1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <sys/param.h> 11 #include <string.h> 12 #include <sys/queue.h> 13 #include <stdarg.h> 14 #include <errno.h> 15 #include <getopt.h> 16 17 #include <rte_common.h> 18 #include <rte_byteorder.h> 19 #include <rte_log.h> 20 #include <rte_memory.h> 21 #include <rte_memcpy.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_atomic.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_lpm.h> 38 #include <rte_lpm6.h> 39 #include <rte_ip.h> 40 #include <rte_string_fns.h> 41 42 #include <rte_ip_frag.h> 43 44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 45 46 /* allow max jumbo frame 9.5 KB */ 47 #define JUMBO_FRAME_MAX_SIZE 0x2600 48 49 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 50 51 /* 52 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 53 * This value includes the size of IPv6 header. 54 */ 55 #define IPV4_MTU_DEFAULT ETHER_MTU 56 #define IPV6_MTU_DEFAULT ETHER_MTU 57 58 /* 59 * The overhead from max frame size to MTU. 60 * We have to consider the max possible overhead. 61 */ 62 #define MTU_OVERHEAD \ 63 (ETHER_HDR_LEN + ETHER_CRC_LEN + 2 * sizeof(struct vlan_hdr)) 64 65 /* 66 * Default payload in bytes for the IPv6 packet. 67 */ 68 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) 69 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) 70 71 /* 72 * Max number of fragments per packet expected - defined by config file. 73 */ 74 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 75 76 #define NB_MBUF 8192 77 78 #define MAX_PKT_BURST 32 79 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 80 81 /* Configure how many packets ahead to prefetch, when reading packets */ 82 #define PREFETCH_OFFSET 3 83 84 /* 85 * Configurable number of RX/TX ring descriptors 86 */ 87 #define RTE_TEST_RX_DESC_DEFAULT 1024 88 #define RTE_TEST_TX_DESC_DEFAULT 1024 89 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 90 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 91 92 /* ethernet addresses of ports */ 93 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 94 95 #ifndef IPv4_BYTES 96 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 97 #define IPv4_BYTES(addr) \ 98 (uint8_t) (((addr) >> 24) & 0xFF),\ 99 (uint8_t) (((addr) >> 16) & 0xFF),\ 100 (uint8_t) (((addr) >> 8) & 0xFF),\ 101 (uint8_t) ((addr) & 0xFF) 102 #endif 103 104 #ifndef IPv6_BYTES 105 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 106 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 107 #define IPv6_BYTES(addr) \ 108 addr[0], addr[1], addr[2], addr[3], \ 109 addr[4], addr[5], addr[6], addr[7], \ 110 addr[8], addr[9], addr[10], addr[11],\ 111 addr[12], addr[13],addr[14], addr[15] 112 #endif 113 114 #define IPV6_ADDR_LEN 16 115 116 /* mask of enabled ports */ 117 static int enabled_port_mask = 0; 118 119 static int rx_queue_per_lcore = 1; 120 121 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 122 123 struct mbuf_table { 124 uint16_t len; 125 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 126 }; 127 128 struct rx_queue { 129 struct rte_mempool *direct_pool; 130 struct rte_mempool *indirect_pool; 131 struct rte_lpm *lpm; 132 struct rte_lpm6 *lpm6; 133 uint16_t portid; 134 }; 135 136 #define MAX_RX_QUEUE_PER_LCORE 16 137 #define MAX_TX_QUEUE_PER_PORT 16 138 struct lcore_queue_conf { 139 uint16_t n_rx_queue; 140 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 141 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 142 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 143 } __rte_cache_aligned; 144 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 145 146 static struct rte_eth_conf port_conf = { 147 .rxmode = { 148 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 149 .split_hdr_size = 0, 150 .offloads = (DEV_RX_OFFLOAD_CHECKSUM | 151 DEV_RX_OFFLOAD_SCATTER | 152 DEV_RX_OFFLOAD_JUMBO_FRAME), 153 }, 154 .txmode = { 155 .mq_mode = ETH_MQ_TX_NONE, 156 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | 157 DEV_TX_OFFLOAD_MULTI_SEGS), 158 }, 