xref: /dpdk/examples/ip_fragmentation/main.c (revision 4e30ead5e7ca886535e2b30632b2948d2aac1681)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <string.h>
41 #include <sys/queue.h>
42 #include <stdarg.h>
43 #include <errno.h>
44 #include <getopt.h>
45 
46 #include <rte_common.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_eal.h>
53 #include <rte_per_lcore.h>
54 #include <rte_launch.h>
55 #include <rte_atomic.h>
56 #include <rte_cycles.h>
57 #include <rte_prefetch.h>
58 #include <rte_lcore.h>
59 #include <rte_per_lcore.h>
60 #include <rte_branch_prediction.h>
61 #include <rte_interrupts.h>
62 #include <rte_pci.h>
63 #include <rte_random.h>
64 #include <rte_debug.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
67 #include <rte_mempool.h>
68 #include <rte_mbuf.h>
69 #include <rte_lpm.h>
70 #include <rte_lpm6.h>
71 #include <rte_ip.h>
72 #include <rte_string_fns.h>
73 
74 #include <rte_ip_frag.h>
75 
76 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
77 
78 /* allow max jumbo frame 9.5 KB */
79 #define JUMBO_FRAME_MAX_SIZE	0x2600
80 
81 #define	ROUNDUP_DIV(a, b)	(((a) + (b) - 1) / (b))
82 
83 /*
84  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
85  * This value includes the size of IPv6 header.
86  */
87 #define	IPV4_MTU_DEFAULT	ETHER_MTU
88 #define	IPV6_MTU_DEFAULT	ETHER_MTU
89 
90 /*
91  * Default payload in bytes for the IPv6 packet.
92  */
93 #define	IPV4_DEFAULT_PAYLOAD	(IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr))
94 #define	IPV6_DEFAULT_PAYLOAD	(IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr))
95 
96 /*
97  * Max number of fragments per packet expected - defined by config file.
98  */
99 #define	MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
100 
101 #define NB_MBUF   8192
102 
103 #define MAX_PKT_BURST	32
104 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
105 
106 /* Configure how many packets ahead to prefetch, when reading packets */
107 #define PREFETCH_OFFSET	3
108 
109 /*
110  * Configurable number of RX/TX ring descriptors
111  */
112 #define RTE_TEST_RX_DESC_DEFAULT 128
113 #define RTE_TEST_TX_DESC_DEFAULT 512
114 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
115 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
116 
117 /* ethernet addresses of ports */
118 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
119 
120 #ifndef IPv4_BYTES
121 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
122 #define IPv4_BYTES(addr) \
123 		(uint8_t) (((addr) >> 24) & 0xFF),\
124 		(uint8_t) (((addr) >> 16) & 0xFF),\
125 		(uint8_t) (((addr) >> 8) & 0xFF),\
126 		(uint8_t) ((addr) & 0xFF)
127 #endif
128 
129 #ifndef IPv6_BYTES
130 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
131                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
132 #define IPv6_BYTES(addr) \
133 	addr[0],  addr[1], addr[2],  addr[3], \
134 	addr[4],  addr[5], addr[6],  addr[7], \
135 	addr[8],  addr[9], addr[10], addr[11],\
136 	addr[12], addr[13],addr[14], addr[15]
137 #endif
138 
139 #define IPV6_ADDR_LEN 16
140 
141 /* mask of enabled ports */
142 static int enabled_port_mask = 0;
143 
144 static int rx_queue_per_lcore = 1;
145 
146 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
147 
148 struct mbuf_table {
149 	uint16_t len;
150 	struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
151 };
152 
153 struct rx_queue {
154 	struct rte_mempool *direct_pool;
155 	struct rte_mempool *indirect_pool;
156 	struct rte_lpm *lpm;
157 	struct rte_lpm6 *lpm6;
158 	uint8_t portid;
159 };
160 
161 #define MAX_RX_QUEUE_PER_LCORE 16
162 #define MAX_TX_QUEUE_PER_PORT 16
163 struct lcore_queue_conf {
164 	uint16_t n_rx_queue;
165 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
166 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
167 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
168 } __rte_cache_aligned;
169 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
170 
171 static const struct rte_eth_conf port_conf = {
172 	.rxmode = {
173 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
174 		.split_hdr_size = 0,
175 		.header_split   = 0, /**< Header Split disabled */
