1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <sys/param.h> 11 #include <string.h> 12 #include <sys/queue.h> 13 #include <stdarg.h> 14 #include <errno.h> 15 #include <getopt.h> 16 17 #include <rte_common.h> 18 #include <rte_byteorder.h> 19 #include <rte_log.h> 20 #include <rte_memory.h> 21 #include <rte_memcpy.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_atomic.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_lpm.h> 38 #include <rte_lpm6.h> 39 #include <rte_ip.h> 40 #include <rte_string_fns.h> 41 42 #include <rte_ip_frag.h> 43 44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 45 46 /* allow max jumbo frame 9.5 KB */ 47 #define JUMBO_FRAME_MAX_SIZE 0x2600 48 49 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 50 51 /* 52 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 53 * This value includes the size of IPv6 header. 54 */ 55 #define IPV4_MTU_DEFAULT ETHER_MTU 56 #define IPV6_MTU_DEFAULT ETHER_MTU 57 58 /* 59 * Default payload in bytes for the IPv6 packet. 60 */ 61 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) 62 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) 63 64 /* 65 * Max number of fragments per packet expected - defined by config file. 66 */ 67 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 68 69 #define NB_MBUF 8192 70 71 #define MAX_PKT_BURST 32 72 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 73 74 /* Configure how many packets ahead to prefetch, when reading packets */ 75 #define PREFETCH_OFFSET 3 76 77 /* 78 * Configurable number of RX/TX ring descriptors 79 */ 80 #define RTE_TEST_RX_DESC_DEFAULT 1024 81 #define RTE_TEST_TX_DESC_DEFAULT 1024 82 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 83 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 84 85 /* ethernet addresses of ports */ 86 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 87 88 #ifndef IPv4_BYTES 89 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 90 #define IPv4_BYTES(addr) \ 91 (uint8_t) (((addr) >> 24) & 0xFF),\ 92 (uint8_t) (((addr) >> 16) & 0xFF),\ 93 (uint8_t) (((addr) >> 8) & 0xFF),\ 94 (uint8_t) ((addr) & 0xFF) 95 #endif 96 97 #ifndef IPv6_BYTES 98 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 99 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 100 #define IPv6_BYTES(addr) \ 101 addr[0], addr[1], addr[2], addr[3], \ 102 addr[4], addr[5], addr[6], addr[7], \ 103 addr[8], addr[9], addr[10], addr[11],\ 104 addr[12], addr[13],addr[14], addr[15] 105 #endif 106 107 #define IPV6_ADDR_LEN 16 108 109 /* mask of enabled ports */ 110 static int enabled_port_mask = 0; 111 112 static int rx_queue_per_lcore = 1; 113 114 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 115 116 struct mbuf_table { 117 uint16_t len; 118 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 119 }; 120 121 struct rx_queue { 122 struct rte_mempool *direct_pool; 123 struct rte_mempool *indirect_pool; 124 struct rte_lpm *lpm; 125 struct rte_lpm6 *lpm6; 126 uint16_t portid; 127 }; 128 129 #define MAX_RX_QUEUE_PER_LCORE 16 130 #define MAX_TX_QUEUE_PER_PORT 16 131 struct lcore_queue_conf { 132 uint16_t n_rx_queue; 133 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 134 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 135 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 136 } __rte_cache_aligned; 137 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 138 139 static struct rte_eth_conf port_conf = { 140 .rxmode = { 141 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 142 .split_hdr_size = 0, 143 .offloads = (DEV_RX_OFFLOAD_CHECKSUM | 144 DEV_RX_OFFLOAD_JUMBO_FRAME | 145 DEV_RX_OFFLOAD_CRC_STRIP), 146 }, 147 .txmode = { 148 .mq_mode = ETH_MQ_TX_NONE, 149 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | 150 DEV_TX_OFFLOAD_MULTI_SEGS), 151 }, 152 }; 153 154 /* 155 * IPv4 forwarding table 156 */ 157 struct l3fwd_ipv4_route { 158 uint32_t ip; 159 uint8_t depth; 160 uint8_t