) 231 232 struct rte_lpm6_config lpm6_config = { 233 .max_rules = LPM6_MAX_RULES, 234 .number_tbl8s = LPM6_NUMBER_TBL8S, 235 .flags = 0 236 }; 237 238 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 239 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 240 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 241 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 242 243 /* Send burst of packets on an output interface */ 244 static inline int 245 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port) 246 { 247 struct rte_mbuf **m_table; 248 int ret; 249 uint16_t queueid; 250 251 queueid = qconf->tx_queue_id[port]; 252 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 253 254 ret = rte_eth_tx_burst(port, queueid, m_table, n); 255 if (unlikely(ret < n)) { 256 do { 257 rte_pktmbuf_free(m_table[ret]); 258 } while (++ret < n); 259 } 260 261 return 0; 262 } 263 264 static inline void 265 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 266 uint8_t queueid, uint8_t port_in) 267 { 268 struct rx_queue *rxq; 269 uint32_t i, len; 270 uint8_t next_hop, port_out, ipv6; 271 int32_t len2; 272 273 ipv6 = 0; 274 rxq = &qconf->rx_queue_list[queueid]; 275 276 /* by default, send everything back to the source port */ 277 port_out = port_in; 278 279 /* Remove the Ethernet header and trailer from the input packet */ 280 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 281 282 /* Build transmission burst */ 283 len = qconf->tx_mbufs[port_out].len; 284 285 /* if this is an IPv4 packet */ 286 if (m->ol_flags & PKT_RX_IPV4_HDR) { 287 struct ipv4_hdr *ip_hdr; 288 uint32_t ip_dst; 289 /* Read the lookup key (i.e. ip_dst) from the input packet */ 290 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); 291 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 292 293 /* Find destination port */ 294 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 295 (enabled_port_mask & 1 << next_hop) != 0) { 296 port_out = next_hop; 297 298 /* Build transmission burst for new port */ 299 len = qconf->tx_mbufs[port_out].len; 300 } 301 302 /* if we don't need to do any fragmentation */ 303 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 304 qconf->tx_mbufs[port_out].m_table[len] = m; 305 len2 = 1; 306 } else { 307 len2 = rte_ipv4_fragment_packet(m, 308 &qconf->tx_mbufs[port_out].m_table[len], 309 (uint16_t)(MBUF_TABLE_SIZE - len), 310 IPV4_MTU_DEFAULT, 311 rxq->direct_pool, rxq->indirect_pool); 312 313 /* Free input packet */ 314 rte_pktmbuf_free(m); 315 316 /* If we fail to fragment the packet */ 317 if (unlikely (len2 < 0)) 318 return; 319 } 320 } 321 /* if this is an IPv6 packet */ 322 else if (m->ol_flags & PKT_RX_IPV6_HDR) { 323 struct ipv6_hdr *ip_hdr; 324 325 ipv6 = 1; 326 327 /* Read the lookup key (i.e. ip_dst) from the input packet */ 328 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); 329 330 /* Find destination port */ 331 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop) == 0 && 332 (enabled_port_mask & 1 << next_hop) != 0) { 333 port_out = next_hop; 334 335 /* Build transmission burst for new port */ 336 len = qconf->tx_mbufs[port_out].len; 337 } 338 339 /* if we don't need to do any fragmentation */ 340 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 341 qconf->tx_mbufs[port_out].m_table[len] = m; 342 len2 = 1; 343 } else { 344 len2 = rte_ipv6_fragment_packet(m, 345 &qconf->tx_mbufs[port_out].m_table[len], 346 (uint16_t)(MBUF_TABLE_SIZE - len), 347 IPV6_MTU_DEFAULT, 348 rxq->direct_pool, rxq->indirect_pool); 349 350 /* Free input packet */ 351 rte_pktmbuf_free(m); 352 353 /* If we fail to fragment the packet */ 354 if (unlikely (len2 < 0)) 355 return; 356 } 357 } 358 /* else, just forward the packet */ 359 else { 360 qconf->tx_mbufs[port_out].m_table[len] = m; 361 len2 = 1; 362 } 363 364 for (i = len; i < len + len2; i ++) { 365 void *d_addr_bytes; 366 367 m = qconf->tx_mbufs[port_out].m_table[i]; 368 struct ether_hdr *eth_hdr = (struct ether_hdr *) 369 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); 370 if (eth_hdr == NULL) { 371 rte_panic("No headroom in mbuf.