1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <string.h> 41 #include <sys/queue.h> 42 #include <stdarg.h> 43 #include <errno.h> 44 #include <getopt.h> 45 46 #include <rte_common.h> 47 #include <rte_byteorder.h> 48 #include <rte_log.h> 49 #include <rte_memory.h> 50 #include <rte_memcpy.h> 51 #include <rte_memzone.h> 52 #include <rte_eal.h> 53 #include <rte_launch.h> 54 #include <rte_atomic.h> 55 #include <rte_cycles.h> 56 #include <rte_prefetch.h> 57 #include <rte_lcore.h> 58 #include <rte_per_lcore.h> 59 #include <rte_branch_prediction.h> 60 #include <rte_interrupts.h> 61 #include <rte_pci.h> 62 #include <rte_random.h> 63 #include <rte_debug.h> 64 #include <rte_ether.h> 65 #include <rte_ethdev.h> 66 #include <rte_mempool.h> 67 #include <rte_mbuf.h> 68 #include <rte_lpm.h> 69 #include <rte_lpm6.h> 70 #include <rte_ip.h> 71 #include <rte_string_fns.h> 72 73 #include <rte_ip_frag.h> 74 75 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 76 77 /* allow max jumbo frame 9.5 KB */ 78 #define JUMBO_FRAME_MAX_SIZE 0x2600 79 80 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 81 82 /* 83 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 84 * This value includes the size of IPv6 header. 85 */ 86 #define IPV4_MTU_DEFAULT ETHER_MTU 87 #define IPV6_MTU_DEFAULT ETHER_MTU 88 89 /* 90 * Default payload in bytes for the IPv6 packet. 91 */ 92 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) 93 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) 94 95 /* 96 * Max number of fragments per packet expected - defined by config file. 97 */ 98 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 99 100 #define NB_MBUF 8192 101 102 #define MAX_PKT_BURST 32 103 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 104 105 /* Configure how many packets ahead to prefetch, when reading packets */ 106 #define PREFETCH_OFFSET 3 107 108 /* 109 * Configurable number of RX/TX ring descriptors 110 */ 111 #define RTE_TEST_RX_DESC_DEFAULT 128 112 #define RTE_TEST_TX_DESC_DEFAULT 512 113 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 114 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 115 116 /* ethernet addresses of ports */ 117 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 118 119 #ifndef IPv4_BYTES 120 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 121 #define IPv4_BYTES(addr) \ 122 (uint8_t) (((addr) >> 24) & 0xFF),\ 123 (uint8_t) (((addr) >> 16) & 0xFF),\ 124 (uint8_t) (((addr) >> 8) & 0xFF),\ 125 (uint8_t) ((addr) & 0xFF) 126 #endif 127 128 #ifndef IPv6_BYTES 129 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 130 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 131 #define IPv6_BYTES(addr) \ 132 addr[0], addr[1], addr[2], addr[3], \ 133 addr[4], addr[5], addr[6], addr[7], \ 134 addr[8], addr[9], addr[10], addr[11],\ 135 addr[12], addr[13],addr[14], addr[15] 136 #endif 137 138 #define IPV6_ADDR_LEN 16 139 140 /* mask of enabled ports */ 141 static int enabled_port_mask = 0; 142 143 static int rx_queue_per_lcore = 1; 144 145 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 146 147 struct mbuf_table { 148 uint16_t len; 149 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 150 }; 151 152 struct rx_queue { 153 struct rte_mempool *direct_pool; 154 struct rte_mempool *indirect_pool; 155 struct rte_lpm *lpm; 156 struct rte_lpm6 *lpm6; 157 uint8_t portid; 158 }; 159 160 #define MAX_RX_QUEUE_PER_LCORE 16 161 #define MAX_TX_QUEUE_PER_PORT 16 162 struct lcore_queue_conf { 163 uint16_t n_rx_queue; 164 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 165 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 166 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 167 } __rte_cache_aligned; 168 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 169 170 static struct rte_eth_conf port_conf = { 171 .rxmode = { 172 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 173 .split_hdr_size = 0, 174 .header_split = 0, /**< Header Split