xref: /dpdk/examples/ip_fragmentation/main.c (revision 2f45703c17acb943aaded9f79676fd56a72542b2)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <string.h>
41 #include <sys/queue.h>
42 #include <stdarg.h>
43 #include <errno.h>
44 #include <getopt.h>
45 
46 #include <rte_common.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_eal.h>
53 #include <rte_per_lcore.h>
54 #include <rte_launch.h>
55 #include <rte_atomic.h>
56 #include <rte_cycles.h>
57 #include <rte_prefetch.h>
58 #include <rte_lcore.h>
59 #include <rte_per_lcore.h>
60 #include <rte_branch_prediction.h>
61 #include <rte_interrupts.h>
62 #include <rte_pci.h>
63 #include <rte_random.h>
64 #include <rte_debug.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
67 #include <rte_mempool.h>
68 #include <rte_mbuf.h>
69 #include <rte_lpm.h>
70 #include <rte_lpm6.h>
71 #include <rte_ip.h>
72 #include <rte_string_fns.h>
73 
74 #include <rte_ip_frag.h>
75 
76 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
77 
78 /* allow max jumbo frame 9.5 KB */
79 #define JUMBO_FRAME_MAX_SIZE	0x2600
80 
81 #define	ROUNDUP_DIV(a, b)	(((a) + (b) - 1) / (b))
82 
83 /*
84  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
85  * This value includes the size of IPv6 header.
86  */
87 #define	IPV4_MTU_DEFAULT	ETHER_MTU
88 #define	IPV6_MTU_DEFAULT	ETHER_MTU
89 
90 /*
91  * Default payload in bytes for the IPv6 packet.
92  */
93 #define	IPV4_DEFAULT_PAYLOAD	(IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr))
94 #define	IPV6_DEFAULT_PAYLOAD	(IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr))
95 
96 /*
97  * Max number of fragments per packet expected - defined by config file.
98  */
99 #define	MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
100 
101 #define NB_MBUF   8192
102 
103 #define MAX_PKT_BURST	32
104 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
105 
106 /* Configure how many packets ahead to prefetch, when reading packets */
107 #define PREFETCH_OFFSET	3
108 
109 /*
110  * Configurable number of RX/TX ring descriptors
111  */
112 #define RTE_TEST_RX_DESC_DEFAULT 128
113 #define RTE_TEST_TX_DESC_DEFAULT 512
114 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
115 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
116 
117 /* ethernet addresses of ports */
118 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
119 
120 #ifndef IPv4_BYTES
121 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
122 #define IPv4_BYTES(addr) \
123 		(uint8_t) (((addr) >> 24) & 0xFF),\
124 		(uint8_t) (((addr) >> 16) & 0xFF),\
125 		(uint8_t) (((addr) >> 8) & 0xFF),\
126 		(uint8_t) ((addr) & 0xFF)
127 #endif
128 
129 #ifndef IPv6_BYTES
130 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
131                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
132 #define IPv6_BYTES(addr) \
133 	addr[0],  addr[1], addr[2],  addr[3], \
134 	addr[4],  addr[5], addr[6],  addr[7], \
135 	addr[8],  addr[9], addr[10], addr[11],\
136 	addr[12], addr[13],addr[14], addr[15]
137 #endif
138 
139 #define IPV6_ADDR_LEN 16
140 
141 /* mask of enabled ports */
142 static int enabled_port_mask = 0;
143 
144 static int rx_queue_per_lcore = 1;
145 
146 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
147 
148 struct mbuf_table {
149 	uint16_t len;
150 	struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
151 };
152 
153 struct rx_queue {
154 	struct rte_mempool *direct_pool;
155 	struct rte_mempool *indirect_pool;
156 	struct rte_lpm *lpm;
157 	struct rte_lpm6 *lpm6;
158 	uint8_t portid;
159 };
160 
161 #define MAX_RX_QUEUE_PER_LCORE 16
162 #define MAX_TX_QUEUE_PER_PORT 16
163 struct lcore_queue_conf {
164 	uint16_t n_rx_queue;
165 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
166 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
167 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
