1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <sys/param.h> 11 #include <string.h> 12 #include <sys/queue.h> 13 #include <stdarg.h> 14 #include <errno.h> 15 #include <getopt.h> 16 17 #include <rte_common.h> 18 #include <rte_byteorder.h> 19 #include <rte_log.h> 20 #include <rte_memory.h> 21 #include <rte_memcpy.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_atomic.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_lpm.h> 38 #include <rte_lpm6.h> 39 #include <rte_ip.h> 40 #include <rte_string_fns.h> 41 42 #include <rte_ip_frag.h> 43 44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 45 46 /* allow max jumbo frame 9.5 KB */ 47 #define JUMBO_FRAME_MAX_SIZE 0x2600 48 49 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 50 51 /* 52 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 53 * This value includes the size of IPv6 header. 54 */ 55 #define IPV4_MTU_DEFAULT ETHER_MTU 56 #define IPV6_MTU_DEFAULT ETHER_MTU 57 58 /* 59 * Default payload in bytes for the IPv6 packet. 60 */ 61 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) 62 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) 63 64 /* 65 * Max number of fragments per packet expected - defined by config file. 66 */ 67 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 68 69 #define NB_MBUF 8192 70 71 #define MAX_PKT_BURST 32 72 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 73 74 /* Configure how many packets ahead to prefetch, when reading packets */ 75 #define PREFETCH_OFFSET 3 76 77 /* 78 * Configurable number of RX/TX ring descriptors 79 */ 80 #define RTE_TEST_RX_DESC_DEFAULT 1024 81 #define RTE_TEST_TX_DESC_DEFAULT 1024 82 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 83 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 84 85 /* ethernet addresses of ports */ 86 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 87 88 #ifndef IPv4_BYTES 89 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 90 #define IPv4_BYTES(addr) \ 91 (uint8_t) (((addr) >> 24) & 0xFF),\ 92 (uint8_t) (((addr) >> 16) & 0xFF),\ 93 (uint8_t) (((addr) >> 8) & 0xFF),\ 94 (uint8_t) ((addr) & 0xFF) 95 #endif 96 97 #ifndef IPv6_BYTES 98 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 99 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 100 #define IPv6_BYTES(addr) \ 101 addr[0], addr[1], addr[2], addr[3], \ 102 addr[4], addr[5], addr[6], addr[7], \ 103 addr[8], addr[9], addr[10], addr[11],\ 104 addr[12], addr[13],addr[14], addr[15] 105 #endif 106 107 #define IPV6_ADDR_LEN 16 108 109 /* mask of enabled ports */ 110 static int enabled_port_mask = 0; 111 112 static int rx_queue_per_lcore = 1; 113 114 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 115 116 struct mbuf_table { 117 uint16_t len; 118 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 119 }; 120 121 struct rx_queue { 122 struct rte_mempool *direct_pool; 123 struct rte_mempool *indirect_pool; 124 struct rte_lpm *lpm; 125 struct rte_lpm6 *lpm6; 126 uint16_t portid; 127 }; 128 129 #define MAX_RX_QUEUE_PER_LCORE 16 130 #define MAX_TX_QUEUE_PER_PORT 16 131 struct lcore_queue_conf { 132 uint16_t n_rx_queue; 133 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 134 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 135 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 136 } __rte_cache_aligned; 137 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 138 139 static struct rte_eth_conf port_conf = { 140 .rxmode = { 141 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 142 .split_hdr_size = 0, 143 .offloads = (DEV_RX_OFFLOAD_CHECKSUM | 144 DEV_RX_OFFLOAD_JUMBO_FRAME), 145 }, 146 .txmode = { 147 .mq_mode = ETH_MQ_TX_NONE, 148 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | 149 DEV_TX_OFFLOAD_MULTI_SEGS), 150 }, 151 }; 152 153 /* 154 * IPv4 forwarding table 155 */ 156 struct l3fwd_ipv4_route { 157 uint32_t ip; 158 uint8_t depth; 159 uint8_t if_out; 160 }; 161 162 