disabled */ 175 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 176 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 177 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 178 .hw_strip_crc = 1, /**< CRC stripped by hardware */ 179 }, 180 .txmode = { 181 .mq_mode = ETH_MQ_TX_NONE, 182 }, 183 }; 184 185 /* 186 * IPv4 forwarding table 187 */ 188 struct l3fwd_ipv4_route { 189 uint32_t ip; 190 uint8_t depth; 191 uint8_t if_out; 192 }; 193 194 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 195 {IPv4(100,10,0,0), 16, 0}, 196 {IPv4(100,20,0,0), 16, 1}, 197 {IPv4(100,30,0,0), 16, 2}, 198 {IPv4(100,40,0,0), 16, 3}, 199 {IPv4(100,50,0,0), 16, 4}, 200 {IPv4(100,60,0,0), 16, 5}, 201 {IPv4(100,70,0,0), 16, 6}, 202 {IPv4(100,80,0,0), 16, 7}, 203 }; 204 205 /* 206 * IPv6 forwarding table 207 */ 208 209 struct l3fwd_ipv6_route { 210 uint8_t ip[IPV6_ADDR_LEN]; 211 uint8_t depth; 212 uint8_t if_out; 213 }; 214 215 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 216 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 217 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 218 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 219 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 220 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 221 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 222 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 223 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 224 }; 225 226 #define LPM_MAX_RULES 1024 227 #define LPM6_MAX_RULES 1024 228 #define LPM6_NUMBER_TBL8S (1 << 16) 229 230 struct rte_lpm6_config lpm6_config = { 231 .max_rules = LPM6_MAX_RULES, 232 .number_tbl8s = LPM6_NUMBER_TBL8S, 233 .flags = 0 234 }; 235 236 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 237 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 238 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 239 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 240 241 /* Send burst of packets on an output interface */ 242 static inline int 243 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port) 244 { 245 struct rte_mbuf **m_table; 246 int ret; 247 uint16_t queueid; 248 249 queueid = qconf->tx_queue_id[port]; 250 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 251 252 ret = rte_eth_tx_burst(port, queueid, m_table, n); 253 if (unlikely(ret < n)) { 254 do { 255 rte_pktmbuf_free(m_table[ret]); 256 } while (++ret < n); 257 } 258 259 return 0; 260 } 261 262 static inline void 263 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 264 uint8_t queueid, uint8_t port_in) 265 { 266 struct rx_queue *rxq; 267 uint32_t i, len, next_hop; 268 uint8_t port_out, ipv6; 269 int32_t len2; 270 271 ipv6 = 0; 272 rxq = &qconf->rx_queue_list[queueid]; 273 274 /* by default, send everything back to the source port */ 275 port_out = port_in; 276 277 /* Remove the Ethernet header and trailer from the input packet */ 278 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 279 280 /* Build transmission burst */ 281 len = qconf->tx_mbufs[port_out].len; 282 283 /* if this is an IPv4 packet */ 284 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 285 struct ipv4_hdr *ip_hdr; 286 uint32_t ip_dst; 287 /* Read the lookup key (i.e. ip_dst) from the input packet */ 288 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); 289 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 290 291 /* Find destination port */ 292 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 293 (enabled_port_mask & 1 << next_hop) != 0) { 294 port_out = next_hop; 295 296 /* Build transmission burst for new port */ 297 len = qconf->tx_mbufs[port_out].len; 298 } 299 300 /* if we don't need to do any fragmentation */ 301 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 302 qconf->tx_mbufs[port_out].m_table[len] = m; 303 len2 = 1; 304 } else { 305 len2 = rte_ipv4_fragment_packet(m, 306 &qconf->tx_mbufs[port_out].m_table[len], 307 (uint16_t)(MBUF_TABLE_SIZE - len), 308 IPV4_MTU_DEFAULT, 309 rxq->direct_pool, rxq->indirect_pool); 310 311 /* Free input packet */ 312 rte_pktmbuf_free(m); 313 314 /* If we fail to fragment the packet */ 315 if (unlikely (len2 < 0)) 316 return; 317 } 318 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 319 /* if this is an IPv6 packet */ 320 struct ipv6_hdr *ip_hdr; 321 322 ipv6 = 1; 323 324 /* Read the lookup key (i.e. ip_dst) from the input packet */ 325 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); 326 327 /* Find destination port */ 328 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 329 &next_hop) == 0 && 330 (enabled_port_mask & 1 << next_hop) != 0) { 331 port_out = next_hop; 332 333 /* Build transmission burst for new port */ 334 len = qconf->tx_mbufs[port_out].len; 335 } 336 337 /* if we don't need to do any fragmentation */ 338 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 339 qconf->tx_mbufs[port_out].m_table[len] = m; 340 len2 = 1; 341 } else { 342 len2 = rte_ipv6_fragment_packet(m, 343 &qconf->tx_mbufs[port_out].m_table[len], 344 (uint16_t)(MBUF_TABLE_SIZE - len), 345 IPV6_MTU_DEFAULT, 346 rxq->direct_pool, rxq->indirect_pool); 347 348 /* Free input packet */ 349 rte_pktmbuf_free(m); 350 351 /* If we fail to fragment the packet */ 352 if (unlikely (len2 < 0)) 353 return; 354 } 355 } 356 /* else, just forward the packet */ 357 else { 358 qconf->tx_mbufs[port_out].m_table[len] = m; 359 len2 = 1; 360 } 361 362 for (i = len; i < len + len2; i ++) { 363 void *d_addr_bytes; 364 365 m = qconf->tx_mbufs[port_out].m_table[i]; 366 struct ether_hdr *eth_hdr = (struct ether_hdr *) 367 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); 368 if (eth_hdr == NULL) { 369 rte_panic("No headroom in mbuf.\n"); 370 } 371 372 m->l2_len = sizeof(struct ether_hdr); 373 374 /* 02:00:00:00:00:xx */ 375 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 376 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 377 378 /* src addr */ 379 ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); 380 if (ipv6) 381 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 382 else 383 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 384 } 385 386 len += len2; 387 388 if (likely(len < MAX_PKT_BURST)) { 389 qconf->tx_mbufs[port_out].len = (uint16_t)len; 390 return; 391 } 392 393 /* Transmit packets */ 394 send_burst(qconf, (uint16_t)len, port_out); 395 qconf->tx_mbufs[port_out].len = 0; 396 } 397 398 /* main processing loop */ 399 static int 400 main_loop(__attribute__((unused)) void *dummy) 401 { 402 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 403 unsigned lcore_id; 404 uint64_t prev_tsc, diff_tsc, cur_tsc; 405 int i, j, nb_rx; 406 uint8_t portid; 407 struct lcore_queue_conf *qconf; 408 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 409 410 prev_tsc = 0; 411 412 lcore_id = rte_lcore_id(); 413 qconf = &lcore_queue_conf[lcore_id]; 414 415 if (qconf->n_rx_queue == 0) { 416 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 417 return 0; 418 } 419 420 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 421 422 for (i = 0; i < qconf->n_rx_queue; i++) { 423 424 portid = qconf->rx_queue_list[i].portid; 425 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 426 (int) portid); 427 } 428 429 while (1) { 430 431 cur_tsc = rte_rdtsc(); 432 433 /* 434 * TX burst queue drain 435 */ 436 diff_tsc = cur_tsc - prev_tsc; 437 if (unlikely(diff_tsc > drain_tsc)) { 438 439 /* 440 * This could be optimized (use queueid instead of 441 * portid), but it is not called so often 442 */ 443 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 444 if (qconf->tx_mbufs[portid].len == 0) 445 continue; 446 send_burst(&lcore_queue_conf[lcore_id], 447 qconf->tx_mbufs[portid].len, 448 portid); 449 qconf->tx_mbufs[portid].len = 0; 450 } 451 452 prev_tsc = cur_tsc; 453 } 454 455 /* 456 * Read packet from RX queues 457 */ 458 for (i = 0; i < qconf->n_rx_queue; i++) { 459 460 portid = qconf->rx_queue_list[i].portid; 461 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 462 MAX_PKT_BURST); 463 464 /* Prefetch first packets */ 465 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 466 rte_prefetch0(rte_pktmbuf_mtod( 467 pkts_burst[j], void *)); 468 } 469 470 /* Prefetch and forward already prefetched packets */ 471 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 472 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 473 j + PREFETCH_OFFSET], void *)); 474 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 475 } 476 477 /* Forward remaining prefetched packets */ 478 for (; j < nb_rx; j++) { 479 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 480 } 481 } 482 } 483 } 484 485 /* display usage */ 486 static void 487 print_usage(const char *prgname) 488 { 489 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 490 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 491 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 492 prgname); 493 } 494 495 static int 496 parse_portmask(const char *portmask) 497 { 498 char *end = NULL; 499 unsigned long pm; 500 501 /* parse hexadecimal string */ 502 pm = strtoul(portmask, &end, 16); 503 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 504 return -1; 505 506 if (pm == 0) 507 return -1; 508 509 return pm; 510 } 511 512 static int 513 parse_nqueue(const char *q_arg) 514 { 515 char *end = NULL; 516 unsigned long n; 517 518 /* parse hexadecimal string */ 519 n = strtoul(q_arg, &end, 10); 520 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 521 return -1; 522 if (n == 0) 523 return -1; 524 if (n >= MAX_RX_QUEUE_PER_LCORE) 525 return -1; 526 527 return n; 528 } 529 530 /* Parse the argument given in the command line of the application */ 531 static int 532 parse_args(int argc, char **argv) 533 { 534 int opt, ret; 535 char **argvopt; 536 int option_index; 537 char *prgname = argv[0]; 538 static struct option lgopts[] = { 539 {NULL, 0, 0, 0} 540 }; 541 542 argvopt = argv; 543 544 while ((opt = getopt_long(argc, argvopt, "p:q:", 545 lgopts, &option_index)) != EOF) { 546 547 switch (opt) { 548 /* portmask */ 549 case 'p': 550 enabled_port_mask = parse_portmask(optarg); 551 if (enabled_port_mask < 0) { 552 printf("invalid portmask\n"); 553 print_usage(prgname); 554 return -1; 555 } 556 break; 557 558 /* nqueue */ 559 case 'q': 560 rx_queue_per_lcore = parse_nqueue(optarg); 561 if (rx_queue_per_lcore < 0) { 562 printf("invalid queue number\n"); 563 print_usage(prgname); 564 return -1; 565 } 566 break; 567 568 /* long options */ 569 case 0: 570 print_usage(prgname); 571 return -1; 572 573 default: 574 print_usage(prgname); 575 return -1; 576 } 577 } 578 579 if (enabled_port_mask == 0) { 580 printf("portmask not specified\n"); 581 print_usage(prgname); 582 return -1; 583 } 584 585 if (optind >= 0) 586 argv[optind-1] = prgname; 587 588 ret = optind-1; 589 optind = 1; /* reset getopt lib */ 590 return ret; 591 } 592 593 static void 594 print_ethaddr(const char *name, struct ether_addr *eth_addr) 595 { 596 char buf[ETHER_ADDR_FMT_SIZE]; 597 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 598 printf("%s%s", name, buf); 599 } 600 601 /* Check the link status of all ports in up to 9s, and print them finally */ 602 static void 603 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 604 { 605 #define CHECK_INTERVAL 100 /* 100ms */ 606 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 607 uint8_t portid, count, all_ports_up, print_flag = 0; 608 struct rte_eth_link link; 609 610 printf("\nChecking link status"); 611 fflush(stdout); 612 for (count = 0; count <= MAX_CHECK_TIME; count++) { 613 all_ports_up = 1; 614 for (portid = 0; portid < port_num; portid++) { 615 if ((port_mask & (1 << portid)) == 0) 616 continue; 617 memset(&link, 0, sizeof(link)); 618 rte_eth_link_get_nowait(portid, &link); 619 /* print link status if flag set */ 620 if (print_flag == 1) { 621 if (link.link_status) 622 printf("Port %d Link Up - speed %u " 623 "Mbps - %s\n", (uint8_t)portid, 624 (unsigned)link.link_speed, 625 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 626 ("full-duplex") : ("half-duplex\n")); 627 else 628 printf("Port %d Link Down\n", 629 (uint8_t)portid); 630 continue; 631 } 632 /* clear all_ports_up flag if any link down */ 633 if (link.link_status == ETH_LINK_DOWN) { 634 all_ports_up = 0; 635 break; 636 } 637 } 638 /* after finally printing all link status, get out */ 639 if (print_flag == 1) 640 break; 641 642 if (all_ports_up == 0) { 643 printf("."); 644 fflush(stdout); 645 rte_delay_ms(CHECK_INTERVAL); 646 } 647 648 /* set the print_flag if all ports up or timeout */ 649 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 650 print_flag = 1; 651 printf("\ndone\n"); 652 } 653 } 654 } 655 656 /* Check L3 packet type detection capablity of the NIC port */ 657 static int 658 check_ptype(int portid) 659 { 660 int i, ret; 661 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 662 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 663 664 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 665 if (ret <= 0) 666 return 0; 667 668 uint32_t ptypes[ret]; 669 670 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 671 for (i = 0; i < ret; ++i) { 672 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 673 ptype_l3_ipv4 = 1; 674 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 675 ptype_l3_ipv6 = 1; 676 } 677 678 if (ptype_l3_ipv4 == 0) 679 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 680 681 if (ptype_l3_ipv6 == 0) 682 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 683 684 if (ptype_l3_ipv4 && ptype_l3_ipv6) 685 return 1; 686 687 return 0; 688 689 } 690 691 /* Parse packet type of a packet by SW */ 692 static inline void 693 parse_ptype(struct rte_mbuf *m) 694 { 695 struct ether_hdr *eth_hdr; 696 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 697 uint16_t ether_type; 698 699 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 700 ether_type = eth_hdr->ether_type; 701 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 702 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 703 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) 704 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 705 706 m->packet_type = packet_type; 707 } 708 709 /* callback function to detect packet type for a queue of a port */ 710 static uint16_t 711 cb_parse_ptype(uint8_t port __rte_unused, uint16_t queue __rte_unused, 712 struct rte_mbuf *pkts[], uint16_t nb_pkts, 713 uint16_t max_pkts __rte_unused, 714 void *user_param __rte_unused) 715 { 716 uint16_t i; 717 718 for (i = 0; i < nb_pkts; ++i) 719 parse_ptype(pkts[i]); 720 721 return nb_pkts; 722 } 723 724 static int 725 init_routing_table(void) 726 { 727 struct rte_lpm *lpm; 728 struct rte_lpm6 *lpm6; 729 int socket, ret; 730 unsigned i; 731 732 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 733 if (socket_lpm[socket]) { 734 lpm = socket_lpm[socket]; 735 /* populate the LPM table */ 736 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 737 ret = rte_lpm_add(lpm, 738 l3fwd_ipv4_route_array[i].ip, 739 l3fwd_ipv4_route_array[i].depth, 740 l3fwd_ipv4_route_array[i].if_out); 741 742 if (ret < 0) { 743 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 744 "LPM table\n", i); 745 return -1; 746 } 747 748 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 749 "/%d (port %d)\n", 750 socket, 751 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 752 l3fwd_ipv4_route_array[i].depth, 753 l3fwd_ipv4_route_array[i].if_out); 754 } 755 } 756 757 if (socket_lpm6[socket]) { 758 lpm6 = socket_lpm6[socket]; 759 /* populate the LPM6 table */ 760 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 761 ret = rte_lpm6_add(lpm6, 762 l3fwd_ipv6_route_array[i].ip, 763 l3fwd_ipv6_route_array[i].depth, 764 l3fwd_ipv6_route_array[i].if_out); 765 766 if (ret < 0) { 767 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 