176 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
177 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
178 		.jumbo_frame    = 1, /**< Jumbo Frame Support enabled */
179 		.hw_strip_crc   = 1, /**< CRC stripped by hardware */
180 	},
181 	.txmode = {
182 		.mq_mode = ETH_MQ_TX_NONE,
183 	},
184 };
185 
186 /*
187  * IPv4 forwarding table
188  */
189 struct l3fwd_ipv4_route {
190 	uint32_t ip;
191 	uint8_t  depth;
192 	uint8_t  if_out;
193 };
194 
195 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
196 		{IPv4(100,10,0,0), 16, 0},
197 		{IPv4(100,20,0,0), 16, 1},
198 		{IPv4(100,30,0,0), 16, 2},
199 		{IPv4(100,40,0,0), 16, 3},
200 		{IPv4(100,50,0,0), 16, 4},
201 		{IPv4(100,60,0,0), 16, 5},
202 		{IPv4(100,70,0,0), 16, 6},
203 		{IPv4(100,80,0,0), 16, 7},
204 };
205 
206 /*
207  * IPv6 forwarding table
208  */
209 
210 struct l3fwd_ipv6_route {
211 	uint8_t ip[IPV6_ADDR_LEN];
212 	uint8_t depth;
213 	uint8_t if_out;
214 };
215 
216 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
217 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
218 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
219 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
220 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
221 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
222 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
223 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
224 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
225 };
226 
227 #define LPM_MAX_RULES         1024
228 #define LPM6_MAX_RULES         1024
229 #define LPM6_NUMBER_TBL8S (1 << 16)
230 
231 struct rte_lpm6_config lpm6_config = {
232 		.max_rules = LPM6_MAX_RULES,
233 		.number_tbl8s = LPM6_NUMBER_TBL8S,
234 		.flags = 0
235 };
236 
237 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
238 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
239 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
240 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
241 
242 /* Send burst of packets on an output interface */
243 static inline int
244 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port)
245 {
246 	struct rte_mbuf **m_table;
247 	int ret;
248 	uint16_t queueid;
249 
250 	queueid = qconf->tx_queue_id[port];
251 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
252 
253 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
254 	if (unlikely(ret < n)) {
255 		do {
256 			rte_pktmbuf_free(m_table[ret]);
257 		} while (++ret < n);
258 	}
259 
260 	return 0;
261 }
262 
263 static inline void
264 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
265 		uint8_t queueid, uint8_t port_in)
266 {
267 	struct rx_queue *rxq;
268 	uint32_t i, len, next_hop;
269 	uint8_t port_out, ipv6;
270 	int32_t len2;
271 
272 	ipv6 = 0;
273 	rxq = &qconf->rx_queue_list[queueid];
274 
275 	/* by default, send everything back to the source port */
276 	port_out = port_in;
277 
278 	/* Remove the Ethernet header and trailer from the input packet */
279 	rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
280 
281 	/* Build transmission burst */
282 	len = qconf->tx_mbufs[port_out].len;
283 
284 	/* if this is an IPv4 packet */
285 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
286 		struct ipv4_hdr *ip_hdr;
287 		uint32_t ip_dst;
288 		/* Read the lookup key (i.e. ip_dst) from the input packet */
289 		ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *);
290 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
291 
292 		/* Find destination port */
293 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
294 				(enabled_port_mask & 1 << next_hop) != 0) {
295 			port_out = next_hop;
296 
297 			/* Build transmission burst for new port */
298 			len = qconf->tx_mbufs[port_out].len;
299 		}
300 
301 		/* if we don't need to do any fragmentation */
302 		if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
303 			qconf->tx_mbufs[port_out].m_table[len] = m;
304 			len2 = 1;
305 		} else {
306 			len2 = rte_ipv4_fragment_packet(m,
307 				&qconf->tx_mbufs[port_out].m_table[len],
308 				(uint16_t)(MBUF_TABLE_SIZE - len),
309 				IPV4_MTU_DEFAULT,
