1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <sys/param.h> 11 #include <string.h> 12 #include <sys/queue.h> 13 #include <stdarg.h> 14 #include <errno.h> 15 #include <getopt.h> 16 17 #include <rte_common.h> 18 #include <rte_byteorder.h> 19 #include <rte_log.h> 20 #include <rte_memory.h> 21 #include <rte_memcpy.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_atomic.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_lpm.h> 38 #include <rte_lpm6.h> 39 #include <rte_ip.h> 40 #include <rte_string_fns.h> 41 42 #include <rte_ip_frag.h> 43 44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 45 46 /* allow max jumbo frame 9.5 KB */ 47 #define JUMBO_FRAME_MAX_SIZE 0x2600 48 49 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 50 51 /* 52 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 53 * This value includes the size of IPv6 header. 54 */ 55 #define IPV4_MTU_DEFAULT ETHER_MTU 56 #define IPV6_MTU_DEFAULT ETHER_MTU 57 58 /* 59 * Default payload in bytes for the IPv6 packet. 60 */ 61 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) 62 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) 63 64 /* 65 * Max number of fragments per packet expected - defined by config file. 66 */ 67 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 68 69 #define NB_MBUF 8192 70 71 #define MAX_PKT_BURST 32 72 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 73 74 /* Configure how many packets ahead to prefetch, when reading packets */ 75 #define PREFETCH_OFFSET 3 76 77 /* 78 * Configurable number of RX/TX ring descriptors 79 */ 80 #define RTE_TEST_RX_DESC_DEFAULT 1024 81 #define RTE_TEST_TX_DESC_DEFAULT 1024 82 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 83 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 84 85 /* ethernet addresses of ports */ 86 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 87 88 #ifndef IPv4_BYTES 89 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 90 #define IPv4_BYTES(addr) \ 91 (uint8_t) (((addr) >> 24) & 0xFF),\ 92 (uint8_t) (((addr) >> 16) & 0xFF),\ 93 (uint8_t) (((addr) >> 8) & 0xFF),\ 94 (uint8_t) ((addr) & 0xFF) 95 #endif 96 97 #ifndef IPv6_BYTES 98 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 99 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 100 #define IPv6_BYTES(addr) \ 101 addr[0], addr[1], addr[2], addr[3], \ 102 addr[4], addr[5], addr[6], addr[7], \ 103 addr[8], addr[9], addr[10], addr[11],\ 104 addr[12], addr[13],addr[14], addr[15] 105 #endif 106 107 #define IPV6_ADDR_LEN 16 108 109 /* mask of enabled ports */ 110 static int enabled_port_mask = 0; 111 112 static int rx_queue_per_lcore = 1; 113 114 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 115 116 struct mbuf_table { 117 uint16_t len; 118 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 119 }; 120 121 struct rx_queue { 122 struct rte_mempool *direct_pool; 123 struct rte_mempool *indirect_pool; 124 struct rte_lpm *lpm; 125 struct rte_lpm6 *lpm6; 126 uint16_t portid; 127 }; 128 129 #define MAX_RX_QUEUE_PER_LCORE 16 130 #define MAX_TX_QUEUE_PER_PORT 16 131 struct lcore_queue_conf { 132 uint16_t n_rx_queue; 133 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 134 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 135 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 136 } __rte_cache_aligned; 137 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 138 139 static struct rte_eth_conf port_conf = { 140 .rxmode = { 141 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 142 .split_hdr_size = 0, 143 .ignore_offload_bitfield = 1, 144 .offloads = (DEV_RX_OFFLOAD_CHECKSUM | 145 DEV_RX_OFFLOAD_JUMBO_FRAME | 146 DEV_RX_OFFLOAD_CRC_STRIP), 147 }, 148 .txmode = { 149 .mq_mode = ETH_MQ_TX_NONE, 150 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | 151 DEV_TX_OFFLOAD_MULTI_SEGS), 152 }, 153 }; 154 155 /* 156 * IPv4 forwarding table 157 */ 158 struct l3fwd_ipv4_route { 159 uint32_t ip; 160 uint8_t depth; 161 uint8_t if_out; 162 }; 163 164 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 165 {IPv4(100,10,0,0), 16, 0}, 166 {IPv4(100,20,0,0), 16, 1}, 167 {IPv4(100,30,0,0), 16, 2}, 168 {IPv4(100,40,0,0), 16, 3}, 169 {IPv4(100,50,0,0), 16, 4}, 170 {IPv4(100,60,0,0), 16, 5}, 171 {IPv4(100,70,0,0), 16, 6}, 172 {IPv4(100,80,0,0), 16, 7}, 173 }; 174 175 /* 176 * IPv6 forwarding table 177 */ 178 179 struct l3fwd_ipv6_route { 180 uint8_t ip[IPV6_ADDR_LEN]; 181 uint8_t