168 } __rte_cache_aligned;
169 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
170 
171 static const struct rte_eth_conf port_conf = {
172 	.rxmode = {
173 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
174 		.split_hdr_size = 0,
175 		.header_split   = 0, /**< Header Split disabled */
176 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
177 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
178 		.jumbo_frame    = 1, /**< Jumbo Frame Support enabled */
179 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
180 	},
181 	.txmode = {
182 		.mq_mode = ETH_MQ_TX_NONE,
183 	},
184 };
185 
186 /*
187  * IPv4 forwarding table
188  */
189 struct l3fwd_ipv4_route {
190 	uint32_t ip;
191 	uint8_t  depth;
192 	uint8_t  if_out;
193 };
194 
195 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
196 		{IPv4(100,10,0,0), 16, 0},
197 		{IPv4(100,20,0,0), 16, 1},
198 		{IPv4(100,30,0,0), 16, 2},
199 		{IPv4(100,40,0,0), 16, 3},
200 		{IPv4(100,50,0,0), 16, 4},
201 		{IPv4(100,60,0,0), 16, 5},
202 		{IPv4(100,70,0,0), 16, 6},
203 		{IPv4(100,80,0,0), 16, 7},
204 };
205 
206 /*
207  * IPv6 forwarding table
208  */
209 
210 struct l3fwd_ipv6_route {
211 	uint8_t ip[IPV6_ADDR_LEN];
212 	uint8_t depth;
213 	uint8_t if_out;
214 };
215 
216 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
217 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
218 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
219 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
220 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
221 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
222 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
223 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
224 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
225 };
226 
227 #define LPM_MAX_RULES         1024
228 #define LPM6_MAX_RULES         1024
229 #define LPM6_NUMBER_TBL8S (1 << 16)
230 
231 struct rte_lpm6_config lpm6_config = {
232 		.max_rules = LPM6_MAX_RULES,
233 		.number_tbl8s = LPM6_NUMBER_TBL8S,
234 		.flags = 0
235 };
236 
237 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
238 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
239 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
240 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
241 
242 /* Send burst of packets on an output interface */
243 static inline int
244 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port)
245 {
246 	struct rte_mbuf **m_table;
247 	int ret;
248 	uint16_t queueid;
249 
250 	queueid = qconf->tx_queue_id[port];
251 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
252 
253 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
254 	if (unlikely(ret < n)) {
255 		do {
256 			rte_pktmbuf_free(m_table[ret]);
257 		} while (++ret < n);
258 	}
259 
260 	return 0;
261 }
262 
263 static inline void
264 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
265 		uint8_t queueid, uint8_t port_in)
266 {
267 	struct rx_queue *rxq;
268 	uint32_t i, len, next_hop_ipv4;
269 	uint8_t next_hop_ipv6, port_out, ipv6;
270 	int32_t len2;
271 
272 	ipv6 = 0;
273 	rxq = &qconf->rx_queue_list[queueid];
274 
275 	/* by default, send everything back to the source port */
276 	port_out = port_in;
277 
278 	/* Remove the Ethernet header and trailer from the input packet */
279 	rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
280 
281 	/* Build transmission burst */
282 	len = qconf->tx_mbufs[port_out].len;
283 
284 	/* if this is an IPv4 packet */
285 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
286 		struct ipv4_hdr *ip_hdr;
287 		uint32_t ip_dst;
288 		/* Read the lookup key (i.e. ip_dst) from the input packet */
289 		ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *);
290 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