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 163 {IPv4(100,10,0,0), 16, 0}, 164 {IPv4(100,20,0,0), 16, 1}, 165 {IPv4(100,30,0,0), 16, 2}, 166 {IPv4(100,40,0,0), 16, 3}, 167 {IPv4(100,50,0,0), 16, 4}, 168 {IPv4(100,60,0,0), 16, 5}, 169 {IPv4(100,70,0,0), 16, 6}, 170 {IPv4(100,80,0,0), 16, 7}, 171 }; 172 173 /* 174 * IPv6 forwarding table 175 */ 176 177 struct l3fwd_ipv6_route { 178 uint8_t ip[IPV6_ADDR_LEN]; 179 uint8_t depth; 180 uint8_t if_out; 181 }; 182 183 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 184 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 185 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 186 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 187 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 188 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 189 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 190 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 191 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 192 }; 193 194 #define LPM_MAX_RULES 1024 195 #define LPM6_MAX_RULES 1024 196 #define LPM6_NUMBER_TBL8S (1 << 16) 197 198 struct rte_lpm6_config lpm6_config = { 199 .max_rules = LPM6_MAX_RULES, 200 .number_tbl8s = LPM6_NUMBER_TBL8S, 201 .flags = 0 202 }; 203 204 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 205 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 206 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 207 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 208 209 /* Send burst of packets on an output interface */ 210 static inline int 211 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) 212 { 213 struct rte_mbuf **m_table; 214 int ret; 215 uint16_t queueid; 216 217 queueid = qconf->tx_queue_id[port]; 218 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 219 220 ret = rte_eth_tx_burst(port, queueid, m_table, n); 221 if (unlikely(ret < n)) { 222 do { 223 rte_pktmbuf_free(m_table[ret]); 224 } while (++ret < n); 225 } 226 227 return 0; 228 } 229 230 static inline void 231 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 232 uint8_t queueid, uint16_t port_in) 233 { 234 struct rx_queue *rxq; 235 uint32_t i, len, next_hop; 236 uint8_t ipv6; 237 uint16_t port_out; 238 int32_t len2; 239 240 ipv6 = 0; 241 rxq = &qconf->rx_queue_list[queueid]; 242 243 /* by default, send everything back to the source port */ 244 port_out = port_in; 245 246 /* Remove the Ethernet header and trailer from the input packet */ 247 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 248 249 /* Build transmission burst */ 250 len = qconf->tx_mbufs[port_out].len; 251 252 /* if this is an IPv4 packet */ 253 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 254 struct ipv4_hdr *ip_hdr; 255 uint32_t ip_dst; 256 /* Read the lookup key (i.e. ip_dst) from the input packet */ 257 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); 258 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 259 260 /* Find destination port */ 261 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 262 (enabled_port_mask & 1 << next_hop) != 0) { 263 port_out = next_hop; 264 265 /* Build transmission burst for new port */ 266 len = qconf->tx_mbufs[port_out].len; 267 } 268 269 /* if we don't need to do any fragmentation */ 270 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 271 qconf->tx_mbufs[port_out].m_table[len] = m; 272 len2 = 1; 273 } else { 274 len2 = rte_ipv4_fragment_packet(m, 275 &qconf->tx_mbufs[port_out].m_table[len], 276 (uint16_t)(MBUF_TABLE_SIZE - len), 277 IPV4_MTU_DEFAULT, 278 rxq->direct_pool, rxq->indirect_pool); 279 280 /* Free input packet */ 281 rte_pktmbuf_free(m); 282 283 /* If we fail to fragment the packet */ 284 if (unlikely (len2 < 0)) 285 return; 286 } 287 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 288 /* if this is an IPv6 packet */ 289 struct ipv6_hdr *ip_hdr; 290 291 ipv6 = 1; 292 293 /* Read the lookup key (i.e. ip_dst) from the