depth; 182 uint8_t if_out; 183 }; 184 185 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 186 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 187 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 188 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 189 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 190 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 191 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 192 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 193 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 194 }; 195 196 #define LPM_MAX_RULES 1024 197 #define LPM6_MAX_RULES 1024 198 #define LPM6_NUMBER_TBL8S (1 << 16) 199 200 struct rte_lpm6_config lpm6_config = { 201 .max_rules = LPM6_MAX_RULES, 202 .number_tbl8s = LPM6_NUMBER_TBL8S, 203 .flags = 0 204 }; 205 206 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 207 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 208 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 209 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 210 211 /* Send burst of packets on an output interface */ 212 static inline int 213 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port) 214 { 215 struct rte_mbuf **m_table; 216 int ret; 217 uint16_t queueid; 218 219 queueid = qconf->tx_queue_id[port]; 220 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 221 222 ret = rte_eth_tx_burst(port, queueid, m_table, n); 223 if (unlikely(ret < n)) { 224 do { 225 rte_pktmbuf_free(m_table[ret]); 226 } while (++ret < n); 227 } 228 229 return 0; 230 } 231 232 static inline void 233 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 234 uint8_t queueid, uint16_t port_in) 235 { 236 struct rx_queue *rxq; 237 uint32_t i, len, next_hop; 238 uint8_t ipv6; 239 uint16_t port_out; 240 int32_t len2; 241 242 ipv6 = 0; 243 rxq = &qconf->rx_queue_list[queueid]; 244 245 /* by default, send everything back to the source port */ 246 port_out = port_in; 247 248 /* Remove the Ethernet header and trailer from the input packet */ 249 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 250 251 /* Build transmission burst */ 252 len = qconf->tx_mbufs[port_out].len; 253 254 /* if this is an IPv4 packet */ 255 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 256 struct ipv4_hdr *ip_hdr; 257 uint32_t ip_dst; 258 /* Read the lookup key (i.e. ip_dst) from the input packet */ 259 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); 260 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 261 262 /* Find destination port */ 263 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 264 (enabled_port_mask & 1 << next_hop) != 0) { 265 port_out = next_hop; 266 267 /* Build transmission burst for new port */ 268 len = qconf->tx_mbufs[port_out].len; 269 } 270 271 /* if we don't need to do any fragmentation */ 272 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 273 qconf->tx_mbufs[port_out].m_table[len] = m; 274 len2 = 1; 275 } else { 276 len2 = rte_ipv4_fragment_packet(m, 277 &qconf->tx_mbufs[port_out].m_table[len], 278 (uint16_t)(MBUF_TABLE_SIZE - len), 279 IPV4_MTU_DEFAULT, 280 rxq->direct_pool, rxq->indirect_pool); 281 282 /* Free input packet */ 283 rte_pktmbuf_free(m); 284 285 /* If we fail to fragment the packet */ 286 if (unlikely (len2 < 0)) 287 return; 288 } 289 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 290 /* if this is an IPv6 packet */ 291 struct ipv6_hdr *ip_hdr; 292 293 ipv6 = 1; 294 295 /* Read the lookup key (i.e. ip_dst) from the input packet */ 296 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); 297 298 /* Find destination port */ 299 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 300 &next_hop) == 0 && 301 (enabled_port_mask & 1 << next_hop) != 0) { 302 port_out = next_hop; 303 304 /* Build transmission burst for new port */ 305 len = qconf->tx_mbufs[port_out].len; 306 } 307 308 /* if we don't need to do any fragmentation */ 309 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 310 qconf->tx_mbufs[port_out].m_table[len] = m; 311 len2 = 1; 312 } else { 313 len2 = rte_ipv6_fragment_packet(m, 314 &qconf->tx_mbufs[port_out].m_table[len], 315 (uint16_t)(MBUF_TABLE_SIZE - len), 316 IPV6_MTU_DEFAULT, 317 rxq->direct_pool, rxq->indirect_pool); 318 319 /* Free input packet */ 320 rte_pktmbuf_free(m); 321 322 /* If we fail to fragment the packet */ 323 if (unlikely (len2 < 0)) 324 return; 325 } 326 } 327 /* else, just forward the packet */ 328 else { 329 qconf->tx_mbufs[port_out].m_table[len] = m; 330 len2 = 1; 331 } 332 333 for (i = len; i < len + len2; i ++) { 334 void *d_addr_bytes; 335 336 m = qconf->tx_mbufs[port_out].m_table[i]; 337 struct ether_hdr *eth_hdr = (struct ether_hdr *) 338 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); 339 if (eth_hdr == NULL) { 340 rte_panic("No headroom in mbuf.