\n"); 372 } 373 374 m->l2_len = sizeof(struct ether_hdr); 375 376 /* 02:00:00:00:00:xx */ 377 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 378 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 379 380 /* src addr */ 381 ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); 382 if (ipv6) 383 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 384 else 385 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 386 } 387 388 len += len2; 389 390 if (likely(len < MAX_PKT_BURST)) { 391 qconf->tx_mbufs[port_out].len = (uint16_t)len; 392 return; 393 } 394 395 /* Transmit packets */ 396 send_burst(qconf, (uint16_t)len, port_out); 397 qconf->tx_mbufs[port_out].len = 0; 398 } 399 400 /* main processing loop */ 401 static int 402 main_loop(__attribute__((unused)) void *dummy) 403 { 404 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 405 unsigned lcore_id; 406 uint64_t prev_tsc, diff_tsc, cur_tsc; 407 int i, j, nb_rx; 408 uint8_t portid; 409 struct lcore_queue_conf *qconf; 410 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 411 412 prev_tsc = 0; 413 414 lcore_id = rte_lcore_id(); 415 qconf = &lcore_queue_conf[lcore_id]; 416 417 if (qconf->n_rx_queue == 0) { 418 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 419 return 0; 420 } 421 422 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 423 424 for (i = 0; i < qconf->n_rx_queue; i++) { 425 426 portid = qconf->rx_queue_list[i].portid; 427 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 428 (int) portid); 429 } 430 431 while (1) { 432 433 cur_tsc = rte_rdtsc(); 434 435 /* 436 * TX burst queue drain 437 */ 438 diff_tsc = cur_tsc - prev_tsc; 439 if (unlikely(diff_tsc > drain_tsc)) { 440 441 /* 442 * This could be optimized (use queueid instead of 443 * portid), but it is not called so often 444 */ 445 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 446 if (qconf->tx_mbufs[portid].len == 0) 447 continue; 448 send_burst(&lcore_queue_conf[lcore_id], 449 qconf->tx_mbufs[portid].len, 450 portid); 451 qconf->tx_mbufs[portid].len = 0; 452 } 453 454 prev_tsc = cur_tsc; 455 } 456 457 /* 458 * Read packet from RX queues 459 */ 460 for (i = 0; i < qconf->n_rx_queue; i++) { 461 462 portid = qconf->rx_queue_list[i].portid; 463 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 464 MAX_PKT_BURST); 465 466 /* Prefetch first packets */ 467 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 468 rte_prefetch0(rte_pktmbuf_mtod( 469 pkts_burst[j], void *)); 470 } 471 472 /* Prefetch and forward already prefetched packets */ 473 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 474 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 475 j + PREFETCH_OFFSET], void *)); 476 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 477 } 478 479 /* Forward remaining prefetched packets */ 480 for (; j < nb_rx; j++) { 481 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 482 } 483 } 484 } 485 } 486 487 /* display usage */ 488 static void 489 print_usage(const char *prgname) 490 { 491 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 492 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 493 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 494 prgname); 495 } 496 497 static int 498 parse_portmask(const char *portmask) 499 { 500 char *end = NULL; 501 unsigned long pm; 502 503 /* parse hexadecimal string */ 504 pm = strtoul(portmask, &end, 16); 505 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 506 return -1; 507 508 if (pm == 0) 509 return -1; 510 511 return pm; 512 } 513 514 static int 515 parse_nqueue(const char *q_arg) 516 { 517 char *end = NULL; 518 unsigned long n; 519 520 /* parse hexadecimal string */ 521 n = strtoul(q_arg, &end, 