input packet */ 294 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); 295 296 /* Find destination port */ 297 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 298 &next_hop) == 0 && 299 (enabled_port_mask & 1 << next_hop) != 0) { 300 port_out = next_hop; 301 302 /* Build transmission burst for new port */ 303 len = qconf->tx_mbufs[port_out].len; 304 } 305 306 /* if we don't need to do any fragmentation */ 307 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 308 qconf->tx_mbufs[port_out].m_table[len] = m; 309 len2 = 1; 310 } else { 311 len2 = rte_ipv6_fragment_packet(m, 312 &qconf->tx_mbufs[port_out].m_table[len], 313 (uint16_t)(MBUF_TABLE_SIZE - len), 314 IPV6_MTU_DEFAULT, 315 rxq->direct_pool, rxq->indirect_pool); 316 317 /* Free input packet */ 318 rte_pktmbuf_free(m); 319 320 /* If we fail to fragment the packet */ 321 if (unlikely (len2 < 0)) 322 return; 323 } 324 } 325 /* else, just forward the packet */ 326 else { 327 qconf->tx_mbufs[port_out].m_table[len] = m; 328 len2 = 1; 329 } 330 331 for (i = len; i < len + len2; i ++) { 332 void *d_addr_bytes; 333 334 m = qconf->tx_mbufs[port_out].m_table[i]; 335 struct ether_hdr *eth_hdr = (struct ether_hdr *) 336 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); 337 if (eth_hdr == NULL) { 338 rte_panic("No headroom in mbuf.\n"); 339 } 340 341 m->l2_len = sizeof(struct ether_hdr); 342 343 /* 02:00:00:00:00:xx */ 344 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 345 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 346 347 /* src addr */ 348 ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); 349 if (ipv6) 350 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 351 else 352 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 353 } 354 355 len += len2; 356 357 if (likely(len < MAX_PKT_BURST)) { 358 qconf->tx_mbufs[port_out].len = (uint16_t)len; 359 return; 360 } 361 362 /* Transmit packets */ 363 send_burst(qconf, (uint16_t)len, port_out); 364 qconf->tx_mbufs[port_out].len = 0; 365 } 366 367 /* main processing loop */ 368 static int 369 main_loop(__attribute__((unused)) void *dummy) 370 { 371 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 372 unsigned lcore_id; 373 uint64_t prev_tsc, diff_tsc, cur_tsc; 374 int i, j, nb_rx; 375 uint16_t portid; 376 struct lcore_queue_conf *qconf; 377 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 378 379 prev_tsc = 0; 380 381 lcore_id = rte_lcore_id(); 382 qconf = &lcore_queue_conf[lcore_id]; 383 384 if (qconf->n_rx_queue == 0) { 385 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 386 return 0; 387 } 388 389 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 390 391 for (i = 0; i < qconf->n_rx_queue; i++) { 392 393 portid = qconf->rx_queue_list[i].portid; 394 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 395 portid); 396 } 397 398 while (1) { 399 400 cur_tsc = rte_rdtsc(); 401 402 /* 403 * TX burst queue drain 404 */ 405 diff_tsc = cur_tsc - prev_tsc; 406 if (unlikely(diff_tsc > drain_tsc)) { 407 408 /* 409 * This could be optimized (use queueid instead of 410 * portid), but it is not called so often 411 */ 412 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 413 if (qconf->tx_mbufs[portid].len == 0) 414 continue; 415 send_burst(&lcore_queue_conf[lcore_id], 416 qconf->tx_mbufs[portid].len, 417 portid); 418 qconf->tx_mbufs[portid].len = 0; 419 } 420 421 prev_tsc = cur_tsc; 422 } 423 424 /* 425 * Read packet from RX queues 426 */ 427 for (i = 0; i < qconf->n_rx_queue; i++) { 428 429 portid = qconf->rx_queue_list[i].portid; 430 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 431 MAX_PKT_BURST); 432 433 /* Prefetch first packets */ 434 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 435 rte_prefetch0(rte_pktmbuf_mtod( 436 pkts_burst[j], void *)); 437 } 438 439 /* Prefetch and forward already prefetched packets */ 440 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 441 