if_out; 161 }; 162 163 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 164 {IPv4(100,10,0,0), 16, 0}, 165 {IPv4(100,20,0,0), 16, 1}, 166 {IPv4(100,30,0,0), 16, 2}, 167 {IPv4(100,40,0,0), 16, 3}, 168 {IPv4(100,50,0,0), 16, 4}, 169 {IPv4(100,60,0,0), 16, 5}, 170 {IPv4(100,70,0,0), 16, 6}, 171 {IPv4(100,80,0,0), 16, 7}, 172 }; 173 174 /* 175 * IPv6 forwarding table 176 */ 177 178 struct l3fwd_ipv6_route { 179 uint8_t ip[IPV6_ADDR_LEN]; 180 uint8_t depth; 181 uint8_t if_out; 182 }; 183 184 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 185 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 186 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 187 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 188 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 189 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 190 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 191 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 192 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 193 }; 194 195 #define LPM_MAX_RULES 1024 196 #define LPM6_MAX_RULES 1024 197 #define LPM6_NUMBER_TBL8S (1 << 16) 198 199 struct rte_lpm6_config lpm6_config = { 200 .max_rules = LPM6_MAX_RULES, 201 .number_tbl8s = LPM6_NUMBER_TBL8S, 202 .flags = 0 203 }; 204 205 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 206 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 207 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 208 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 209 210 /* Send burst of packets on an output interface */ 211 static inline int 212 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) 213 { 214 struct rte_mbuf **m_table; 215 int ret; 216 uint16_t queueid; 217 218 queueid = qconf->tx_queue_id[port]; 219 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 220 221 ret = rte_eth_tx_burst(port, queueid, m_table, n); 222 if (unlikely(ret < n)) { 223 do { 224 rte_pktmbuf_free(m_table[ret]); 225 } while (++ret < n); 226 } 227 228 return 0; 229 } 230 231 static inline void 232 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 233 uint8_t queueid, uint16_t port_in) 234 { 235 struct rx_queue *rxq; 236 uint32_t i, len, next_hop; 237 uint8_t ipv6; 238 uint16_t port_out; 239 int32_t len2; 240 241 ipv6 = 0; 242 rxq = &qconf->rx_queue_list[queueid]; 243 244 /* by default, send everything back to the source port */ 245 port_out = port_in; 246 247 /* Remove the Ethernet header and trailer from the input packet */ 248 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 249 250 /* Build transmission burst */ 251 len = qconf->tx_mbufs[port_out].len; 252 253 /* if this is an IPv4 packet */ 254 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 255 struct ipv4_hdr *ip_hdr; 256 uint32_t ip_dst; 257 /* Read the lookup key (i.e. ip_dst) from the input packet */ 258 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); 259 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 260 261 /* Find destination port */ 262 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 263 (enabled_port_mask & 1 << next_hop) != 0) { 264 port_out = next_hop; 265 266 /* Build transmission burst for new port */ 267 len = qconf->tx_mbufs[port_out].len; 268 } 269 270 /* if we don't need to do any fragmentation */ 271 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 272 qconf->tx_mbufs[port_out].m_table[len] = m; 273 len2 = 1; 274 } else { 275 len2 = rte_ipv4_fragment_packet(m, 276 &qconf->tx_mbufs[port_out].m_table[len], 277 (uint16_t)(MBUF_TABLE_SIZE - len), 278 IPV4_MTU_DEFAULT, 279 rxq->direct_pool, rxq->indirect_pool); 280 281 /* Free input packet */ 282 rte_pktmbuf_free(m); 283 284 /* If we fail to fragment the packet */ 285 if (unlikely (len2 < 0)) 286 return; 287 } 288 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 289 /* if this is an IPv6 packet */ 290 struct ipv6_hdr *ip_hdr; 291 292 ipv6 = 1; 293 294 /* Read the lookup key (i.e. ip_dst) from the input packet */ 295 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); 296 297 /* Find destination port */ 298 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 299 &next_hop) == 0 && 300 (enabled_port_mask & 1 << next_hop) != 0) { 301 port_out = next_hop; 302 303 /* Build transmission burst for new port */ 304 len = qconf->tx_mbufs[port_out].len; 305 } 306 307 /* if we don't need to do any fragmentation */ 308 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 309 qconf->tx_mbufs[port_out].m_table[len] = m; 310 len2 = 1; 311 } else { 312 len2 = rte_ipv6_fragment_packet(m, 313 &qconf->tx_mbufs[port_out].m_table[len], 314 (uint16_t)(MBUF_TABLE_SIZE - len), 315 IPV6_MTU_DEFAULT, 316 rxq->direct_pool, rxq->indirect_pool); 317 318 /* Free input packet */ 319 rte_pktmbuf_free(m); 320 321 /* If we fail to fragment the packet */ 322 if (unlikely (len2 < 0)) 323 return; 324 } 325 } 326 /* else, just forward the packet */ 327 else { 328 qconf->tx_mbufs[port_out].m_table[len] = m; 329 len2 = 1; 330 } 331 332 for (i = len; i < len + len2; i ++) { 333 void *d_addr_bytes; 334 335 m = qconf->tx_mbufs[port_out].m_table[i]; 336 struct ether_hdr *eth_hdr = (struct ether_hdr *) 337 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); 338 if (eth_hdr == NULL) { 339 rte_panic("No headroom in mbuf.\n"); 340 } 341 342 m->l2_len = sizeof(struct ether_hdr); 343 344 /* 02:00:00:00:00:xx */ 345 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 346 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 347 348 /* src addr */ 349 ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); 350 if (ipv6) 351 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 352 else 353 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 354 } 355 356 len += len2; 357 358 if (likely(len < MAX_PKT_BURST)) { 359 qconf->tx_mbufs[port_out].len = (uint16_t)len; 360 return; 361 } 362 363 /* Transmit packets */ 364 send_burst(qconf, (uint16_t)len, port_out); 365 qconf->tx_mbufs[port_out].len = 0; 366 } 367 368 /* main processing loop */ 369 static int 370 main_loop(__attribute__((unused)) void *dummy) 371 { 372 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 373 unsigned lcore_id; 374 uint64_t prev_tsc, diff_tsc, cur_tsc; 375 int i, j, nb_rx; 376 uint16_t portid; 377 struct lcore_queue_conf *qconf; 378 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 379 380 prev_tsc = 0; 381 382 lcore_id = rte_lcore_id(); 383 qconf = &lcore_queue_conf[lcore_id]; 384 385 if (qconf->n_rx_queue == 0) { 386 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 387 return 0; 388 } 389 390 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 391 392 for (i = 0; i < qconf->n_rx_queue; i++) { 393 394 portid = qconf->rx_queue_list[i].portid; 395 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 396 portid); 397 } 398 399 while (1) { 400 401 cur_tsc = rte_rdtsc(); 402 403 /* 404 * TX burst queue drain 405 */ 406 diff_tsc = cur_tsc - prev_tsc; 407 if (unlikely(diff_tsc > drain_tsc)) { 408 409 /* 410 * This could be optimized (use queueid instead of 411 * portid), but it is not called so often 412 */ 413 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 414 if (qconf->tx_mbufs[portid].len == 0) 415 continue; 416 send_burst(&lcore_queue_conf[lcore_id], 417 qconf->tx_mbufs[portid].len, 418 portid); 419 qconf->tx_mbufs[portid].len = 0; 420 } 421 422 prev_tsc = cur_tsc; 423 } 424 425 /* 426 * Read packet from RX queues 427 */ 428 for (i = 0; i < qconf->n_rx_queue; i++) { 429 430 portid = qconf->rx_queue_list[i].portid; 431 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 432 MAX_PKT_BURST); 433 434 /* Prefetch first packets */ 435 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 436 rte_prefetch0(rte_pktmbuf_mtod( 437 pkts_burst[j], void *)); 438 } 439 440 /* Prefetch and forward already prefetched packets */ 441 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 