\n"); 341 } 342 343 m->l2_len = sizeof(struct ether_hdr); 344 345 /* 02:00:00:00:00:xx */ 346 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 347 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 348 349 /* src addr */ 350 ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); 351 if (ipv6) 352 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 353 else 354 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 355 } 356 357 len += len2; 358 359 if (likely(len < MAX_PKT_BURST)) { 360 qconf->tx_mbufs[port_out].len = (uint16_t)len; 361 return; 362 } 363 364 /* Transmit packets */ 365 send_burst(qconf, (uint16_t)len, port_out); 366 qconf->tx_mbufs[port_out].len = 0; 367 } 368 369 /* main processing loop */ 370 static int 371 main_loop(__attribute__((unused)) void *dummy) 372 { 373 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 374 unsigned lcore_id; 375 uint64_t prev_tsc, diff_tsc, cur_tsc; 376 int i, j, nb_rx; 377 uint16_t portid; 378 struct lcore_queue_conf *qconf; 379 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 380 381 prev_tsc = 0; 382 383 lcore_id = rte_lcore_id(); 384 qconf = &lcore_queue_conf[lcore_id]; 385 386 if (qconf->n_rx_queue == 0) { 387 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 388 return 0; 389 } 390 391 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 392 393 for (i = 0; i < qconf->n_rx_queue; i++) { 394 395 portid = qconf->rx_queue_list[i].portid; 396 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 397 portid); 398 } 399 400 while (1) { 401 402 cur_tsc = rte_rdtsc(); 403 404 /* 405 * TX burst queue drain 406 */ 407 diff_tsc = cur_tsc - prev_tsc; 408 if (unlikely(diff_tsc > drain_tsc)) { 409 410 /* 411 * This could be optimized (use queueid instead of 412 * portid), but it is not called so often 413 */ 414 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 415 if (qconf->tx_mbufs[portid].len == 0) 416 continue; 417 send_burst(&lcore_queue_conf[lcore_id], 418 qconf->tx_mbufs[portid].len, 419 portid); 420 qconf->tx_mbufs[portid].len = 0; 421 } 422 423 prev_tsc = cur_tsc; 424 } 425 426 /* 427 * Read packet from RX queues 428 */ 429 for (i = 0; i < qconf->n_rx_queue; i++) { 430 431 portid = qconf->rx_queue_list[i].portid; 432 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 433 MAX_PKT_BURST); 434 435 /* Prefetch first packets */ 436 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 437 rte_prefetch0(rte_pktmbuf_mtod( 438 pkts_burst[j], void *)); 439 } 440 441 /* Prefetch and forward already prefetched packets */ 442 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 443 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 444 j + PREFETCH_OFFSET], void *)); 445 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 446 } 447 448 /* Forward remaining prefetched packets */ 449 for (; j < nb_rx; j++) { 450 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 451 } 452 } 453 } 454 } 455 456 /* display usage */ 457 static void 458 print_usage(const char *prgname) 459 { 460 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 461 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 462 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 463 prgname); 464 } 465 466 static int 467 parse_portmask(const char *portmask) 468 { 469 char *end = NULL; 470 unsigned long pm; 471 472 /* parse hexadecimal string */ 473 pm = strtoul(portmask, &end, 16); 474 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 475 return -1; 476 477 if (pm == 0) 478 return -1; 479 480 return pm; 481 } 482 483 static int 484 parse_nqueue(const char *q_arg) 485 { 486 char *end = NULL; 487 unsigned long n; 488 489 /* parse hexadecimal string */ 490 n = strtoul(q_arg, &end, 10); 491 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 492 return -1; 493 if (n == 0) 494 return -1; 495 if (n >= MAX_RX_QUEUE_PER_LCORE) 496 return -1; 497 498 return n; 499 } 500 501 /* Parse the argument given in the command line of the application */ 502 static int 503 parse_args(int argc, char **argv) 504 { 505 int