10); 522 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 523 return -1; 524 if (n == 0) 525 return -1; 526 if (n >= MAX_RX_QUEUE_PER_LCORE) 527 return -1; 528 529 return n; 530 } 531 532 /* Parse the argument given in the command line of the application */ 533 static int 534 parse_args(int argc, char **argv) 535 { 536 int opt, ret; 537 char **argvopt; 538 int option_index; 539 char *prgname = argv[0]; 540 static struct option lgopts[] = { 541 {NULL, 0, 0, 0} 542 }; 543 544 argvopt = argv; 545 546 while ((opt = getopt_long(argc, argvopt, "p:q:", 547 lgopts, &option_index)) != EOF) { 548 549 switch (opt) { 550 /* portmask */ 551 case 'p': 552 enabled_port_mask = parse_portmask(optarg); 553 if (enabled_port_mask < 0) { 554 printf("invalid portmask\n"); 555 print_usage(prgname); 556 return -1; 557 } 558 break; 559 560 /* nqueue */ 561 case 'q': 562 rx_queue_per_lcore = parse_nqueue(optarg); 563 if (rx_queue_per_lcore < 0) { 564 printf("invalid queue number\n"); 565 print_usage(prgname); 566 return -1; 567 } 568 break; 569 570 /* long options */ 571 case 0: 572 print_usage(prgname); 573 return -1; 574 575 default: 576 print_usage(prgname); 577 return -1; 578 } 579 } 580 581 if (enabled_port_mask == 0) { 582 printf("portmask not specified\n"); 583 print_usage(prgname); 584 return -1; 585 } 586 587 if (optind >= 0) 588 argv[optind-1] = prgname; 589 590 ret = optind-1; 591 optind = 0; /* reset getopt lib */ 592 return ret; 593 } 594 595 static void 596 print_ethaddr(const char *name, struct ether_addr *eth_addr) 597 { 598 char buf[ETHER_ADDR_FMT_SIZE]; 599 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 600 printf("%s%s", name, buf); 601 } 602 603 /* Check the link status of all ports in up to 9s, and print them finally */ 604 static void 605 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 606 { 607 #define CHECK_INTERVAL 100 /* 100ms */ 608 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 609 uint8_t portid, count, all_ports_up, print_flag = 0; 610 struct rte_eth_link link; 611 612 printf("\nChecking link status"); 613 fflush(stdout); 614 for (count = 0; count <= MAX_CHECK_TIME; count++) { 615 all_ports_up = 1; 616 for (portid = 0; portid < port_num; portid++) { 617 if ((port_mask & (1 << portid)) == 0) 618 continue; 619 memset(&link, 0, sizeof(link)); 620 rte_eth_link_get_nowait(portid, &link); 621 /* print link status if flag set */ 622 if (print_flag == 1) { 623 if (link.link_status) 624 printf("Port %d Link Up - speed %u " 625 "Mbps - %s\n", (uint8_t)portid, 626 (unsigned)link.link_speed, 627 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 628 ("full-duplex") : ("half-duplex\n")); 629 else 630 printf("Port %d Link Down\n", 631 (uint8_t)portid); 632 continue; 633 } 634 /* clear all_ports_up flag if any link down */ 635 if (link.link_status == 0) { 636 all_ports_up = 0; 637 break; 638 } 639 } 640 /* after finally printing all link status, get out */ 641 if (print_flag == 1) 642 break; 643 644 if (all_ports_up == 0) { 645 printf("."); 646 fflush(stdout); 647 rte_delay_ms(CHECK_INTERVAL); 648 } 649 650 /* set the print_flag if all ports up or timeout */ 651 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 652 print_flag = 1; 653 printf("\ndone\n"); 654 } 655 } 656 } 657 658 static int 659 init_routing_table(void) 660 { 661 struct rte_lpm *lpm; 662 struct rte_lpm6 *lpm6; 663 int socket, ret; 664 unsigned i; 665 666 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 667 if (socket_lpm[socket]) { 668 lpm = socket_lpm[socket]; 669 /* populate the LPM table */ 670 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 671 ret = rte_lpm_add(lpm, 672 l3fwd_ipv4_route_array[i].ip, 673 l3fwd_ipv4_route_array[i].depth, 674 l3fwd_ipv4_route_array[i].if_out); 675 676 if (ret < 0) { 677 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 678 "LPM table\n", i); 679 return -1; 680 } 681 682 