442 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 443 j + PREFETCH_OFFSET], void *)); 444 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 445 } 446 447 /* Forward remaining prefetched packets */ 448 for (; j < nb_rx; j++) { 449 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 450 } 451 } 452 } 453 } 454 455 /* display usage */ 456 static void 457 print_usage(const char *prgname) 458 { 459 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 460 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 461 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 462 prgname); 463 } 464 465 static int 466 parse_portmask(const char *portmask) 467 { 468 char *end = NULL; 469 unsigned long pm; 470 471 /* parse hexadecimal string */ 472 pm = strtoul(portmask, &end, 16); 473 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 474 return -1; 475 476 if (pm == 0) 477 return -1; 478 479 return pm; 480 } 481 482 static int 483 parse_nqueue(const char *q_arg) 484 { 485 char *end = NULL; 486 unsigned long n; 487 488 /* parse hexadecimal string */ 489 n = strtoul(q_arg, &end, 10); 490 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 491 return -1; 492 if (n == 0) 493 return -1; 494 if (n >= MAX_RX_QUEUE_PER_LCORE) 495 return -1; 496 497 return n; 498 } 499 500 /* Parse the argument given in the command line of the application */ 501 static int 502 parse_args(int argc, char **argv) 503 { 504 int opt, ret; 505 char **argvopt; 506 int option_index; 507 char *prgname = argv[0]; 508 static struct option lgopts[] = { 509 {NULL, 0, 0, 0} 510 }; 511 512 argvopt = argv; 513 514 while ((opt = getopt_long(argc, argvopt, "p:q:", 515 lgopts, &option_index)) != EOF) { 516 517 switch (opt) { 518 /* portmask */ 519 case 'p': 520 enabled_port_mask = parse_portmask(optarg); 521 if (enabled_port_mask < 0) { 522 printf("invalid portmask\n"); 523 print_usage(prgname); 524 return -1; 525 } 526 break; 527 528 /* nqueue */ 529 case 'q': 530 rx_queue_per_lcore = parse_nqueue(optarg); 531 if (rx_queue_per_lcore < 0) { 532 printf("invalid queue number\n"); 533 print_usage(prgname); 534 return -1; 535 } 536 break; 537 538 /* long options */ 539 case 0: 540 print_usage(prgname); 541 return -1; 542 543 default: 544 print_usage(prgname); 545 return -1; 546 } 547 } 548 549 if (enabled_port_mask == 0) { 550 printf("portmask not specified\n"); 551 print_usage(prgname); 552 return -1; 553 } 554 555 if (optind >= 0) 556 argv[optind-1] = prgname; 557 558 ret = optind-1; 559 optind = 1; /* reset getopt lib */ 560 return ret; 561 } 562 563 static void 564 print_ethaddr(const char *name, struct ether_addr *eth_addr) 565 { 566 char buf[ETHER_ADDR_FMT_SIZE]; 567 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 568 printf("%s%s", name, buf); 569 } 570 571 /* Check the link status of all ports in up to 9s, and print them finally */ 572 static void 573 check_all_ports_link_status(uint32_t port_mask) 574 { 575 #define CHECK_INTERVAL 100 /* 100ms */ 576 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 577 uint16_t portid; 578 uint8_t count, all_ports_up, print_flag = 0; 579 struct rte_eth_link link; 580 581 printf("\nChecking link status"); 582 fflush(stdout); 583 for (count = 0; count <= MAX_CHECK_TIME; count++) { 584 all_ports_up = 1; 585 RTE_ETH_FOREACH_DEV(portid) { 586 if ((port_mask & (1 << portid)) == 0) 587 continue; 588 memset(&link, 0, sizeof(link)); 589 rte_eth_link_get_nowait(portid, &link); 590 /* print link status if flag set */ 591 if (print_flag == 1) { 592 if (link.link_status) 593 printf( 594 "Port%d Link Up .Speed %u Mbps - %s\n", 595 portid, link.link_speed, 596 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 597 ("full-duplex") : ("half-duplex\n")); 598 else 599 printf("Port %d Link Down\n", portid); 600 continue; 601 } 602 /* clear all_ports_up flag if any link down */ 603 if (link.link_status == ETH_LINK_DOWN) { 604 all_ports_up = 0; 605 