291 
292 		/* Find destination port */
293 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop_ipv4) == 0 &&
294 				(enabled_port_mask & 1 << next_hop_ipv4) != 0) {
295 			port_out = next_hop_ipv4;
296 
297 			/* Build transmission burst for new port */
298 			len = qconf->tx_mbufs[port_out].len;
299 		}
300 
301 		/* if we don't need to do any fragmentation */
302 		if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
303 			qconf->tx_mbufs[port_out].m_table[len] = m;
304 			len2 = 1;
305 		} else {
306 			len2 = rte_ipv4_fragment_packet(m,
307 				&qconf->tx_mbufs[port_out].m_table[len],
308 				(uint16_t)(MBUF_TABLE_SIZE - len),
309 				IPV4_MTU_DEFAULT,
310 				rxq->direct_pool, rxq->indirect_pool);
311 
312 			/* Free input packet */
313 			rte_pktmbuf_free(m);
314 
315 			/* If we fail to fragment the packet */
316 			if (unlikely (len2 < 0))
317 				return;
318 		}
319 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
320 		/* if this is an IPv6 packet */
321 		struct ipv6_hdr *ip_hdr;
322 
323 		ipv6 = 1;
324 
325 		/* Read the lookup key (i.e. ip_dst) from the input packet */
326 		ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *);
327 
328 		/* Find destination port */
329 		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop_ipv6) == 0 &&
330 				(enabled_port_mask & 1 << next_hop_ipv6) != 0) {
331 			port_out = next_hop_ipv6;
332 
333 			/* Build transmission burst for new port */
334 			len = qconf->tx_mbufs[port_out].len;
335 		}
336 
337 		/* if we don't need to do any fragmentation */
338 		if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
339 			qconf->tx_mbufs[port_out].m_table[len] = m;
340 			len2 = 1;
341 		} else {
342 			len2 = rte_ipv6_fragment_packet(m,
343 				&qconf->tx_mbufs[port_out].m_table[len],
344 				(uint16_t)(MBUF_TABLE_SIZE - len),
345 				IPV6_MTU_DEFAULT,
346 				rxq->direct_pool, rxq->indirect_pool);
347 
348 			/* Free input packet */
349 			rte_pktmbuf_free(m);
350 
351 			/* If we fail to fragment the packet */
352 			if (unlikely (len2 < 0))
353 				return;
354 		}
355 	}
356 	/* else, just forward the packet */
357 	else {
358 		qconf->tx_mbufs[port_out].m_table[len] = m;
359 		len2 = 1;
360 	}
361 
362 	for (i = len; i < len + len2; i ++) {
363 		void *d_addr_bytes;
364 
365 		m = qconf->tx_mbufs[port_out].m_table[i];
366 		struct ether_hdr *eth_hdr = (struct ether_hdr *)
367 			rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr));
368 		if (eth_hdr == NULL) {
369 			rte_panic("No headroom in mbuf.\n");
370 		}
371 
372 		m->l2_len = sizeof(struct ether_hdr);
373 
374 		/* 02:00:00:00:00:xx */
375 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
376 		*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40);
377 
378 		/* src addr */
379 		ether_addr_copy(&ports_eth_addr[port_out], &eth_hdr->s_addr);
380 		if (ipv6)
381 			eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6);
382 		else
383 			eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
384 	}
385 
386 	len += len2;
387 
388 	if (likely(len < MAX_PKT_BURST)) {
389 		qconf->tx_mbufs[port_out].len = (uint16_t)len;
390 		return;
391 	}
392 
393 	/* Transmit packets */
394 	send_burst(qconf, (uint16_t)len, port_out);
395 	qconf->tx_mbufs[port_out].len = 0;
396 }
397 
398 /* main processing loop */
399 static int
400 main_loop(__attribute__((unused)) void *dummy)
401 {
402 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
403 	unsigned lcore_id;
404 	uint64_t prev_tsc, diff_tsc, cur_tsc;
405 	int i, j, nb_rx;
406 	uint8_t portid;
407 	struct lcore_queue_conf *qconf;
408 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
409 
410 	prev_tsc = 0;
411 
412 	lcore_id = rte_lcore_id();
413 	qconf = &lcore_queue_conf[lcore_id];
414 
415 	if (qconf->n_rx_queue == 0) {
416 		RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