768 "LPM6 table\n", i); 769 return -1; 770 } 771 772 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 773 "/%d (port %d)\n", 774 socket, 775 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 776 l3fwd_ipv6_route_array[i].depth, 777 l3fwd_ipv6_route_array[i].if_out); 778 } 779 } 780 } 781 return 0; 782 } 783 784 static int 785 init_mem(void) 786 { 787 char buf[PATH_MAX]; 788 struct rte_mempool *mp; 789 struct rte_lpm *lpm; 790 struct rte_lpm6 *lpm6; 791 struct rte_lpm_config lpm_config; 792 int socket; 793 unsigned lcore_id; 794 795 /* traverse through lcores and initialize structures on each socket */ 796 797 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 798 799 if (rte_lcore_is_enabled(lcore_id) == 0) 800 continue; 801 802 socket = rte_lcore_to_socket_id(lcore_id); 803 804 if (socket == SOCKET_ID_ANY) 805 socket = 0; 806 807 if (socket_direct_pool[socket] == NULL) { 808 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 809 socket); 810 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 811 812 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 813 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 814 if (mp == NULL) { 815 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 816 return -1; 817 } 818 socket_direct_pool[socket] = mp; 819 } 820 821 if (socket_indirect_pool[socket] == NULL) { 822 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 823 socket); 824 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 825 826 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 827 socket); 828 if (mp == NULL) { 829 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 830 return -1; 831 } 832 socket_indirect_pool[socket] = mp; 833 } 834 835 if (socket_lpm[socket] == NULL) { 836 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 837 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 838 839 lpm_config.max_rules = LPM_MAX_RULES; 840 lpm_config.number_tbl8s = 256; 841 lpm_config.flags = 0; 842 843 lpm = rte_lpm_create(buf, socket, &lpm_config); 844 if (lpm == NULL) { 845 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 846 return -1; 847 } 848 socket_lpm[socket] = lpm; 849 } 850 851 if (socket_lpm6[socket] == NULL) { 852 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 853 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 854 855 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 856 if (lpm6 == NULL) { 857 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 858 return -1; 859 } 860 socket_lpm6[socket] = lpm6; 861 } 862 } 863 864 return 0; 865 } 866 867 int 868 main(int argc, char **argv) 869 { 870 struct lcore_queue_conf *qconf; 871 struct rte_eth_dev_info dev_info; 872 struct rte_eth_txconf *txconf; 873 struct rx_queue *rxq; 874 int socket, ret; 875 unsigned nb_ports; 876 uint16_t queueid = 0; 877 unsigned lcore_id = 0, rx_lcore_id = 0; 878 uint32_t n_tx_queue, nb_lcores; 879 uint8_t portid; 880 881 /* init EAL */ 882 ret = rte_eal_init(argc, argv); 883 if (ret < 0) 884 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 885 argc -= ret; 886 argv += ret; 887 888 /* parse application arguments (after the EAL ones) */ 889 ret = parse_args(argc, argv); 890 if (ret < 0) 891 rte_exit(EXIT_FAILURE, "Invalid arguments"); 892 893 nb_ports = rte_eth_dev_count(); 894 if (nb_ports == 0) 895 rte_exit(EXIT_FAILURE, "No ports found!\n"); 896 897 nb_lcores = rte_lcore_count(); 898 899 /* initialize structures (mempools, lpm etc.) */ 900 if (init_mem() < 0) 901 rte_panic("Cannot initialize memory structures!