310 				rxq->direct_pool, rxq->indirect_pool);
311 
312 			/* Free input packet */
313 			rte_pktmbuf_free(m);
314 
315 			/* If we fail to fragment the packet */
316 			if (unlikely (len2 < 0))
317 				return;
318 		}
319 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
320 		/* if this is an IPv6 packet */
321 		struct ipv6_hdr *ip_hdr;
322 
323 		ipv6 = 1;
324 
325 		/* Read the lookup key (i.e. ip_dst) from the input packet */
326 		ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *);
327 
328 		/* Find destination port */
329 		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
330 						&next_hop) == 0 &&
331 				(enabled_port_mask & 1 << next_hop) != 0) {
332 			port_out = next_hop;
333 
334 			/* Build transmission burst for new port */
335 			len = qconf->tx_mbufs[port_out].len;
336 		}
337 
338 		/* if we don't need to do any fragmentation */
339 		if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
340 			qconf->tx_mbufs[port_out].m_table[len] = m;
341 			len2 = 1;
342 		} else {
343 			len2 = rte_ipv6_fragment_packet(m,
344 				&qconf->tx_mbufs[port_out].m_table[len],
345 				(uint16_t)(MBUF_TABLE_SIZE - len),
346 				IPV6_MTU_DEFAULT,
347 				rxq->direct_pool, rxq->indirect_pool);
348 
349 			/* Free input packet */
350 			rte_pktmbuf_free(m);
351 
352 			/* If we fail to fragment the packet */
353 			if (unlikely (len2 < 0))
354 				return;
355 		}
356 	}
357 	/* else, just forward the packet */
358 	else {
359 		qconf->tx_mbufs[port_out].m_table[len] = m;
360 		len2 = 1;
361 	}
362 
363 	for (i = len; i < len + len2; i ++) {
364 		void *d_addr_bytes;
365 
366 		m = qconf->tx_mbufs[port_out].m_table[i];
367 		struct ether_hdr *eth_hdr = (struct ether_hdr *)
368 			rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr));
369 		if (eth_hdr == NULL) {
370 			rte_panic("No headroom in mbuf.\n");
371 		}
372 
373 		m->l2_len = sizeof(struct ether_hdr);
374 
375 		/* 02:00:00:00:00:xx */
376 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
377 		*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40);
378 
379 		/* src addr */
380 		ether_addr_copy(&ports_eth_addr[port_out], &eth_hdr->s_addr);
381 		if (ipv6)
382 			eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6);
383 		else
384 			eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
385 	}
386 
387 	len += len2;
388 
389 	if (likely(len < MAX_PKT_BURST)) {
390 		qconf->tx_mbufs[port_out].len = (uint16_t)len;
391 		return;
392 	}
393 
394 	/* Transmit packets */
395 	send_burst(qconf, (uint16_t)len, port_out);
396 	qconf->tx_mbufs[port_out].len = 0;
397 }
398 
399 /* main processing loop */
400 static int
401 main_loop(__attribute__((unused)) void *dummy)
402 {
403 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
404 	unsigned lcore_id;
405 	uint64_t prev_tsc, diff_tsc, cur_tsc;
406 	int i, j, nb_rx;
407 	uint8_t portid;
408 	struct lcore_queue_conf *qconf;
409 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
410 
411 	prev_tsc = 0;
412 
413 	lcore_id = rte_lcore_id();
414 	qconf = &lcore_queue_conf[lcore_id];
415 
416 	if (qconf->n_rx_queue == 0) {
417 		RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
418 		return 0;
419 	}
420 
421 	RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
422 
423 	for (i = 0; i < qconf->n_rx_queue; i++) {
424 
425 		portid = qconf->rx_queue_list[i].portid;
426 		RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
427 				(int) portid);
428 	}
429 
430 	while (1) {
431 
432 		cur_tsc = rte_rdtsc();
433 
434 		/*
435 		 * TX burst queue drain
436 		 */
437 		diff_tsc = cur_tsc - prev_tsc;
438 		if (unlikely(diff_tsc > drain_tsc)) {
439 
440 			/*
441 			 * This could be optimized (use queueid instead of
442 			 * portid), but it is not called so often
443 			 */
444 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
445 				if (qconf->tx_mbufs[portid].len == 0)
446 					continue;
447 				send_burst(&lcore_queue_conf[lcore_id],
448 					   qconf->tx_mbufs[portid].len,
449 					   portid);
450 				qconf->tx_mbufs[portid].len = 0;
451 			}
452 
453 			prev_tsc = cur_tsc;
454 		}
455 
456 		/*
457 		 * Read packet from RX queues