417 		return 0;
418 	}
419 
420 	RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
421 
422 	for (i = 0; i < qconf->n_rx_queue; i++) {
423 
424 		portid = qconf->rx_queue_list[i].portid;
425 		RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
426 				(int) portid);
427 	}
428 
429 	while (1) {
430 
431 		cur_tsc = rte_rdtsc();
432 
433 		/*
434 		 * TX burst queue drain
435 		 */
436 		diff_tsc = cur_tsc - prev_tsc;
437 		if (unlikely(diff_tsc > drain_tsc)) {
438 
439 			/*
440 			 * This could be optimized (use queueid instead of
441 			 * portid), but it is not called so often
442 			 */
443 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
444 				if (qconf->tx_mbufs[portid].len == 0)
445 					continue;
446 				send_burst(&lcore_queue_conf[lcore_id],
447 					   qconf->tx_mbufs[portid].len,
448 					   portid);
449 				qconf->tx_mbufs[portid].len = 0;
450 			}
451 
452 			prev_tsc = cur_tsc;
453 		}
454 
455 		/*
456 		 * Read packet from RX queues
457 		 */
458 		for (i = 0; i < qconf->n_rx_queue; i++) {
459 
460 			portid = qconf->rx_queue_list[i].portid;
461 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
462 						 MAX_PKT_BURST);
463 
464 			/* Prefetch first packets */
465 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
466 				rte_prefetch0(rte_pktmbuf_mtod(
467 						pkts_burst[j], void *));
468 			}
469 
470 			/* Prefetch and forward already prefetched packets */
471 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
472 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
473 						j + PREFETCH_OFFSET], void *));
474 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
475 			}
476 
477 			/* Forward remaining prefetched packets */
478 			for (; j < nb_rx; j++) {
479 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
480 			}
481 		}
482 	}
483 }
484 
485 /* display usage */
486 static void
487 print_usage(const char *prgname)
488 {
489 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
490 	       "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
491 	       "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
492 	       prgname);
493 }
494 
495 static int
496 parse_portmask(const char *portmask)
497 {
498 	char *end = NULL;
499 	unsigned long pm;
500 
501 	/* parse hexadecimal string */
502 	pm = strtoul(portmask, &end, 16);
503 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
504 		return -1;
505 
506 	if (pm == 0)
507 		return -1;
508 
509 	return pm;
510 }
511 
512 static int
513 parse_nqueue(const char *q_arg)
514 {
515 	char *end = NULL;
516 	unsigned long n;
517 
518 	/* parse hexadecimal string */
519 	n = strtoul(q_arg, &end, 10);
520 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
521 		return -1;
522 	if (n == 0)
523 		return -1;
524 	if (n >= MAX_RX_QUEUE_PER_LCORE)
525 		return -1;
526 
527 	return n;
528 }
529 
530 /* Parse the argument given in the command line of the application */
531 static int
532 parse_args(int argc, char **argv)
533 {
534 	int opt, ret;
535 	char **argvopt;
536 	int option_index;
537 	char *prgname = argv[0];
538 	static struct option lgopts[] = {
539 		{NULL, 0, 0, 0}
540 	};
541 
542 	argvopt = argv;
543 
544 	while ((opt = getopt_long(argc, argvopt, "p:q:",
545 				  lgopts, &option_index)) != EOF) {
546 
547 		switch (opt) {
548 		/* portmask */
549 		case 'p':
550 			enabled_port_mask = parse_portmask(optarg);
551 			if (enabled_port_mask < 0) {
552 				printf("invalid portmask\n");
553 				print_usage(prgname);
554 				return -1;
555 			}
556 			break;
557 
558 		/* nqueue */
559 		case 'q':
560 			rx_queue_per_lcore = parse_nqueue(optarg);
561 			if (rx_queue_per_lcore < 0) {
562 				printf("invalid queue number\n");
563 				print_usage(prgname);
564 				return -1;
565 			}
566 			break;
567 
568 		/* long options */