break; 606 } 607 } 608 /* after finally printing all link status, get out */ 609 if (print_flag == 1) 610 break; 611 612 if (all_ports_up == 0) { 613 printf("."); 614 fflush(stdout); 615 rte_delay_ms(CHECK_INTERVAL); 616 } 617 618 /* set the print_flag if all ports up or timeout */ 619 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 620 print_flag = 1; 621 printf("\ndone\n"); 622 } 623 } 624 } 625 626 /* Check L3 packet type detection capablity of the NIC port */ 627 static int 628 check_ptype(int portid) 629 { 630 int i, ret; 631 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 632 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 633 634 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 635 if (ret <= 0) 636 return 0; 637 638 uint32_t ptypes[ret]; 639 640 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 641 for (i = 0; i < ret; ++i) { 642 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 643 ptype_l3_ipv4 = 1; 644 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 645 ptype_l3_ipv6 = 1; 646 } 647 648 if (ptype_l3_ipv4 == 0) 649 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 650 651 if (ptype_l3_ipv6 == 0) 652 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 653 654 if (ptype_l3_ipv4 && ptype_l3_ipv6) 655 return 1; 656 657 return 0; 658 659 } 660 661 /* Parse packet type of a packet by SW */ 662 static inline void 663 parse_ptype(struct rte_mbuf *m) 664 { 665 struct ether_hdr *eth_hdr; 666 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 667 uint16_t ether_type; 668 669 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 670 ether_type = eth_hdr->ether_type; 671 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 672 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 673 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) 674 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 675 676 m->packet_type = packet_type; 677 } 678 679 /* callback function to detect packet type for a queue of a port */ 680 static uint16_t 681 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, 682 struct rte_mbuf *pkts[], uint16_t nb_pkts, 683 uint16_t max_pkts __rte_unused, 684 void *user_param __rte_unused) 685 { 686 uint16_t i; 687 688 for (i = 0; i < nb_pkts; ++i) 689 parse_ptype(pkts[i]); 690 691 return nb_pkts; 692 } 693 694 static int 695 init_routing_table(void) 696 { 697 struct rte_lpm *lpm; 698 struct rte_lpm6 *lpm6; 699 int socket, ret; 700 unsigned i; 701 702 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 703 if (socket_lpm[socket]) { 704 lpm = socket_lpm[socket]; 705 /* populate the LPM table */ 706 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 707 ret = rte_lpm_add(lpm, 708 l3fwd_ipv4_route_array[i].ip, 709 l3fwd_ipv4_route_array[i].depth, 710 l3fwd_ipv4_route_array[i].if_out); 711 712 if (ret < 0) { 713 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 714 "LPM table\n", i); 715 return -1; 716 } 717 718 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 719 "/%d (port %d)\n", 720 socket, 721 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 722 l3fwd_ipv4_route_array[i].depth, 723 l3fwd_ipv4_route_array[i].if_out); 724 } 725 } 726 727 if (socket_lpm6[socket]) { 728 lpm6 = socket_lpm6[socket]; 729 /* populate the LPM6 table */ 730 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 731 ret = rte_lpm6_add(lpm6, 732 l3fwd_ipv6_route_array[i].ip, 733 l3fwd_ipv6_route_array[i].depth, 734 l3fwd_ipv6_route_array[i].if_out); 735 736 if (ret < 0) { 737 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 738 "LPM6 table\n", i); 739 return -1; 740 } 741 742 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 743 "/%d (port %d)\n", 744 socket, 745 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 746 l3fwd_ipv6_route_array[i].depth, 747 l3fwd_ipv6_route_array[i].if_out); 748 } 749 } 750 } 751 return 0; 752 } 753 754 static int 755 init_mem(void) 756 { 757 char buf[PATH_MAX]; 