458 		 */
459 		for (i = 0; i < qconf->n_rx_queue; i++) {
460 
461 			portid = qconf->rx_queue_list[i].portid;
462 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
463 						 MAX_PKT_BURST);
464 
465 			/* Prefetch first packets */
466 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
467 				rte_prefetch0(rte_pktmbuf_mtod(
468 						pkts_burst[j], void *));
469 			}
470 
471 			/* Prefetch and forward already prefetched packets */
472 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
473 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
474 						j + PREFETCH_OFFSET], void *));
475 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
476 			}
477 
478 			/* Forward remaining prefetched packets */
479 			for (; j < nb_rx; j++) {
480 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
481 			}
482 		}
483 	}
484 }
485 
486 /* display usage */
487 static void
488 print_usage(const char *prgname)
489 {
490 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
491 	       "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
492 	       "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
493 	       prgname);
494 }
495 
496 static int
497 parse_portmask(const char *portmask)
498 {
499 	char *end = NULL;
500 	unsigned long pm;
501 
502 	/* parse hexadecimal string */
503 	pm = strtoul(portmask, &end, 16);
504 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
505 		return -1;
506 
507 	if (pm == 0)
508 		return -1;
509 
510 	return pm;
511 }
512 
513 static int
514 parse_nqueue(const char *q_arg)
515 {
516 	char *end = NULL;
517 	unsigned long n;
518 
519 	/* parse hexadecimal string */
520 	n = strtoul(q_arg, &end, 10);
521 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
522 		return -1;
523 	if (n == 0)
524 		return -1;
525 	if (n >= MAX_RX_QUEUE_PER_LCORE)
526 		return -1;
527 
528 	return n;
529 }
530 
531 /* Parse the argument given in the command line of the application */
532 static int
533 parse_args(int argc, char **argv)
534 {
535 	int opt, ret;
536 	char **argvopt;
537 	int option_index;
538 	char *prgname = argv[0];
539 	static struct option lgopts[] = {
540 		{NULL, 0, 0, 0}
541 	};
542 
543 	argvopt = argv;
544 
545 	while ((opt = getopt_long(argc, argvopt, "p:q:",
546 				  lgopts, &option_index)) != EOF) {
547 
548 		switch (opt) {
549 		/* portmask */
550 		case 'p':
551 			enabled_port_mask = parse_portmask(optarg);
552 			if (enabled_port_mask < 0) {
553 				printf("invalid portmask\n");
554 				print_usage(prgname);
555 				return -1;
556 			}
557 			break;
558 
559 		/* nqueue */
560 		case 'q':
561 			rx_queue_per_lcore = parse_nqueue(optarg);
562 			if (rx_queue_per_lcore < 0) {
563 				printf("invalid queue number\n");
564 				print_usage(prgname);
565 				return -1;
566 			}
567 			break;
568 
569 		/* long options */
570 		case 0:
571 			print_usage(prgname);
572 			return -1;
573 
574 		default:
575 			print_usage(prgname);
576 			return -1;
577 		}
578 	}
579 
580 	if (enabled_port_mask == 0) {
581 		printf("portmask not specified\n");
582 		print_usage(prgname);
583 		return -1;
584 	}
585 
586 	if (optind >= 0)
587 		argv[optind-1] = prgname;
588 
589 	ret = optind-1;
590 	optind = 1; /* reset getopt lib */
591 	return ret;
592 }
593 
594 static void
595 print_ethaddr(const char *name, struct ether_addr *eth_addr)
596 {
597 	char buf[ETHER_ADDR_FMT_SIZE];
598 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
599 	printf("%s%s", name, buf);
600 }
601 
602 /* Check the link status of all ports in up to 9s, and print them finally */
603 static void
604 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
605 {
606 #define CHECK_INTERVAL 100 /* 100ms */
607 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
608 	uint8_t portid, count, all_ports_up, print_flag = 0;
609 	struct rte_eth_link link;
610 
611 	printf("\nChecking link status");
612 	fflush(stdout);
613 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
614 		all_ports_up = 1;
615 		for (portid = 0; portid < port_num; portid++) {
616 			if ((port_mask & (1 << portid)) == 0)
617 				continue;
618 			memset(&link, 0, sizeof(link));