opt, ret; 506 char **argvopt; 507 int option_index; 508 char *prgname = argv[0]; 509 static struct option lgopts[] = { 510 {NULL, 0, 0, 0} 511 }; 512 513 argvopt = argv; 514 515 while ((opt = getopt_long(argc, argvopt, "p:q:", 516 lgopts, &option_index)) != EOF) { 517 518 switch (opt) { 519 /* portmask */ 520 case 'p': 521 enabled_port_mask = parse_portmask(optarg); 522 if (enabled_port_mask < 0) { 523 printf("invalid portmask\n"); 524 print_usage(prgname); 525 return -1; 526 } 527 break; 528 529 /* nqueue */ 530 case 'q': 531 rx_queue_per_lcore = parse_nqueue(optarg); 532 if (rx_queue_per_lcore < 0) { 533 printf("invalid queue number\n"); 534 print_usage(prgname); 535 return -1; 536 } 537 break; 538 539 /* long options */ 540 case 0: 541 print_usage(prgname); 542 return -1; 543 544 default: 545 print_usage(prgname); 546 return -1; 547 } 548 } 549 550 if (enabled_port_mask == 0) { 551 printf("portmask not specified\n"); 552 print_usage(prgname); 553 return -1; 554 } 555 556 if (optind >= 0) 557 argv[optind-1] = prgname; 558 559 ret = optind-1; 560 optind = 1; /* reset getopt lib */ 561 return ret; 562 } 563 564 static void 565 print_ethaddr(const char *name, struct ether_addr *eth_addr) 566 { 567 char buf[ETHER_ADDR_FMT_SIZE]; 568 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 569 printf("%s%s", name, buf); 570 } 571 572 /* Check the link status of all ports in up to 9s, and print them finally */ 573 static void 574 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) 575 { 576 #define CHECK_INTERVAL 100 /* 100ms */ 577 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 578 uint16_t portid; 579 uint8_t count, all_ports_up, print_flag = 0; 580 struct rte_eth_link link; 581 582 printf("\nChecking link status"); 583 fflush(stdout); 584 for (count = 0; count <= MAX_CHECK_TIME; count++) { 585 all_ports_up = 1; 586 for (portid = 0; portid < port_num; portid++) { 587 if ((port_mask & (1 << portid)) == 0) 588 continue; 589 memset(&link, 0, sizeof(link)); 590 rte_eth_link_get_nowait(portid, &link); 591 /* print link status if flag set */ 592 if (print_flag == 1) { 593 if (link.link_status) 594 printf( 595 "Port%d Link Up .Speed %u Mbps - %s\n", 596 portid, link.link_speed, 597 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 598 ("full-duplex") : ("half-duplex\n")); 599 else 600 printf("Port %d Link Down\n", portid); 601 continue; 602 } 603 /* clear all_ports_up flag if any link down */ 604 if (link.link_status == ETH_LINK_DOWN) { 605 all_ports_up = 0; 606 break; 607 } 608 } 609 /* after finally printing all link status, get out */ 610 if (print_flag == 1) 611 break; 612 613 if (all_ports_up == 0) { 614 printf("."); 615 fflush(stdout); 616 rte_delay_ms(CHECK_INTERVAL); 617 } 618 619 /* set the print_flag if all ports up or timeout */ 620 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 621 print_flag = 1; 622 printf("\ndone\n"); 623 } 624 } 625 } 626 627 /* Check L3 packet type detection capablity of the NIC port */ 628 static int 629 check_ptype(int portid) 630 { 631 int i, ret; 632 int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0; 633 uint32_t ptype_mask = RTE_PTYPE_L3_MASK; 634 635 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0); 636 if (ret <= 0) 637 return 0; 638 639 uint32_t ptypes[ret]; 640 641 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret); 642 for (i = 0; i < ret; ++i) { 643 if (ptypes[i] & RTE_PTYPE_L3_IPV4) 644 ptype_l3_ipv4 = 1; 645 if (ptypes[i] & RTE_PTYPE_L3_IPV6) 646 ptype_l3_ipv6 = 1; 647 } 648 649 if (ptype_l3_ipv4 == 0) 650 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid); 651 652 if (ptype_l3_ipv6 == 0) 653 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid); 654 655 if (ptype_l3_ipv4 && ptype_l3_ipv6) 656 return 1; 657 658 return 0; 659 660 } 661 662 /* Parse packet type of a packet by SW */ 663 static inline void 664 parse_ptype(struct rte_mbuf *m) 665 { 666 struct ether_hdr *eth_hdr; 667 uint32_t packet_type = RTE_PTYPE_UNKNOWN; 668 uint16_t ether_type; 669 670 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 671 ether_type = eth_hdr->ether_type; 672 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) 673 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 674 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) 675 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 676 677 m->packet_type = packet_type; 678 } 679 680 /* callback