758 struct rte_mempool *mp; 759 struct rte_lpm *lpm; 760 struct rte_lpm6 *lpm6; 761 struct rte_lpm_config lpm_config; 762 int socket; 763 unsigned lcore_id; 764 765 /* traverse through lcores and initialize structures on each socket */ 766 767 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 768 769 if (rte_lcore_is_enabled(lcore_id) == 0) 770 continue; 771 772 socket = rte_lcore_to_socket_id(lcore_id); 773 774 if (socket == SOCKET_ID_ANY) 775 socket = 0; 776 777 if (socket_direct_pool[socket] == NULL) { 778 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 779 socket); 780 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 781 782 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 783 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 784 if (mp == NULL) { 785 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 786 return -1; 787 } 788 socket_direct_pool[socket] = mp; 789 } 790 791 if (socket_indirect_pool[socket] == NULL) { 792 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 793 socket); 794 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 795 796 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 797 socket); 798 if (mp == NULL) { 799 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 800 return -1; 801 } 802 socket_indirect_pool[socket] = mp; 803 } 804 805 if (socket_lpm[socket] == NULL) { 806 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 807 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 808 809 lpm_config.max_rules = LPM_MAX_RULES; 810 lpm_config.number_tbl8s = 256; 811 lpm_config.flags = 0; 812 813 lpm = rte_lpm_create(buf, socket, &lpm_config); 814 if (lpm == NULL) { 815 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 816 return -1; 817 } 818 socket_lpm[socket] = lpm; 819 } 820 821 if (socket_lpm6[socket] == NULL) { 822 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 823 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 824 825 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 826 if (lpm6 == NULL) { 827 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 828 return -1; 829 } 830 socket_lpm6[socket] = lpm6; 831 } 832 } 833 834 return 0; 835 } 836 837 int 838 main(int argc, char **argv) 839 { 840 struct lcore_queue_conf *qconf; 841 struct rte_eth_dev_info dev_info; 842 struct rte_eth_txconf *txconf; 843 struct rx_queue *rxq; 844 int socket, ret; 845 uint16_t nb_ports; 846 uint16_t queueid = 0; 847 unsigned lcore_id = 0, rx_lcore_id = 0; 848 uint32_t n_tx_queue, nb_lcores; 849 uint16_t portid; 850 851 /* init EAL */ 852 ret = rte_eal_init(argc, argv); 853 if (ret < 0) 854 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 855 argc -= ret; 856 argv += ret; 857 858 /* parse application arguments (after the EAL ones) */ 859 ret = parse_args(argc, argv); 860 if (ret < 0) 861 rte_exit(EXIT_FAILURE, "Invalid arguments"); 862 863 nb_ports = rte_eth_dev_count_avail(); 864 if (nb_ports == 0) 865 rte_exit(EXIT_FAILURE, "No ports found!\n"); 866 867 nb_lcores = rte_lcore_count(); 868 869 /* initialize structures (mempools, lpm etc.) */ 870 if (init_mem() < 0) 871 rte_panic("Cannot initialize memory structures!\n"); 872 873 /* check if portmask has non-existent ports */ 874 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 875 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 876 877 /* initialize all ports */ 878 RTE_ETH_FOREACH_DEV(portid) { 879 struct rte_eth_conf local_port_conf = port_conf; 880 struct rte_eth_rxconf rxq_conf; 881 882 /* skip ports that are not enabled */ 883 if ((enabled_port_mask & (1 << portid)) == 0) { 884 printf("Skipping disabled port %d\n", portid); 885 continue; 886 } 887 888 qconf = &lcore_queue_conf[rx_lcore_id]; 889 890 /* limit the frame size to the maximum supported by NIC */ 891 rte_eth_dev_info_get(portid, &dev_info); 892 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 893 dev_info.max_rx_pktlen, 894 