569 		case 0:
570 			print_usage(prgname);
571 			return -1;
572 
573 		default:
574 			print_usage(prgname);
575 			return -1;
576 		}
577 	}
578 
579 	if (enabled_port_mask == 0) {
580 		printf("portmask not specified\n");
581 		print_usage(prgname);
582 		return -1;
583 	}
584 
585 	if (optind >= 0)
586 		argv[optind-1] = prgname;
587 
588 	ret = optind-1;
589 	optind = 0; /* reset getopt lib */
590 	return ret;
591 }
592 
593 static void
594 print_ethaddr(const char *name, struct ether_addr *eth_addr)
595 {
596 	char buf[ETHER_ADDR_FMT_SIZE];
597 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
598 	printf("%s%s", name, buf);
599 }
600 
601 /* Check the link status of all ports in up to 9s, and print them finally */
602 static void
603 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
604 {
605 #define CHECK_INTERVAL 100 /* 100ms */
606 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
607 	uint8_t portid, count, all_ports_up, print_flag = 0;
608 	struct rte_eth_link link;
609 
610 	printf("\nChecking link status");
611 	fflush(stdout);
612 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
613 		all_ports_up = 1;
614 		for (portid = 0; portid < port_num; portid++) {
615 			if ((port_mask & (1 << portid)) == 0)
616 				continue;
617 			memset(&link, 0, sizeof(link));
618 			rte_eth_link_get_nowait(portid, &link);
619 			/* print link status if flag set */
620 			if (print_flag == 1) {
621 				if (link.link_status)
622 					printf("Port %d Link Up - speed %u "
623 						"Mbps - %s\n", (uint8_t)portid,
624 						(unsigned)link.link_speed,
625 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
626 					("full-duplex") : ("half-duplex\n"));
627 				else
628 					printf("Port %d Link Down\n",
629 							(uint8_t)portid);
630 				continue;
631 			}
632 			/* clear all_ports_up flag if any link down */
633 			if (link.link_status == ETH_LINK_DOWN) {
634 				all_ports_up = 0;
635 				break;
636 			}
637 		}
638 		/* after finally printing all link status, get out */
639 		if (print_flag == 1)
640 			break;
641 
642 		if (all_ports_up == 0) {
643 			printf(".");
644 			fflush(stdout);
645 			rte_delay_ms(CHECK_INTERVAL);
646 		}
647 
648 		/* set the print_flag if all ports up or timeout */
649 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
650 			print_flag = 1;
651 			printf("\ndone\n");
652 		}
653 	}
654 }
655 
656 static int
657 init_routing_table(void)
658 {
659 	struct rte_lpm *lpm;
660 	struct rte_lpm6 *lpm6;
661 	int socket, ret;
662 	unsigned i;
663 
664 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
665 		if (socket_lpm[socket]) {
666 			lpm = socket_lpm[socket];
667 			/* populate the LPM table */
668 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
669 				ret = rte_lpm_add(lpm,
670 					l3fwd_ipv4_route_array[i].ip,
671 					l3fwd_ipv4_route_array[i].depth,
672 					l3fwd_ipv4_route_array[i].if_out);
673 
674 				if (ret < 0) {
675 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
676 						"LPM table\n", i);
677 					return -1;
678 				}
679 
680 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
681 						"/%d (port %d)\n",
682 					socket,
683 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
684 					l3fwd_ipv4_route_array[i].depth,
685 					l3fwd_ipv4_route_array[i].if_out);
686 			}
687 		}
688 
689 		if (socket_lpm6[socket]) {
690 			lpm6 = socket_lpm6[socket];
691 			/* populate the LPM6 table */
692 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
693 				ret = rte_lpm6_add(lpm6,
694 					l3fwd_ipv6_route_array[i].ip,
695 					l3fwd_ipv6_route_array[i].depth,
696 					l3fwd_ipv6_route_array[i].if_out);
697 
698 				if (ret < 0) {
699 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
700 						"LPM6 table\n", i);
701 					return -1;
702 				}
703 