159 }; 160 161 /* 162 * IPv4 forwarding table 163 */ 164 struct l3fwd_ipv4_route { 165 uint32_t ip; 166 uint8_t depth; 167 uint8_t if_out; 168 }; 169 170 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 171 {IPv4(100,10,0,0), 16, 0}, 172 {IPv4(100,20,0,0), 16, 1}, 173 {IPv4(100,30,0,0), 16, 2}, 174 {IPv4(100,40,0,0), 16, 3}, 175 {IPv4(100,50,0,0), 16, 4}, 176 {IPv4(100,60,0,0), 16, 5}, 177 {IPv4(100,70,0,0), 16, 6}, 178 {IPv4(100,80,0,0), 16, 7}, 179 }; 180 181 /* 182 * IPv6 forwarding table 183 */ 184 185 struct l3fwd_ipv6_route { 186 uint8_t ip[IPV6_ADDR_LEN]; 187 uint8_t depth; 188 uint8_t if_out; 189 }; 190 191 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 192 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 193 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 194 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 195 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 196 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 197 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 198 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 199 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 200 }; 201 202 #define LPM_MAX_RULES 1024 203 #define LPM6_MAX_RULES 1024 204 #define LPM6_NUMBER_TBL8S (1 << 16) 205 206 struct rte_lpm6_config lpm6_config = { 207 .max_rules = LPM6_MAX_RULES, 208 .number_tbl8s = LPM6_NUMBER_TBL8S, 209 .flags = 0 210 }; 211 212 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 213 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 214 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 215 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 216 217 /* Send burst of packets on an output interface */ 218 static inline int 219 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) 220 { 221 struct rte_mbuf **m_table; 222 int ret; 223 uint16_t queueid; 224 225 queueid = qconf->tx_queue_id[port]; 226 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 227 228 ret = rte_eth_tx_burst(port, queueid, m_table, n); 229 if (unlikely(ret < n)) { 230 do { 231 rte_pktmbuf_free(m_table[ret]); 232 } while (++ret < n); 233 } 234 235 return 0; 236 } 237 238 static inline void 239 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 240 uint8_t queueid, uint16_t port_in) 241 { 242 struct rx_queue *rxq; 243 uint32_t i, len, next_hop; 244 uint8_t ipv6; 245 uint16_t port_out; 246 int32_t len2; 247 248 ipv6 = 0; 249 rxq = &qconf->rx_queue_list[queueid]; 250 251 /* by default, send everything back to the source port */ 252 port_out = port_in; 253 254 /* Remove the Ethernet header and trailer from the input packet */ 255 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 256 257 /* Build transmission burst */ 258 len = qconf->tx_mbufs[port_out].len; 259 260 /* if this is an IPv4 packet */ 261 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 262 struct ipv4_hdr *ip_hdr; 263 uint32_t ip_dst; 264 /* Read the lookup key (i.e. ip_dst) from the input packet */ 265 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); 266 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 267 268 /* Find destination port */ 269 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 270 (enabled_port_mask & 1 << next_hop) != 0) { 271 port_out = next_hop; 272 273 /* Build transmission burst for new port */ 274 len = qconf->tx_mbufs[port_out].len; 275 } 276 277 /* if we don't need to do any fragmentation */ 278 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 279 qconf->tx_mbufs[port_out].m_table[len] = m; 280 len2 = 1; 281 } else { 282 len2 = rte_ipv4_fragment_packet(m, 283 &qconf->tx_mbufs[port_out].m_table[len], 284 (uint16_t)(MBUF_TABLE_SIZE - len), 285 IPV4_MTU_DEFAULT, 286 rxq->direct_pool, rxq->indirect_pool); 287 288 /* Free input packet */ 289 rte_pktmbuf_free(m); 290 291 /* If we fail to fragment the packet */ 292 if (unlikely (len2 < 0)) 293 return; 294 } 295 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 296 /* if this is an IPv6 packet */ 297 struct ipv6_hdr *ip_hdr; 298 299 ipv6 = 1; 300 301 /* Read the lookup key (i.e. ip_dst) from the input packet */ 302 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); 303 304 /* Find destination port */ 305 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 306 &next_hop) == 0 && 307 (enabled_port_mask & 1 << next_hop) != 0) { 308 port_out = next_hop; 309 310 /* Build transmission burst for new port */ 311 len = qconf->tx_mbufs[port_out].len; 312 } 313 314 /* if we don't need to do any fragmentation */ 315 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 316 qconf->tx_mbufs[port_out].m_table[len] = m; 317 len2 = 1; 318 } else { 319 len2 = rte_ipv6_fragment_packet(m, 320 &qconf->tx_mbufs[port_out].m_table[len], 321 (uint16_t)(MBUF_TABLE_SIZE - len), 322 IPV6_MTU_DEFAULT, 323 rxq->direct_pool, rxq->indirect_pool); 324 325 /* Free input packet */ 326 rte_pktmbuf_free(m); 327 328 /* If we fail to fragment the packet */ 329 if (unlikely (len2 < 0)) 330 return; 331 } 332 } 333 /* else, just forward the packet */ 334 else { 335 qconf->tx_mbufs[port_out].m_table[len] = m; 336 len2 = 1; 337 } 338 339 for (i = len; i < len + len2; i ++) { 340 void *d_addr_bytes; 341 342 m = qconf->tx_mbufs[port_out].m_table[i]; 343 struct ether_hdr *eth_hdr = (struct ether_hdr *) 344 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); 345 if (eth_hdr == NULL) { 346 rte_panic("No headroom in mbuf.\n"); 347 } 348 349 m->l2_len = sizeof(struct ether_hdr); 350 351 /* 02:00:00:00:00:xx */ 352 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 353 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 354 355 /* src addr */ 356 ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); 357 if (ipv6) 358 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 359 else 360 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 361 } 362 363 len += len2; 364 365 if (likely(len < MAX_PKT_BURST)) { 366 qconf->tx_mbufs[port_out].len = (uint16_t)len; 367 return; 368 } 369 370 /* Transmit packets */ 371 send_burst(qconf, (uint16_t)len, port_out); 372 qconf->tx_mbufs[port_out].len = 0; 373 } 374 375 /* main processing loop */ 376 static int 377 main_loop(__attribute__((unused)) void *dummy) 378 { 379 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 380 unsigned lcore_id; 381 uint64_t prev_tsc, diff_tsc, cur_tsc; 382 int i, j, nb_rx; 383 uint16_t portid; 384 struct lcore_queue_conf *qconf; 385 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 386 387 prev_tsc = 0; 388 389 lcore_id = rte_lcore_id(); 390 qconf = &lcore_queue_conf[lcore_id]; 391 392 if (qconf->n_rx_queue == 0) { 393 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 394 return 0; 395 } 396 397 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 398 399 for (i = 0; i < qconf->n_rx_queue; i++) { 400 401 portid = qconf->rx_queue_list[i].portid; 402 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 403 portid); 404 } 405 406 while (1) { 407 408 cur_tsc = rte_rdtsc(); 409 410 /* 411 * TX burst queue drain 412 */ 413 diff_tsc = cur_tsc - prev_tsc; 414 if (unlikely(diff_tsc > drain_tsc)) { 415 416 /* 417 * This could be optimized (use queueid instead of 418 * portid), but it is not called so often 419 */ 420 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 421 if (qconf->tx_mbufs[portid].len == 0) 422 continue; 423 send_burst(&lcore_queue_conf[lcore_id], 424 qconf->tx_mbufs[portid].len, 425 portid); 426 qconf->tx_mbufs[portid].len = 0; 427 } 428 429 prev_tsc = cur_tsc; 430 } 431 432 /* 433 * Read packet from RX queues 434 */ 435 for (i = 0; i < qconf->n_rx_queue; i++) { 436 437 portid = qconf->rx_queue_list[i].portid; 438 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 439 MAX_PKT_BURST); 440 441 /* Prefetch first packets */ 442 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 443 rte_prefetch0(rte_pktmbuf_mtod( 444 pkts_burst[j], void *)); 445 } 446 447 /* Prefetch and forward already prefetched packets */ 448 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 449 