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 442 j + PREFETCH_OFFSET], void *)); 443 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 444 } 445 446 /* Forward remaining prefetched packets */ 447 for (; j < nb_rx; j++) { 448 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 449 } 450 } 451 } 452 } 453 454 /* display usage */ 455 static void 456 print_usage(const char *prgname) 457 { 458 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 459 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 460 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 461 prgname); 462 } 463 464 static int 465 parse_portmask(const char *portmask) 466 { 467 char *end = NULL; 468 unsigned long pm; 469 470 /* parse hexadecimal string */ 471 pm = strtoul(portmask, &end, 16); 472 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 473 return -1; 474 475 if (pm == 0) 476 return -1; 477 478 return pm; 479 } 480 481 static int 482 parse_nqueue(const char *q_arg) 483 { 484 char *end = NULL; 485 unsigned long n; 486 487 /* parse hexadecimal string */ 488 n = strtoul(q_arg, &end, 10); 489 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 490 return -1; 491 if (n == 0) 492 return -1; 493 if (n >= MAX_RX_QUEUE_PER_LCORE) 494 return -1; 495 496 return n; 497 } 498 499 /* Parse the argument given in the command line of the application */ 500 static int 501 parse_args(int argc, char **argv) 502 { 503 int opt, ret; 504 char **argvopt; 505 int option_index; 506 char *prgname = argv[0]; 507 static struct option lgopts[] = { 508 {NULL, 0, 0, 0} 509 }; 510 511 argvopt = argv; 512 513 while ((opt = getopt_long(argc, argvopt, "p:q:", 514 lgopts, &option_index)) != EOF) { 515 516 switch (opt) { 517 /* portmask */ 518 case 'p': 519 enabled_port_mask = parse_portmask(optarg); 520 if (enabled_port_mask < 0) { 521 printf("invalid portmask\n"); 522 print_usage(prgname); 523 return -1; 524 } 525 break; 526 527 /* nqueue */ 528 case 'q': 529 rx_queue_per_lcore = parse_nqueue(optarg); 530 if (rx_queue_per_lcore < 0) { 531 printf("invalid queue number\n"); 532 print_usage(prgname); 533 return -1; 534 } 535 break; 536 537 /* long options */ 538 case 0: 539 print_usage(prgname); 540 return -1; 541 542 default: 543 print_usage(prgname); 544 return -1; 545 } 546 } 547 548 if (enabled_port_mask == 0) { 549 printf("portmask not specified\n"); 550 print_usage(prgname); 551 return -1; 552 } 553 554 if (optind >= 0) 555 argv[optind-1] = prgname; 556 557 ret = optind-1; 558 optind = 1; /* reset getopt lib */ 559 return ret; 560 } 561 562 static void 563 print_ethaddr(const char *name, struct ether_addr *eth_addr) 564 { 565 char buf[ETHER_ADDR_FMT_SIZE]; 566 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 567 printf("%s%s", name, buf); 568 } 569 570 /* Check the link status of all ports in up to 9s, and print them finally */ 571 static void 572 check_all_ports_link_status(uint32_t port_mask) 573 { 574 #define CHECK_INTERVAL 100 /* 100ms */ 575 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 576 uint16_t portid; 577 uint8_t count, all_ports_up, print_flag = 0; 578 struct rte_eth_link link; 579 580 printf("\nChecking link status"); 581 fflush(stdout); 582 for (count = 0; count <= MAX_CHECK_TIME; count++) { 583 all_ports_up = 1; 584 RTE_ETH_FOREACH_DEV(portid) { 585 if ((port_mask & (1 << portid)) == 0) 586 continue; 587 memset(&link, 0, sizeof(link)); 588 rte_eth_link_get_nowait(portid, &link); 589 /* print link status if flag set */ 590 if (print_flag == 1) { 591 if (link.link_status) 592 printf( 593 "Port%d Link Up .Speed %u Mbps - %s\n", 594 portid, link.link_speed, 595 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 596 ("full-duplex") : ("half-duplex\n")); 597 else 598 printf("Port %d Link Down\n", portid); 599 continue; 600 } 601 /* clear all_ports_up flag if any link down */ 602 if (link.link_status == ETH_LINK_DOWN) { 603 all_ports_up = 0; 604 break; 605 } 