function to detect packet type for a queue of a port */ 681 static uint16_t 682 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused, 683 struct rte_mbuf *pkts[], uint16_t nb_pkts, 684 uint16_t max_pkts __rte_unused, 685 void *user_param __rte_unused) 686 { 687 uint16_t i; 688 689 for (i = 0; i < nb_pkts; ++i) 690 parse_ptype(pkts[i]); 691 692 return nb_pkts; 693 } 694 695 static int 696 init_routing_table(void) 697 { 698 struct rte_lpm *lpm; 699 struct rte_lpm6 *lpm6; 700 int socket, ret; 701 unsigned i; 702 703 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 704 if (socket_lpm[socket]) { 705 lpm = socket_lpm[socket]; 706 /* populate the LPM table */ 707 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 708 ret = rte_lpm_add(lpm, 709 l3fwd_ipv4_route_array[i].ip, 710 l3fwd_ipv4_route_array[i].depth, 711 l3fwd_ipv4_route_array[i].if_out); 712 713 if (ret < 0) { 714 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 715 "LPM table\n", i); 716 return -1; 717 } 718 719 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 720 "/%d (port %d)\n", 721 socket, 722 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 723 l3fwd_ipv4_route_array[i].depth, 724 l3fwd_ipv4_route_array[i].if_out); 725 } 726 } 727 728 if (socket_lpm6[socket]) { 729 lpm6 = socket_lpm6[socket]; 730 /* populate the LPM6 table */ 731 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 732 ret = rte_lpm6_add(lpm6, 733 l3fwd_ipv6_route_array[i].ip, 734 l3fwd_ipv6_route_array[i].depth, 735 l3fwd_ipv6_route_array[i].if_out); 736 737 if (ret < 0) { 738 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 739 "LPM6 table\n", i); 740 return -1; 741 } 742 743 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 744 "/%d (port %d)\n", 745 socket, 746 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 747 l3fwd_ipv6_route_array[i].depth, 748 l3fwd_ipv6_route_array[i].if_out); 749 } 750 } 751 } 752 return 0; 753 } 754 755 static int 756 init_mem(void) 757 { 758 char buf[PATH_MAX]; 759 struct rte_mempool *mp; 760 struct rte_lpm *lpm; 761 struct rte_lpm6 *lpm6; 762 struct rte_lpm_config lpm_config; 763 int socket; 764 unsigned lcore_id; 765 766 /* traverse through lcores and initialize structures on each socket */ 767 768 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 769 770 if (rte_lcore_is_enabled(lcore_id) == 0) 771 continue; 772 773 socket = rte_lcore_to_socket_id(lcore_id); 774 775 if (socket == SOCKET_ID_ANY) 776 socket = 0; 777 778 if (socket_direct_pool[socket] == NULL) { 779 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 780 socket); 781 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 782 783 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 784 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 785 if (mp == NULL) { 786 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 787 return -1; 788 } 789 socket_direct_pool[socket] = mp; 790 } 791 792 if (socket_indirect_pool[socket] == NULL) { 793 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 794 socket); 795 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 796 797 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 798 socket); 799 if (mp == NULL) { 800 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 801 return -1; 802 } 803 socket_indirect_pool[socket] = mp; 804 } 805 806 if (socket_lpm[socket] == NULL) { 807 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 808 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 809 810 lpm_config.max_rules = LPM_MAX_RULES; 811 lpm_config.number_tbl8s = 256; 812 lpm_config.flags = 0; 813 814 lpm = rte_lpm_create(buf, socket, &lpm_config); 815 if (lpm == NULL) { 816 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 817 return -1; 818 } 819 socket_lpm[socket] = lpm; 820 } 821 822 if (socket_lpm6[socket] == NULL) { 823 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 824 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 825 826 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 827 if (lpm6 == NULL) { 828 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 829 return -1; 830 } 831 socket_lpm6[socket] = lpm6; 832 } 833 } 834 835 return 0; 836 } 837 838 int 839 main(int argc, char **argv) 840 { 841 struct lcore_queue_conf *qconf; 842 struct rte_eth_dev_info dev_info; 843 struct rte_eth_txconf *txconf; 844 struct rx_queue *rxq; 845 int socket, ret; 846 unsigned nb_ports; 847 uint16_t queueid = 0; 848 unsigned lcore_id = 0, rx_lcore_id = 0; 849 uint32_t n_tx_queue, nb_lcores; 850 uint16_t portid; 851 852 /* init EAL */ 853 ret = rte_eal_init(argc, argv); 854 if (ret < 0) 855 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 856 argc -= ret; 857 argv += ret; 858 859 /* parse application arguments (after the EAL ones) */ 860 ret = parse_args(argc, argv); 861 if (ret < 0) 862 rte_exit(EXIT_FAILURE, "Invalid arguments"); 863 864 nb_ports = rte_eth_dev_count(); 865 if (nb_ports == 0) 866 rte_exit(EXIT_FAILURE, "No ports found!