local_port_conf.rxmode.max_rx_pkt_len); 895 896 /* get the lcore_id for this port */ 897 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 898 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 899 900 rx_lcore_id ++; 901 if (rx_lcore_id >= RTE_MAX_LCORE) 902 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 903 904 qconf = &lcore_queue_conf[rx_lcore_id]; 905 } 906 907 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 908 if (socket == SOCKET_ID_ANY) 909 socket = 0; 910 911 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 912 rxq->portid = portid; 913 rxq->direct_pool = socket_direct_pool[socket]; 914 rxq->indirect_pool = socket_indirect_pool[socket]; 915 rxq->lpm = socket_lpm[socket]; 916 rxq->lpm6 = socket_lpm6[socket]; 917 qconf->n_rx_queue++; 918 919 /* init port */ 920 printf("Initializing port %d on lcore %u...", portid, 921 rx_lcore_id); 922 fflush(stdout); 923 924 n_tx_queue = nb_lcores; 925 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 926 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 927 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 928 local_port_conf.txmode.offloads |= 929 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 930 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 931 &local_port_conf); 932 if (ret < 0) { 933 printf("\n"); 934 rte_exit(EXIT_FAILURE, "Cannot configure device: " 935 "err=%d, port=%d\n", 936 ret, portid); 937 } 938 939 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 940 &nb_txd); 941 if (ret < 0) { 942 printf("\n"); 943 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 944 "descriptors: err=%d, port=%d\n", ret, portid); 945 } 946 947 /* init one RX queue */ 948 rxq_conf = dev_info.default_rxconf; 949 rxq_conf.offloads = local_port_conf.rxmode.offloads; 950 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 951 socket, &rxq_conf, 952 socket_direct_pool[socket]); 953 if (ret < 0) { 954 printf("\n"); 955 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 956 "err=%d, port=%d\n", 957 ret, portid); 958 } 959 960 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 961 print_ethaddr(" Address:", &ports_eth_addr[portid]); 962 printf("\n"); 963 964 /* init one TX queue per couple (lcore,port) */ 965 queueid = 0; 966 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 967 if (rte_lcore_is_enabled(lcore_id) == 0) 968 continue; 969 970 socket = (int) rte_lcore_to_socket_id(lcore_id); 971 printf("txq=%u,%d ", lcore_id, queueid); 972 fflush(stdout); 973 974 txconf = &dev_info.default_txconf; 975 txconf->offloads = local_port_conf.txmode.offloads; 976 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 977 socket, txconf); 978 if (ret < 0) { 979 printf("\n"); 980 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 981 "err=%d, port=%d\n", ret, portid); 982 } 983 984 qconf = &lcore_queue_conf[lcore_id]; 985 qconf->tx_queue_id[portid] = queueid; 986 queueid++; 987 } 988 989 printf("\n"); 990 } 991 992 printf("\n"); 993 994 /* start ports */ 995 RTE_ETH_FOREACH_DEV(portid) { 996 if ((enabled_port_mask & (1 << portid)) == 0) { 997 continue; 998 } 999 /* Start device */ 1000 ret = rte_eth_dev_start(portid); 1001 if (ret < 0) 1002 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1003 ret, portid); 1004 1005 rte_eth_promiscuous_enable(portid); 1006 1007 if (check_ptype(portid) == 0) { 1008 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1009 printf("Add Rx callback function to detect L3 packet type by SW :" 1010 " port = %d\n", portid); 1011 } 1012 } 1013 1014 if (init_routing_table() < 0) 1015 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1016 1017 check_all_ports_link_status(enabled_port_mask); 1018 1019 /* launch per-lcore init on every lcore */ 1020 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1021 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1022 if (rte_eal_wait_lcore(lcore_id) < 0) 1023 return -1; 1024 } 1025 1026 return 0; 1027 } 1028