606 } 607 /* after finally printing all link status, get out */ 608 if (print_flag == 1) 609 break; 610 611 if (all_ports_up == 0) { 612 printf("."); 613 fflush(stdout); 614 rte_delay_ms(CHECK_INTERVAL); 615 } 616 617 /* set the print_flag if all ports up or timeout */ 618 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 619 print_flag = 1; 620 printf("\ndone\n"); 621 } 622 } 623 } 624 625 /* Check L3 packet type detection capablity of the NIC port */ 626 static int 627 check_ptype(int portid) 628 { 629 int i, ret; 630 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 631 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 632 633 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 634 if (ret <= 0) 635 return 0; 636 637 uint32_t ptypes[ret]; 638 639 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 640 for (i = 0; i < ret; ++i) { 641 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 642 ptype_l3_ipv4 = 1; 643 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 644 ptype_l3_ipv6 = 1; 645 } 646 647 if (ptype_l3_ipv4 == 0) 648 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 649 650 if (ptype_l3_ipv6 == 0) 651 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 652 653 if (ptype_l3_ipv4 && ptype_l3_ipv6) 654 return 1; 655 656 return 0; 657 658 } 659 660 /* Parse packet type of a packet by SW */ 661 static inline void 662 parse_ptype(struct rte_mbuf *m) 663 { 664 struct ether_hdr *eth_hdr; 665 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 666 uint16_t ether_type; 667 668 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 669 ether_type = eth_hdr->ether_type; 670 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 671 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 672 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) 673 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 674 675 m->packet_type = packet_type; 676 } 677 678 /* callback function to detect packet type for a queue of a port */ 679 static uint16_t 680 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, 681 struct rte_mbuf *pkts[], uint16_t nb_pkts, 682 uint16_t max_pkts __rte_unused, 683 void *user_param __rte_unused) 684 { 685 uint16_t i; 686 687 for (i = 0; i < nb_pkts; ++i) 688 parse_ptype(pkts[i]); 689 690 return nb_pkts; 691 } 692 693 static int 694 init_routing_table(void) 695 { 696 struct rte_lpm *lpm; 697 struct rte_lpm6 *lpm6; 698 int socket, ret; 699 unsigned i; 700 701 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 702 if (socket_lpm[socket]) { 703 lpm = socket_lpm[socket]; 704 /* populate the LPM table */ 705 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 706 ret = rte_lpm_add(lpm, 707 l3fwd_ipv4_route_array[i].ip, 708 l3fwd_ipv4_route_array[i].depth, 709 l3fwd_ipv4_route_array[i].if_out); 710 711 if (ret < 0) { 712 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 713 "LPM table\n", i); 714 return -1; 715 } 716 717 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 718 "/%d (port %d)\n", 719 socket, 720 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 721 l3fwd_ipv4_route_array[i].depth, 722 l3fwd_ipv4_route_array[i].if_out); 723 } 724 } 725 726 if (socket_lpm6[socket]) { 727 lpm6 = socket_lpm6[socket]; 728 /* populate the LPM6 table */ 729 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 730 ret = rte_lpm6_add(lpm6, 731 l3fwd_ipv6_route_array[i].ip, 732 l3fwd_ipv6_route_array[i].depth, 733 l3fwd_ipv6_route_array[i].if_out); 734 735 if (ret < 0) { 736 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 737 "LPM6 table\n", i); 738 return -1; 739 } 740 741 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 742 "/%d (port %d)\n", 743 socket, 744 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 745 l3fwd_ipv6_route_array[i].depth, 746 l3fwd_ipv6_route_array[i].if_out); 747 } 748 } 749 } 750 return 0; 751 } 752 753 static int 754 init_mem(void) 755 { 756 char buf[PATH_MAX]; 757 