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 683 "/%d (port %d)\n", 684 socket, 685 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 686 l3fwd_ipv4_route_array[i].depth, 687 l3fwd_ipv4_route_array[i].if_out); 688 } 689 } 690 691 if (socket_lpm6[socket]) { 692 lpm6 = socket_lpm6[socket]; 693 /* populate the LPM6 table */ 694 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 695 ret = rte_lpm6_add(lpm6, 696 l3fwd_ipv6_route_array[i].ip, 697 l3fwd_ipv6_route_array[i].depth, 698 l3fwd_ipv6_route_array[i].if_out); 699 700 if (ret < 0) { 701 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 702 "LPM6 table\n", i); 703 return -1; 704 } 705 706 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 707 "/%d (port %d)\n", 708 socket, 709 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 710 l3fwd_ipv6_route_array[i].depth, 711 l3fwd_ipv6_route_array[i].if_out); 712 } 713 } 714 } 715 return 0; 716 } 717 718 static int 719 init_mem(void) 720 { 721 char buf[PATH_MAX]; 722 struct rte_mempool *mp; 723 struct rte_lpm *lpm; 724 struct rte_lpm6 *lpm6; 725 int socket; 726 unsigned lcore_id; 727 728 /* traverse through lcores and initialize structures on each socket */ 729 730 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 731 732 if (rte_lcore_is_enabled(lcore_id) == 0) 733 continue; 734 735 socket = rte_lcore_to_socket_id(lcore_id); 736 737 if (socket == SOCKET_ID_ANY) 738 socket = 0; 739 740 if (socket_direct_pool[socket] == NULL) { 741 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 742 socket); 743 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 744 745 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 746 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 747 if (mp == NULL) { 748 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 749 return -1; 750 } 751 socket_direct_pool[socket] = mp; 752 } 753 754 if (socket_indirect_pool[socket] == NULL) { 755 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 756 socket); 757 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 758 759 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 760 socket); 761 if (mp == NULL) { 762 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 763 return -1; 764 } 765 socket_indirect_pool[socket] = mp; 766 } 767 768 if (socket_lpm[socket] == NULL) { 769 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 770 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 771 772 lpm = rte_lpm_create(buf, socket, LPM_MAX_RULES, 0); 773 if (lpm == NULL) { 774 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 775 return -1; 776 } 777 socket_lpm[socket] = lpm; 778 } 779 780 if (socket_lpm6[socket] == NULL) { 781 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 782 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 783 784 lpm6 = rte_lpm6_create("IP_FRAG_LPM6", socket, &lpm6_config); 785 if (lpm6 == NULL) { 786 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 787 return -1; 788 } 789 socket_lpm6[socket] = lpm6; 790 } 791 } 792 793 return 0; 794 } 795 796 int 797 main(int argc, char **argv) 798 { 799 struct lcore_queue_conf *qconf; 800 struct rte_eth_dev_info dev_info; 801 struct rte_eth_txconf *txconf; 802 struct rx_queue *rxq; 803 int socket, ret; 804 unsigned nb_ports; 805 uint16_t queueid = 0; 806 unsigned lcore_id = 0, rx_lcore_id = 0; 807 uint32_t n_tx_queue, nb_lcores; 808 uint8_t portid; 809 810 /* init EAL */ 811 ret = rte_eal_init(argc, argv); 812 if (ret < 0) 813 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 814 argc -= ret; 815 argv += ret; 816 817 /* parse application arguments (after the EAL ones) */ 818 ret = parse_args(argc, argv); 819 if (ret < 0) 820 rte_exit(EXIT_FAILURE, "Invalid arguments"); 821 822 nb_ports = rte_eth_dev_count(); 823 if (nb_ports > RTE_MAX_ETHPORTS) 824 nb_ports = RTE_MAX_ETHPORTS; 825 else if (nb_ports == 0) 826 rte_exit(EXIT_FAILURE, "No ports found!