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 450 j + PREFETCH_OFFSET], void *)); 451 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 452 } 453 454 /* Forward remaining prefetched packets */ 455 for (; j < nb_rx; j++) { 456 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 457 } 458 } 459 } 460 } 461 462 /* display usage */ 463 static void 464 print_usage(const char *prgname) 465 { 466 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 467 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 468 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 469 prgname); 470 } 471 472 static int 473 parse_portmask(const char *portmask) 474 { 475 char *end = NULL; 476 unsigned long pm; 477 478 /* parse hexadecimal string */ 479 pm = strtoul(portmask, &end, 16); 480 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 481 return -1; 482 483 if (pm == 0) 484 return -1; 485 486 return pm; 487 } 488 489 static int 490 parse_nqueue(const char *q_arg) 491 { 492 char *end = NULL; 493 unsigned long n; 494 495 /* parse hexadecimal string */ 496 n = strtoul(q_arg, &end, 10); 497 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 498 return -1; 499 if (n == 0) 500 return -1; 501 if (n >= MAX_RX_QUEUE_PER_LCORE) 502 return -1; 503 504 return n; 505 } 506 507 /* Parse the argument given in the command line of the application */ 508 static int 509 parse_args(int argc, char **argv) 510 { 511 int opt, ret; 512 char **argvopt; 513 int option_index; 514 char *prgname = argv[0]; 515 static struct option lgopts[] = { 516 {NULL, 0, 0, 0} 517 }; 518 519 argvopt = argv; 520 521 while ((opt = getopt_long(argc, argvopt, "p:q:", 522 lgopts, &option_index)) != EOF) { 523 524 switch (opt) { 525 /* portmask */ 526 case 'p': 527 enabled_port_mask = parse_portmask(optarg); 528 if (enabled_port_mask < 0) { 529 printf("invalid portmask\n"); 530 print_usage(prgname); 531 return -1; 532 } 533 break; 534 535 /* nqueue */ 536 case 'q': 537 rx_queue_per_lcore = parse_nqueue(optarg); 538 if (rx_queue_per_lcore < 0) { 539 printf("invalid queue number\n"); 540 print_usage(prgname); 541 return -1; 542 } 543 break; 544 545 /* long options */ 546 case 0: 547 print_usage(prgname); 548 return -1; 549 550 default: 551 print_usage(prgname); 552 return -1; 553 } 554 } 555 556 if (enabled_port_mask == 0) { 557 printf("portmask not specified\n"); 558 print_usage(prgname); 559 return -1; 560 } 561 562 if (optind >= 0) 563 argv[optind-1] = prgname; 564 565 ret = optind-1; 566 optind = 1; /* reset getopt lib */ 567 return ret; 568 } 569 570 static void 571 print_ethaddr(const char *name, struct ether_addr *eth_addr) 572 { 573 char buf[ETHER_ADDR_FMT_SIZE]; 574 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 575 printf("%s%s", name, buf); 576 } 577 578 /* Check the link status of all ports in up to 9s, and print them finally */ 579 static void 580 check_all_ports_link_status(uint32_t port_mask) 581 { 582 #define CHECK_INTERVAL 100 /* 100ms */ 583 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 584 uint16_t portid; 585 uint8_t count, all_ports_up, print_flag = 0; 586 struct rte_eth_link link; 587 588 printf("\nChecking link status"); 589 fflush(stdout); 590 for (count = 0; count <= MAX_CHECK_TIME; count++) { 591 all_ports_up = 1; 592 RTE_ETH_FOREACH_DEV(portid) { 593 if ((port_mask & (1 << portid)) == 0) 594 continue; 595 memset(&link, 0, sizeof(link)); 596 rte_eth_link_get_nowait(portid, &link); 597 /* print link status if flag set */ 598 if (print_flag == 1) { 599 if (link.link_status) 600 printf( 601 "Port%d Link Up .Speed %u Mbps - %s\n", 602 portid, link.link_speed, 603 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 604 ("full-duplex") : ("half-duplex\n")); 605 else 606 printf("Port %d Link Down\n", portid); 607 continue; 608 } 609 /* clear all_ports_up flag if any link down */ 610 if (link.link_status == ETH_LINK_DOWN) { 611 all_ports_up = 0; 612 break; 613 } 614 } 615 /* after finally printing all link status, get out */ 616 if (print_flag == 1) 617 break; 618 619 if (all_ports_up == 0) { 620 printf("."); 621 fflush(stdout); 622 rte_delay_ms(CHECK_INTERVAL); 623 } 624 625 /* set the print_flag if all ports up or timeout */ 626 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 627 print_flag = 1; 628 printf("\ndone\n"); 629 } 630 } 631 } 632 633 /* Check L3 packet type detection capablity of the NIC port */ 634 static int 635 check_ptype(int portid) 636 { 637 int i, ret; 638 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 639 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 640 641 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 642 if (ret <= 0) 643 return 0; 644 645 uint32_t ptypes[ret]; 646 647 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 648 for (i = 0; i < ret; ++i) { 649 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 650 ptype_l3_ipv4 = 1; 651 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 652 ptype_l3_ipv6 = 1; 653 } 654 655 if (ptype_l3_ipv4 == 0) 656 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 657 658 if (ptype_l3_ipv6 == 0) 659 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 660 661 if (ptype_l3_ipv4 && ptype_l3_ipv6) 662 return 1; 663 664 return 0; 665 666 } 667 668 /* Parse packet type of a packet by SW */ 669 static inline void 670 parse_ptype(struct rte_mbuf *m) 671 { 672 struct ether_hdr *eth_hdr; 673 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 674 uint16_t ether_type; 675 676 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 677 ether_type = eth_hdr->ether_type; 678 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 679 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 680 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) 681 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 682 683 m->packet_type = packet_type; 684 } 685 686 /* callback function to detect packet type for a queue of a port */ 687 static uint16_t 688 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, 689 struct rte_mbuf *pkts[], uint16_t nb_pkts, 690 uint16_t max_pkts __rte_unused, 691 void *user_param __rte_unused) 692 { 693 uint16_t i; 694 695 for (i = 0; i < nb_pkts; ++i) 696 parse_ptype(pkts[i]); 697 698 return nb_pkts; 699 } 700 701 static int 702 init_routing_table(void) 703 { 704 struct rte_lpm *lpm; 705 struct rte_lpm6 *lpm6; 706 int socket, ret; 707 unsigned i; 708 709 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 710 if (socket_lpm[socket]) { 711 lpm = socket_lpm[socket]; 712 /* populate the LPM table */ 713 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 714 ret = rte_lpm_add(lpm, 715 l3fwd_ipv4_route_array[i].ip, 716 l3fwd_ipv4_route_array[i].depth, 717 l3fwd_ipv4_route_array[i].if_out); 718 719 if (ret < 0) { 720 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 721 "LPM table\n", i); 722 return -1; 723 } 724 725 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 726 "/%d (port %d)\n", 727 socket, 728 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 729 l3fwd_ipv4_route_array[i].depth, 730 l3fwd_ipv4_route_array[i].if_out); 731 } 732 } 733 734 if (socket_lpm6[socket]) { 735 lpm6 = socket_lpm6[socket]; 736 /* populate the LPM6 table */ 737 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 738 ret = rte_lpm6_add(lpm6, 739 l3fwd_ipv6_route_array[i].ip, 740 l3fwd_ipv6_route_array[i].depth, 741 l3fwd_ipv6_route_array[i].if_out); 742 743 if (ret < 0) { 744 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 745 "LPM6 table\n", i); 746 return -1; 747 } 748 749 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 750 "/%d (port %d)\n", 751 socket, 752 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 753 l3fwd_ipv6_route_array[i].depth, 754 l3fwd_ipv6_route_array[i].if_out); 755 } 756 } 757 } 758 return 0; 759 } 760 761 static int 762 init_mem(void) 763 { 764 char buf[PATH_MAX]; 765 struct rte_mempool *mp; 766 struct rte_lpm *lpm; 767 struct rte_lpm6 *lpm6; 768 struct rte_lpm_config lpm_config; 769 int socket; 770 unsigned lcore_id; 771 