struct rte_mempool *mp; 758 struct rte_lpm *lpm; 759 struct rte_lpm6 *lpm6; 760 struct rte_lpm_config lpm_config; 761 int socket; 762 unsigned lcore_id; 763 764 /* traverse through lcores and initialize structures on each socket */ 765 766 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 767 768 if (rte_lcore_is_enabled(lcore_id) == 0) 769 continue; 770 771 socket = rte_lcore_to_socket_id(lcore_id); 772 773 if (socket == SOCKET_ID_ANY) 774 socket = 0; 775 776 if (socket_direct_pool[socket] == NULL) { 777 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 778 socket); 779 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 780 781 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 782 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 783 if (mp == NULL) { 784 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 785 return -1; 786 } 787 socket_direct_pool[socket] = mp; 788 } 789 790 if (socket_indirect_pool[socket] == NULL) { 791 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 792 socket); 793 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 794 795 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 796 socket); 797 if (mp == NULL) { 798 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 799 return -1; 800 } 801 socket_indirect_pool[socket] = mp; 802 } 803 804 if (socket_lpm[socket] == NULL) { 805 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 806 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 807 808 lpm_config.max_rules = LPM_MAX_RULES; 809 lpm_config.number_tbl8s = 256; 810 lpm_config.flags = 0; 811 812 lpm = rte_lpm_create(buf, socket, &lpm_config); 813 if (lpm == NULL) { 814 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 815 return -1; 816 } 817 socket_lpm[socket] = lpm; 818 } 819 820 if (socket_lpm6[socket] == NULL) { 821 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 822 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 823 824 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 825 if (lpm6 == NULL) { 826 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 827 return -1; 828 } 829 socket_lpm6[socket] = lpm6; 830 } 831 } 832 833 return 0; 834 } 835 836 int 837 main(int argc, char **argv) 838 { 839 struct lcore_queue_conf *qconf; 840 struct rte_eth_dev_info dev_info; 841 struct rte_eth_txconf *txconf; 842 struct rx_queue *rxq; 843 int socket, ret; 844 uint16_t nb_ports; 845 uint16_t queueid = 0; 846 unsigned lcore_id = 0, rx_lcore_id = 0; 847 uint32_t n_tx_queue, nb_lcores; 848 uint16_t portid; 849 850 /* init EAL */ 851 ret = rte_eal_init(argc, argv); 852 if (ret < 0) 853 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 854 argc -= ret; 855 argv += ret; 856 857 /* parse application arguments (after the EAL ones) */ 858 ret = parse_args(argc, argv); 859 if (ret < 0) 860 rte_exit(EXIT_FAILURE, "Invalid arguments"); 861 862 nb_ports = rte_eth_dev_count_avail(); 863 if (nb_ports == 0) 864 rte_exit(EXIT_FAILURE, "No ports found!\n"); 865 866 nb_lcores = rte_lcore_count(); 867 868 /* initialize structures (mempools, lpm etc.) */ 869 if (init_mem() < 0) 870 rte_panic("Cannot initialize memory structures!\n"); 871 872 /* check if portmask has non-existent ports */ 873 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 874 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 875 876 /* initialize all ports */ 877 RTE_ETH_FOREACH_DEV(portid) { 878 struct rte_eth_conf local_port_conf = port_conf; 879 struct rte_eth_rxconf rxq_conf; 880 881 /* skip ports that are not enabled */ 882 if ((enabled_port_mask & (1 << portid)) == 0) { 883 printf("Skipping disabled port %d\n", portid); 884 continue; 885 } 886 887 qconf = &lcore_queue_conf[rx_lcore_id]; 888 889 /* limit the frame size to the maximum supported by NIC */ 890 rte_eth_dev_info_get(portid, &dev_info); 891 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 892 dev_info.max_rx_pktlen, 893 local_port_conf.rxmode.max_rx_pkt_len); 