619 			rte_eth_link_get_nowait(portid, &link);
620 			/* print link status if flag set */
621 			if (print_flag == 1) {
622 				if (link.link_status)
623 					printf("Port %d Link Up - speed %u "
624 						"Mbps - %s\n", (uint8_t)portid,
625 						(unsigned)link.link_speed,
626 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
627 					("full-duplex") : ("half-duplex\n"));
628 				else
629 					printf("Port %d Link Down\n",
630 							(uint8_t)portid);
631 				continue;
632 			}
633 			/* clear all_ports_up flag if any link down */
634 			if (link.link_status == ETH_LINK_DOWN) {
635 				all_ports_up = 0;
636 				break;
637 			}
638 		}
639 		/* after finally printing all link status, get out */
640 		if (print_flag == 1)
641 			break;
642 
643 		if (all_ports_up == 0) {
644 			printf(".");
645 			fflush(stdout);
646 			rte_delay_ms(CHECK_INTERVAL);
647 		}
648 
649 		/* set the print_flag if all ports up or timeout */
650 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
651 			print_flag = 1;
652 			printf("\ndone\n");
653 		}
654 	}
655 }
656 
657 /* Check L3 packet type detection capablity of the NIC port */
658 static int
659 check_ptype(int portid)
660 {
661 	int i, ret;
662 	int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
663 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
664 
665 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
666 	if (ret <= 0)
667 		return 0;
668 
669 	uint32_t ptypes[ret];
670 
671 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
672 	for (i = 0; i < ret; ++i) {
673 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
674 			ptype_l3_ipv4 = 1;
675 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
676 			ptype_l3_ipv6 = 1;
677 	}
678 
679 	if (ptype_l3_ipv4 == 0)
680 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
681 
682 	if (ptype_l3_ipv6 == 0)
683 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
684 
685 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
686 		return 1;
687 
688 	return 0;
689 
690 }
691 
692 /* Parse packet type of a packet by SW */
693 static inline void
694 parse_ptype(struct rte_mbuf *m)
695 {
696 	struct ether_hdr *eth_hdr;
697 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
698 	uint16_t ether_type;
699 
700 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
701 	ether_type = eth_hdr->ether_type;
702 	if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4))
703 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
704 	else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6))
705 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
706 
707 	m->packet_type = packet_type;
708 }
709 
710 /* callback function to detect packet type for a queue of a port */
711 static uint16_t
712 cb_parse_ptype(uint8_t port __rte_unused, uint16_t queue __rte_unused,
713 		   struct rte_mbuf *pkts[], uint16_t nb_pkts,
714 		   uint16_t max_pkts __rte_unused,
715 		   void *user_param __rte_unused)
716 {
717 	uint16_t i;
718 
719 	for (i = 0; i < nb_pkts; ++i)
720 		parse_ptype(pkts[i]);
721 
722 	return nb_pkts;
723 }
724 
725 static int
726 init_routing_table(void)
727 {
728 	struct rte_lpm *lpm;
729 	struct rte_lpm6 *lpm6;
730 	int socket, ret;
731 	unsigned i;
732 
733 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
734 		if (socket_lpm[socket]) {
735 			lpm = socket_lpm[socket];
736 			/* populate the LPM table */
737 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
738 				ret = rte_lpm_add(lpm,
739 					l3fwd_ipv4_route_array[i].ip,
740 					l3fwd_ipv4_route_array[i].depth,
741 					l3fwd_ipv4_route_array[i].if_out);
742 
743 				if (ret < 0) {
744 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
745 						"LPM table\n", i);
746 					return -1;
747 				}
748 
749 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
750 						"/%d (port %d)\n",
751 					socket,
752 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
753 					l3fwd_ipv4_route_array[i].depth,
754 					l3fwd_ipv4_route_array[i].if_out);
755 			}
756 		}
757 
758 		if (socket_lpm6[socket]) {
759 			lpm6 = socket_lpm6[socket];
760 			/* populate the LPM6 table */