772 /* traverse through lcores and initialize structures on each socket */ 773 774 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 775 776 if (rte_lcore_is_enabled(lcore_id) == 0) 777 continue; 778 779 socket = rte_lcore_to_socket_id(lcore_id); 780 781 if (socket == SOCKET_ID_ANY) 782 socket = 0; 783 784 if (socket_direct_pool[socket] == NULL) { 785 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 786 socket); 787 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 788 789 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 790 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 791 if (mp == NULL) { 792 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 793 return -1; 794 } 795 socket_direct_pool[socket] = mp; 796 } 797 798 if (socket_indirect_pool[socket] == NULL) { 799 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 800 socket); 801 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 802 803 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 804 socket); 805 if (mp == NULL) { 806 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 807 return -1; 808 } 809 socket_indirect_pool[socket] = mp; 810 } 811 812 if (socket_lpm[socket] == NULL) { 813 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 814 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 815 816 lpm_config.max_rules = LPM_MAX_RULES; 817 lpm_config.number_tbl8s = 256; 818 lpm_config.flags = 0; 819 820 lpm = rte_lpm_create(buf, socket, &lpm_config); 821 if (lpm == NULL) { 822 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 823 return -1; 824 } 825 socket_lpm[socket] = lpm; 826 } 827 828 if (socket_lpm6[socket] == NULL) { 829 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 830 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 831 832 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 833 if (lpm6 == NULL) { 834 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 835 return -1; 836 } 837 socket_lpm6[socket] = lpm6; 838 } 839 } 840 841 return 0; 842 } 843 844 int 845 main(int argc, char **argv) 846 { 847 struct lcore_queue_conf *qconf; 848 struct rte_eth_dev_info dev_info; 849 struct rte_eth_txconf *txconf; 850 struct rx_queue *rxq; 851 int socket, ret; 852 uint16_t nb_ports; 853 uint16_t queueid = 0; 854 unsigned lcore_id = 0, rx_lcore_id = 0; 855 uint32_t n_tx_queue, nb_lcores; 856 uint16_t portid; 857 858 /* init EAL */ 859 ret = rte_eal_init(argc, argv); 860 if (ret < 0) 861 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 862 argc -= ret; 863 argv += ret; 864 865 /* parse application arguments (after the EAL ones) */ 866 ret = parse_args(argc, argv); 867 if (ret < 0) 868 rte_exit(EXIT_FAILURE, "Invalid arguments"); 869 870 nb_ports = rte_eth_dev_count_avail(); 871 if (nb_ports == 0) 872 rte_exit(EXIT_FAILURE, "No ports found!\n"); 873 874 nb_lcores = rte_lcore_count(); 875 876 /* initialize structures (mempools, lpm etc.) */ 877 if (init_mem() < 0) 878 rte_panic("Cannot initialize memory structures!\n"); 879 880 /* check if portmask has non-existent ports */ 881 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 882 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 883 884 /* initialize all ports */ 885 RTE_ETH_FOREACH_DEV(portid) { 886 struct rte_eth_conf local_port_conf = port_conf; 887 struct rte_eth_rxconf rxq_conf; 888 889 /* skip ports that are not enabled */ 890 if ((enabled_port_mask & (1 << portid)) == 0) { 891 printf("Skipping disabled port %d\n", portid); 892 continue; 893 } 894 895 qconf = &lcore_queue_conf[rx_lcore_id]; 896 897 /* limit the frame size to the maximum supported by NIC */ 898 rte_eth_dev_info_get(portid, &dev_info); 899 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 900 dev_info.max_rx_pktlen, 901 local_port_conf.rxmode.max_rx_pkt_len); 902 903 /* get the lcore_id for this port */ 904 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 905 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 906 907 rx_lcore_id ++; 908 if (rx_lcore_id >= RTE_MAX_LCORE) 