\n"); 902 903 /* check if portmask has non-existent ports */ 904 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 905 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 906 907 /* initialize all ports */ 908 for (portid = 0; portid < nb_ports; portid++) { 909 /* skip ports that are not enabled */ 910 if ((enabled_port_mask & (1 << portid)) == 0) { 911 printf("Skipping disabled port %d\n", portid); 912 continue; 913 } 914 915 qconf = &lcore_queue_conf[rx_lcore_id]; 916 917 /* limit the frame size to the maximum supported by NIC */ 918 rte_eth_dev_info_get(portid, &dev_info); 919 port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 920 dev_info.max_rx_pktlen, port_conf.rxmode.max_rx_pkt_len); 921 922 /* get the lcore_id for this port */ 923 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 924 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 925 926 rx_lcore_id ++; 927 if (rx_lcore_id >= RTE_MAX_LCORE) 928 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 929 930 qconf = &lcore_queue_conf[rx_lcore_id]; 931 } 932 933 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 934 if (socket == SOCKET_ID_ANY) 935 socket = 0; 936 937 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 938 rxq->portid = portid; 939 rxq->direct_pool = socket_direct_pool[socket]; 940 rxq->indirect_pool = socket_indirect_pool[socket]; 941 rxq->lpm = socket_lpm[socket]; 942 rxq->lpm6 = socket_lpm6[socket]; 943 qconf->n_rx_queue++; 944 945 /* init port */ 946 printf("Initializing port %d on lcore %u...", portid, 947 rx_lcore_id); 948 fflush(stdout); 949 950 n_tx_queue = nb_lcores; 951 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 952 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 953 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 954 &port_conf); 955 if (ret < 0) { 956 printf("\n"); 957 rte_exit(EXIT_FAILURE, "Cannot configure device: " 958 "err=%d, port=%d\n", 959 ret, portid); 960 } 961 962 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 963 &nb_txd); 964 if (ret < 0) { 965 printf("\n"); 966 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 967 "descriptors: err=%d, port=%d\n", ret, portid); 968 } 969 970 /* init one RX queue */ 971 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 972 socket, NULL, 973 socket_direct_pool[socket]); 974 if (ret < 0) { 975 printf("\n"); 976 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 977 "err=%d, port=%d\n", 978 ret, portid); 979 } 980 981 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 982 print_ethaddr(" Address:", &ports_eth_addr[portid]); 983 printf("\n"); 984 985 /* init one TX queue per couple (lcore,port) */ 986 queueid = 0; 987 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 988 if (rte_lcore_is_enabled(lcore_id) == 0) 989 continue; 990 991 socket = (int) rte_lcore_to_socket_id(lcore_id); 992 printf("txq=%u,%d ", lcore_id, queueid); 993 fflush(stdout); 994 995 txconf = &dev_info.default_txconf; 996 txconf->txq_flags = 0; 997 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 998 socket, txconf); 999 if (ret < 0) { 1000 printf("\n"); 1001 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 1002 "err=%d, port=%d\n", ret, portid); 1003 } 1004 1005 qconf = &lcore_queue_conf[lcore_id]; 1006 qconf->tx_queue_id[portid] = queueid; 1007 queueid++; 1008 } 1009 1010 printf("\n"); 1011 } 1012 1013 printf("\n"); 1014 1015 /* start ports */ 1016 for (portid = 0; portid < nb_ports; portid++) { 1017 if ((enabled_port_mask & (1 << portid)) == 0) { 1018 continue; 1019 } 1020 /* Start device */ 1021 ret = rte_eth_dev_start(portid); 1022 if (ret < 0) 1023 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1024 ret, portid); 1025 1026 rte_eth_promiscuous_enable(portid); 1027 1028 if (check_ptype(portid) == 0) { 1029 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1030 printf("Add Rx callback function to detect L3 packet type by SW :" 1031 " port = %d\n", portid); 1032 } 1033 } 1034 1035 if (init_routing_table() < 0) 1036 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1037 1038 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1039 1040 /* launch per-lcore init on every lcore */ 1041 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1042 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1043 if (rte_eal_wait_lcore(lcore_id) < 0) 1044 return -1; 1045 } 1046 1047 return 0; 1048 } 1049