704 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
705 						"/%d (port %d)\n",
706 					socket,
707 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
708 					l3fwd_ipv6_route_array[i].depth,
709 					l3fwd_ipv6_route_array[i].if_out);
710 			}
711 		}
712 	}
713 	return 0;
714 }
715 
716 static int
717 init_mem(void)
718 {
719 	char buf[PATH_MAX];
720 	struct rte_mempool *mp;
721 	struct rte_lpm *lpm;
722 	struct rte_lpm6 *lpm6;
723 	struct rte_lpm_config lpm_config;
724 	int socket;
725 	unsigned lcore_id;
726 
727 	/* traverse through lcores and initialize structures on each socket */
728 
729 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
730 
731 		if (rte_lcore_is_enabled(lcore_id) == 0)
732 			continue;
733 
734 		socket = rte_lcore_to_socket_id(lcore_id);
735 
736 		if (socket == SOCKET_ID_ANY)
737 			socket = 0;
738 
739 		if (socket_direct_pool[socket] == NULL) {
740 			RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
741 					socket);
742 			snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
743 
744 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
745 				0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
746 			if (mp == NULL) {
747 				RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
748 				return -1;
749 			}
750 			socket_direct_pool[socket] = mp;
751 		}
752 
753 		if (socket_indirect_pool[socket] == NULL) {
754 			RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
755 					socket);
756 			snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
757 
758 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
759 				socket);
760 			if (mp == NULL) {
761 				RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
762 				return -1;
763 			}
764 			socket_indirect_pool[socket] = mp;
765 		}
766 
767 		if (socket_lpm[socket] == NULL) {
768 			RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
769 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
770 
771 			lpm_config.max_rules = LPM_MAX_RULES;
772 			lpm_config.number_tbl8s = 256;
773 			lpm_config.flags = 0;
774 
775 			lpm = rte_lpm_create(buf, socket, &lpm_config);
776 			if (lpm == NULL) {
777 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
778 				return -1;
779 			}
780 			socket_lpm[socket] = lpm;
781 		}
782 
783 		if (socket_lpm6[socket] == NULL) {
784 			RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
785 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
786 
787 			lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
788 			if (lpm6 == NULL) {
789 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
790 				return -1;
791 			}
792 			socket_lpm6[socket] = lpm6;
793 		}
794 	}
795 
796 	return 0;
797 }
798 
799 int
800 main(int argc, char **argv)
801 {
802 	struct lcore_queue_conf *qconf;
803 	struct rte_eth_dev_info dev_info;
804 	struct rte_eth_txconf *txconf;
805 	struct rx_queue *rxq;
806 	int socket, ret;
807 	unsigned nb_ports;
808 	uint16_t queueid = 0;
809 	unsigned lcore_id = 0, rx_lcore_id = 0;
810 	uint32_t n_tx_queue, nb_lcores;
811 	uint8_t portid;
812 
813 	/* init EAL */
814 	ret = rte_eal_init(argc, argv);
815 	if (ret < 0)
816 		rte_exit(EXIT_FAILURE, "rte_eal_init failed");
817 	argc -= ret;
818 	argv += ret;
819 
820 	/* parse application arguments (after the EAL ones) */
821 	ret = parse_args(argc, argv);
822 	if (ret < 0)
823 		rte_exit(EXIT_FAILURE, "Invalid arguments");
824 
825 	nb_ports = rte_eth_dev_count();
826 	if (nb_ports == 0)
827 		rte_exit(EXIT_FAILURE, "No ports found!\n");
828 
829 	nb_lcores = rte_lcore_count();
830 
831 	/* initialize structures (mempools, lpm etc.) */
832 	if (init_mem() < 0)
833 		rte_panic("Cannot initialize memory structures!\n");
834 
835 	/* check if portmask has non-existent ports */
836 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