\n"); 827 828 nb_lcores = rte_lcore_count(); 829 830 /* initialize structures (mempools, lpm etc.) */ 831 if (init_mem() < 0) 832 rte_panic("Cannot initialize memory structures!\n"); 833 834 /* check if portmask has non-existent ports */ 835 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 836 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 837 838 /* initialize all ports */ 839 for (portid = 0; portid < nb_ports; portid++) { 840 /* skip ports that are not enabled */ 841 if ((enabled_port_mask & (1 << portid)) == 0) { 842 printf("Skipping disabled port %d\n", portid); 843 continue; 844 } 845 846 qconf = &lcore_queue_conf[rx_lcore_id]; 847 848 /* get the lcore_id for this port */ 849 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 850 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 851 852 rx_lcore_id ++; 853 if (rx_lcore_id >= RTE_MAX_LCORE) 854 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 855 856 qconf = &lcore_queue_conf[rx_lcore_id]; 857 } 858 859 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 860 if (socket == SOCKET_ID_ANY) 861 socket = 0; 862 863 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 864 rxq->portid = portid; 865 rxq->direct_pool = socket_direct_pool[socket]; 866 rxq->indirect_pool = socket_indirect_pool[socket]; 867 rxq->lpm = socket_lpm[socket]; 868 rxq->lpm6 = socket_lpm6[socket]; 869 qconf->n_rx_queue++; 870 871 /* init port */ 872 printf("Initializing port %d on lcore %u...", portid, 873 rx_lcore_id); 874 fflush(stdout); 875 876 n_tx_queue = nb_lcores; 877 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 878 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 879 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 880 &port_conf); 881 if (ret < 0) { 882 printf("\n"); 883 rte_exit(EXIT_FAILURE, "Cannot configure device: " 884 "err=%d, port=%d\n", 885 ret, portid); 886 } 887 888 /* init one RX queue */ 889 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 890 socket, NULL, 891 socket_direct_pool[socket]); 892 if (ret < 0) { 893 printf("\n"); 894 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 895 "err=%d, port=%d\n", 896 ret, portid); 897 } 898 899 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 900 print_ethaddr(" Address:", &ports_eth_addr[portid]); 901 printf("\n"); 902 903 /* init one TX queue per couple (lcore,port) */ 904 queueid = 0; 905 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 906 if (rte_lcore_is_enabled(lcore_id) == 0) 907 continue; 908 909 socket = (int) rte_lcore_to_socket_id(lcore_id); 910 printf("txq=%u,%d ", lcore_id, queueid); 911 fflush(stdout); 912 913 rte_eth_dev_info_get(portid, &dev_info); 914 txconf = &dev_info.default_txconf; 915 txconf->txq_flags = 0; 916 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 917 socket, txconf); 918 if (ret < 0) { 919 printf("\n"); 920 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 921 "err=%d, port=%d\n", ret, portid); 922 } 923 924 qconf = &lcore_queue_conf[lcore_id]; 925 qconf->tx_queue_id[portid] = queueid; 926 queueid++; 927 } 928 929 printf("\n"); 930 } 931 932 printf("\n"); 933 934 /* start ports */ 935 for (portid = 0; portid < nb_ports; portid++) { 936 if ((enabled_port_mask & (1 << portid)) == 0) { 937 continue; 938 } 939 /* Start device */ 940 ret = rte_eth_dev_start(portid); 941 if (ret < 0) 942 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 943 ret, portid); 944 945 rte_eth_promiscuous_enable(portid); 946 } 947 948 if (init_routing_table() < 0) 949 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 950 951 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 952 953 /* launch per-lcore init on every lcore */ 954 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 955 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 956 if (rte_eal_wait_lcore(lcore_id) < 0) 957 return -1; 958 } 959 960 return 0; 961 } 962