894 895 /* get the lcore_id for this port */ 896 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 897 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 898 899 rx_lcore_id ++; 900 if (rx_lcore_id >= RTE_MAX_LCORE) 901 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 902 903 qconf = &lcore_queue_conf[rx_lcore_id]; 904 } 905 906 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 907 if (socket == SOCKET_ID_ANY) 908 socket = 0; 909 910 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 911 rxq->portid = portid; 912 rxq->direct_pool = socket_direct_pool[socket]; 913 rxq->indirect_pool = socket_indirect_pool[socket]; 914 rxq->lpm = socket_lpm[socket]; 915 rxq->lpm6 = socket_lpm6[socket]; 916 qconf->n_rx_queue++; 917 918 /* init port */ 919 printf("Initializing port %d on lcore %u...", portid, 920 rx_lcore_id); 921 fflush(stdout); 922 923 n_tx_queue = nb_lcores; 924 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 925 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 926 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 927 local_port_conf.txmode.offloads |= 928 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 929 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 930 &local_port_conf); 931 if (ret < 0) { 932 printf("\n"); 933 rte_exit(EXIT_FAILURE, "Cannot configure device: " 934 "err=%d, port=%d\n", 935 ret, portid); 936 } 937 938 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 939 &nb_txd); 940 if (ret < 0) { 941 printf("\n"); 942 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 943 "descriptors: err=%d, port=%d\n", ret, portid); 944 } 945 946 /* init one RX queue */ 947 rxq_conf = dev_info.default_rxconf; 948 rxq_conf.offloads = local_port_conf.rxmode.offloads; 949 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 950 socket, &rxq_conf, 951 socket_direct_pool[socket]); 952 if (ret < 0) { 953 printf("\n"); 954 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 955 "err=%d, port=%d\n", 956 ret, portid); 957 } 958 959 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 960 print_ethaddr(" Address:", &ports_eth_addr[portid]); 961 printf("\n"); 962 963 /* init one TX queue per couple (lcore,port) */ 964 queueid = 0; 965 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 966 if (rte_lcore_is_enabled(lcore_id) == 0) 967 continue; 968 969 socket = (int) rte_lcore_to_socket_id(lcore_id); 970 printf("txq=%u,%d ", lcore_id, queueid); 971 fflush(stdout); 972 973 txconf = &dev_info.default_txconf; 974 txconf->offloads = local_port_conf.txmode.offloads; 975 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 976 socket, txconf); 977 if (ret < 0) { 978 printf("\n"); 979 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 980 "err=%d, port=%d\n", ret, portid); 981 } 982 983 qconf = &lcore_queue_conf[lcore_id]; 984 qconf->tx_queue_id[portid] = queueid; 985 queueid++; 986 } 987 988 printf("\n"); 989 } 990 991 printf("\n"); 992 993 /* start ports */ 994 RTE_ETH_FOREACH_DEV(portid) { 995 if ((enabled_port_mask & (1 << portid)) == 0) { 996 continue; 997 } 998 /* Start device */ 999 ret = rte_eth_dev_start(portid); 1000 if (ret < 0) 1001 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1002 ret, portid); 1003 1004 rte_eth_promiscuous_enable(portid); 1005 1006 if (check_ptype(portid) == 0) { 1007 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1008 printf("Add Rx callback function to detect L3 packet type by SW :" 1009 " port = %d\n", portid); 1010 } 1011 } 1012 1013 if (init_routing_table() < 0) 1014 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1015 1016 check_all_ports_link_status(enabled_port_mask); 1017 1018 /* launch per-lcore init on every lcore */ 1019 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1020 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1021 if (rte_eal_wait_lcore(lcore_id) < 0) 1022 return -1; 1023 } 1024 1025 return 0; 1026 } 1027