837 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
838 
839 	/* initialize all ports */
840 	for (portid = 0; portid < nb_ports; portid++) {
841 		/* skip ports that are not enabled */
842 		if ((enabled_port_mask & (1 << portid)) == 0) {
843 			printf("Skipping disabled port %d\n", portid);
844 			continue;
845 		}
846 
847 		qconf = &lcore_queue_conf[rx_lcore_id];
848 
849 		/* get the lcore_id for this port */
850 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
851 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
852 
853 			rx_lcore_id ++;
854 			if (rx_lcore_id >= RTE_MAX_LCORE)
855 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
856 
857 			qconf = &lcore_queue_conf[rx_lcore_id];
858 		}
859 
860 		socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
861 		if (socket == SOCKET_ID_ANY)
862 			socket = 0;
863 
864 		rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
865 		rxq->portid = portid;
866 		rxq->direct_pool = socket_direct_pool[socket];
867 		rxq->indirect_pool = socket_indirect_pool[socket];
868 		rxq->lpm = socket_lpm[socket];
869 		rxq->lpm6 = socket_lpm6[socket];
870 		qconf->n_rx_queue++;
871 
872 		/* init port */
873 		printf("Initializing port %d on lcore %u...", portid,
874 		       rx_lcore_id);
875 		fflush(stdout);
876 
877 		n_tx_queue = nb_lcores;
878 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
879 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
880 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
881 					    &port_conf);
882 		if (ret < 0) {
883 			printf("\n");
884 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
885 				"err=%d, port=%d\n",
886 				ret, portid);
887 		}
888 
889 		/* init one RX queue */
890 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
891 					     socket, NULL,
892 					     socket_direct_pool[socket]);
893 		if (ret < 0) {
894 			printf("\n");
895 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
896 				"err=%d, port=%d\n",
897 				ret, portid);
898 		}
899 
900 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
901 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
902 		printf("\n");
903 
904 		/* init one TX queue per couple (lcore,port) */
905 		queueid = 0;
906 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
907 			if (rte_lcore_is_enabled(lcore_id) == 0)
908 				continue;
909 
910 			socket = (int) rte_lcore_to_socket_id(lcore_id);
911 			printf("txq=%u,%d ", lcore_id, queueid);
912 			fflush(stdout);
913 
914 			rte_eth_dev_info_get(portid, &dev_info);
915 			txconf = &dev_info.default_txconf;
916 			txconf->txq_flags = 0;
917 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
918 						     socket, txconf);
919 			if (ret < 0) {
920 				printf("\n");
921 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
922 					"err=%d, port=%d\n", ret, portid);
923 			}
924 
925 			qconf = &lcore_queue_conf[lcore_id];
926 			qconf->tx_queue_id[portid] = queueid;
927 			queueid++;
928 		}
929 
930 		printf("\n");
931 	}
932 
933 	printf("\n");
934 
935 	/* start ports */
936 	for (portid = 0; portid < nb_ports; portid++) {
937 		if ((enabled_port_mask & (1 << portid)) == 0) {
938 			continue;
939 		}
940 		/* Start device */
941 		ret = rte_eth_dev_start(portid);
942 		if (ret < 0)
943 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
944 				ret, portid);
945 
946 		rte_eth_promiscuous_enable(portid);
947 	}
948 
949 	if (init_routing_table() < 0)
950 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
951 
952 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
953 
954 	/* launch per-lcore init on every lcore */
955 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
956 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
957 		if (rte_eal_wait_lcore(lcore_id) < 0)
958 			return -1;
959 	}
960 
961 	return 0;
962 }
963