761 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
762 				ret = rte_lpm6_add(lpm6,
763 					l3fwd_ipv6_route_array[i].ip,
764 					l3fwd_ipv6_route_array[i].depth,
765 					l3fwd_ipv6_route_array[i].if_out);
766 
767 				if (ret < 0) {
768 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
769 						"LPM6 table\n", i);
770 					return -1;
771 				}
772 
773 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
774 						"/%d (port %d)\n",
775 					socket,
776 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
777 					l3fwd_ipv6_route_array[i].depth,
778 					l3fwd_ipv6_route_array[i].if_out);
779 			}
780 		}
781 	}
782 	return 0;
783 }
784 
785 static int
786 init_mem(void)
787 {
788 	char buf[PATH_MAX];
789 	struct rte_mempool *mp;
790 	struct rte_lpm *lpm;
791 	struct rte_lpm6 *lpm6;
792 	struct rte_lpm_config lpm_config;
793 	int socket;
794 	unsigned lcore_id;
795 
796 	/* traverse through lcores and initialize structures on each socket */
797 
798 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
799 
800 		if (rte_lcore_is_enabled(lcore_id) == 0)
801 			continue;
802 
803 		socket = rte_lcore_to_socket_id(lcore_id);
804 
805 		if (socket == SOCKET_ID_ANY)
806 			socket = 0;
807 
808 		if (socket_direct_pool[socket] == NULL) {
809 			RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
810 					socket);
811 			snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
812 
813 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
814 				0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
815 			if (mp == NULL) {
816 				RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
817 				return -1;
818 			}
819 			socket_direct_pool[socket] = mp;
820 		}
821 
822 		if (socket_indirect_pool[socket] == NULL) {
823 			RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
824 					socket);
825 			snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
826 
827 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
828 				socket);
829 			if (mp == NULL) {
830 				RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
831 				return -1;
832 			}
833 			socket_indirect_pool[socket] = mp;
834 		}
835 
836 		if (socket_lpm[socket] == NULL) {
837 			RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
838 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
839 
840 			lpm_config.max_rules = LPM_MAX_RULES;
841 			lpm_config.number_tbl8s = 256;
842 			lpm_config.flags = 0;
843 
844 			lpm = rte_lpm_create(buf, socket, &lpm_config);
845 			if (lpm == NULL) {
846 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
847 				return -1;
848 			}
849 			socket_lpm[socket] = lpm;
850 		}
851 
852 		if (socket_lpm6[socket] == NULL) {
853 			RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
854 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
855 
856 			lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
857 			if (lpm6 == NULL) {
858 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
859 				return -1;
860 			}
861 			socket_lpm6[socket] = lpm6;
862 		}
863 	}
864 
865 	return 0;
866 }
867 
868 int
869 main(int argc, char **argv)
870 {
871 	struct lcore_queue_conf *qconf;
872 	struct rte_eth_dev_info dev_info;
873 	struct rte_eth_txconf *txconf;
874 	struct rx_queue *rxq;
875 	int socket, ret;
876 	unsigned nb_ports;
877 	uint16_t queueid = 0;
878 	unsigned lcore_id = 0, rx_lcore_id = 0;
879 	uint32_t n_tx_queue, nb_lcores;
880 	uint8_t portid;
881 
882 	/* init EAL */
883 	ret = rte_eal_init(argc, argv);
884 	if (ret < 0)
885 		rte_exit(EXIT_FAILURE, "rte_eal_init failed");
886 	argc -= ret;
887 	argv += ret;
888 
889 	/* parse application arguments (after the EAL ones) */
890 	ret = parse_args(argc, argv);
891 	if (ret < 0)
892 		rte_exit(EXIT_FAILURE, "Invalid arguments");
893 
894 	nb_ports = rte_eth_dev_count();
895 	if (nb_ports == 0)
896 		rte_exit(EXIT_FAILURE, "No ports found!\n");
897 
898 	nb_lcores = rte_lcore_count();
899 
900 	/* initialize structures (mempools, lpm etc.) */
901 	if (init_mem() < 0)
902 		rte_panic("Cannot initialize memory structures!\n");
903 
904 	/* check if portmask has non-existent ports */