909 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 910 911 qconf = &lcore_queue_conf[rx_lcore_id]; 912 } 913 914 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 915 if (socket == SOCKET_ID_ANY) 916 socket = 0; 917 918 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 919 rxq->portid = portid; 920 rxq->direct_pool = socket_direct_pool[socket]; 921 rxq->indirect_pool = socket_indirect_pool[socket]; 922 rxq->lpm = socket_lpm[socket]; 923 rxq->lpm6 = socket_lpm6[socket]; 924 qconf->n_rx_queue++; 925 926 /* init port */ 927 printf("Initializing port %d on lcore %u...", portid, 928 rx_lcore_id); 929 fflush(stdout); 930 931 n_tx_queue = nb_lcores; 932 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 933 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 934 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 935 local_port_conf.txmode.offloads |= 936 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 937 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 938 &local_port_conf); 939 if (ret < 0) { 940 printf("\n"); 941 rte_exit(EXIT_FAILURE, "Cannot configure device: " 942 "err=%d, port=%d\n", 943 ret, portid); 944 } 945 946 /* set the mtu to the maximum received packet size */ 947 ret = rte_eth_dev_set_mtu(portid, 948 local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD); 949 if (ret < 0) { 950 printf("\n"); 951 rte_exit(EXIT_FAILURE, "Set MTU failed: " 952 "err=%d, port=%d\n", 953 ret, portid); 954 } 955 956 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 957 &nb_txd); 958 if (ret < 0) { 959 printf("\n"); 960 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 961 "descriptors: err=%d, port=%d\n", ret, portid); 962 } 963 964 /* init one RX queue */ 965 rxq_conf = dev_info.default_rxconf; 966 rxq_conf.offloads = local_port_conf.rxmode.offloads; 967 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 968 socket, &rxq_conf, 969 socket_direct_pool[socket]); 970 if (ret < 0) { 971 printf("\n"); 972 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 973 "err=%d, port=%d\n", 974 ret, portid); 975 } 976 977 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 978 print_ethaddr(" Address:", &ports_eth_addr[portid]); 979 printf("\n"); 980 981 /* init one TX queue per couple (lcore,port) */ 982 queueid = 0; 983 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 984 if (rte_lcore_is_enabled(lcore_id) == 0) 985 continue; 986 987 socket = (int) rte_lcore_to_socket_id(lcore_id); 988 printf("txq=%u,%d ", lcore_id, queueid); 989 fflush(stdout); 990 991 txconf = &dev_info.default_txconf; 992 txconf->offloads = local_port_conf.txmode.offloads; 993 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 994 socket, txconf); 995 if (ret < 0) { 996 printf("\n"); 997 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 998 "err=%d, port=%d\n", ret, portid); 999 } 1000 1001 qconf = &lcore_queue_conf[lcore_id]; 1002 qconf->tx_queue_id[portid] = queueid; 1003 queueid++; 1004 } 1005 1006 printf("\n"); 1007 } 1008 1009 printf("\n"); 1010 1011 /* start ports */ 1012 RTE_ETH_FOREACH_DEV(portid) { 1013 if ((enabled_port_mask & (1 << portid)) == 0) { 1014 continue; 1015 } 1016 /* Start device */ 1017 ret = rte_eth_dev_start(portid); 1018 if (ret < 0) 1019 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1020 ret, portid); 1021 1022 rte_eth_promiscuous_enable(portid); 1023 1024 if (check_ptype(portid) == 0) { 1025 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1026 printf("Add Rx callback function to detect L3 packet type by SW :" 1027 " port = %d\n", portid); 1028 } 1029 } 1030 1031 if (init_routing_table() < 0) 1032 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1033 1034 check_all_ports_link_status(enabled_port_mask); 1035 1036 /* launch per-lcore init on every lcore */ 1037 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1038 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1039 if (rte_eal_wait_lcore(lcore_id) < 0) 1040 return -1; 1041 } 1042 1043 return 0; 1044 } 1045