905 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
906 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
907 
908 	/* initialize all ports */
909 	for (portid = 0; portid < nb_ports; portid++) {
910 		/* skip ports that are not enabled */
911 		if ((enabled_port_mask & (1 << portid)) == 0) {
912 			printf("Skipping disabled port %d\n", portid);
913 			continue;
914 		}
915 
916 		qconf = &lcore_queue_conf[rx_lcore_id];
917 
918 		/* get the lcore_id for this port */
919 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
920 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
921 
922 			rx_lcore_id ++;
923 			if (rx_lcore_id >= RTE_MAX_LCORE)
924 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
925 
926 			qconf = &lcore_queue_conf[rx_lcore_id];
927 		}
928 
929 		socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
930 		if (socket == SOCKET_ID_ANY)
931 			socket = 0;
932 
933 		rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
934 		rxq->portid = portid;
935 		rxq->direct_pool = socket_direct_pool[socket];
936 		rxq->indirect_pool = socket_indirect_pool[socket];
937 		rxq->lpm = socket_lpm[socket];
938 		rxq->lpm6 = socket_lpm6[socket];
939 		qconf->n_rx_queue++;
940 
941 		/* init port */
942 		printf("Initializing port %d on lcore %u...", portid,
943 		       rx_lcore_id);
944 		fflush(stdout);
945 
946 		n_tx_queue = nb_lcores;
947 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
948 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
949 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
950 					    &port_conf);
951 		if (ret < 0) {
952 			printf("\n");
953 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
954 				"err=%d, port=%d\n",
955 				ret, portid);
956 		}
957 
958 		/* init one RX queue */
959 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
960 					     socket, NULL,
961 					     socket_direct_pool[socket]);
962 		if (ret < 0) {
963 			printf("\n");
964 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
965 				"err=%d, port=%d\n",
966 				ret, portid);
967 		}
968 
969 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
970 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
971 		printf("\n");
972 
973 		/* init one TX queue per couple (lcore,port) */
974 		queueid = 0;
975 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
976 			if (rte_lcore_is_enabled(lcore_id) == 0)
977 				continue;
978 
979 			socket = (int) rte_lcore_to_socket_id(lcore_id);
980 			printf("txq=%u,%d ", lcore_id, queueid);
981 			fflush(stdout);
982 
983 			rte_eth_dev_info_get(portid, &dev_info);
984 			txconf = &dev_info.default_txconf;
985 			txconf->txq_flags = 0;
986 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
987 						     socket, txconf);
988 			if (ret < 0) {
989 				printf("\n");
990 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
991 					"err=%d, port=%d\n", ret, portid);
992 			}
993 
994 			qconf = &lcore_queue_conf[lcore_id];
995 			qconf->tx_queue_id[portid] = queueid;
996 			queueid++;
997 		}
998 
999 		printf("\n");
1000 	}
1001 
1002 	printf("\n");
1003 
1004 	/* start ports */
1005 	for (portid = 0; portid < nb_ports; portid++) {
1006 		if ((enabled_port_mask & (1 << portid)) == 0) {
1007 			continue;
1008 		}
1009 		/* Start device */
1010 		ret = rte_eth_dev_start(portid);
1011 		if (ret < 0)
1012 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1013 				ret, portid);
1014 
1015 		rte_eth_promiscuous_enable(portid);
1016 
1017 		if (check_ptype(portid) == 0) {
1018 			rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
1019 			printf("Add Rx callback funciton to detect L3 packet type by SW :"
1020 				" port = %d\n", portid);
1021 		}
1022 	}
1023 
1024 	if (init_routing_table() < 0)
1025 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1026 
1027 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1028 
1029 	/* launch per-lcore init on every lcore */
1030 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1031 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1032 		if (rte_eal_wait_lcore(lcore_id) < 0)
1033 			return -1;
1034 	}
1035 
1036 	return 0;
1037 }
1038