\n"); 867 868 nb_lcores = rte_lcore_count(); 869 870 /* initialize structures (mempools, lpm etc.) */ 871 if (init_mem() < 0) 872 rte_panic("Cannot initialize memory structures!\n"); 873 874 /* check if portmask has non-existent ports */ 875 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 876 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 877 878 /* initialize all ports */ 879 for (portid = 0; portid < nb_ports; portid++) { 880 struct rte_eth_conf local_port_conf = port_conf; 881 struct rte_eth_rxconf rxq_conf; 882 883 /* skip ports that are not enabled */ 884 if ((enabled_port_mask & (1 << portid)) == 0) { 885 printf("Skipping disabled port %d\n", portid); 886 continue; 887 } 888 889 qconf = &lcore_queue_conf[rx_lcore_id]; 890 891 /* limit the frame size to the maximum supported by NIC */ 892 rte_eth_dev_info_get(portid, &dev_info); 893 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 894 dev_info.max_rx_pktlen, 895 local_port_conf.rxmode.max_rx_pkt_len); 896 897 /* get the lcore_id for this port */ 898 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 899 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 900 901 rx_lcore_id ++; 902 if (rx_lcore_id >= RTE_MAX_LCORE) 903 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 904 905 qconf = &lcore_queue_conf[rx_lcore_id]; 906 } 907 908 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 909 if (socket == SOCKET_ID_ANY) 910 socket = 0; 911 912 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 913 rxq->portid = portid; 914 rxq->direct_pool = socket_direct_pool[socket]; 915 rxq->indirect_pool = socket_indirect_pool[socket]; 916 rxq->lpm = socket_lpm[socket]; 917 rxq->lpm6 = socket_lpm6[socket]; 918 qconf->n_rx_queue++; 919 920 /* init port */ 921 printf("Initializing port %d on lcore %u...", portid, 922 rx_lcore_id); 923 fflush(stdout); 924 925 n_tx_queue = nb_lcores; 926 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 927 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 928 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 929 local_port_conf.txmode.offloads |= 930 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 931 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 932 &local_port_conf); 933 if (ret < 0) { 934 printf("\n"); 935 rte_exit(EXIT_FAILURE, "Cannot configure device: " 936 "err=%d, port=%d\n", 937 ret, portid); 938 } 939 940 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 941 &nb_txd); 942 if (ret < 0) { 943 printf("\n"); 944 rte_exit(EXIT_FAILURE, "Cannot adjust number of " 945 "descriptors: err=%d, port=%d\n", ret, portid); 946 } 947 948 /* init one RX queue */ 949 rxq_conf = dev_info.default_rxconf; 950 rxq_conf.offloads = local_port_conf.rxmode.offloads; 951 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 952 socket, &rxq_conf, 953 socket_direct_pool[socket]); 954 if (ret < 0) { 955 printf("\n"); 956 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 957 "err=%d, port=%d\n", 958 ret, portid); 959 } 960 961 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 962 print_ethaddr(" Address:", &ports_eth_addr[portid]); 963 printf("\n"); 964 965 /* init one TX queue per couple (lcore,port) */ 966 queueid = 0; 967 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 968 if (rte_lcore_is_enabled(lcore_id) == 0) 969 continue; 970 971 socket = (int) rte_lcore_to_socket_id(lcore_id); 972 printf("txq=%u,%d ", lcore_id, queueid); 973 fflush(stdout); 974 975 txconf = &dev_info.default_txconf; 976 txconf->txq_flags = ETH_TXQ_FLAGS_IGNORE; 977 txconf->offloads = local_port_conf.txmode.offloads; 978 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 979 socket, txconf); 980 if (ret < 0) { 981 printf("\n"); 982 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 983 "err=%d, port=%d\n", ret, portid); 984 } 985 986 qconf = &lcore_queue_conf[lcore_id]; 987 qconf->tx_queue_id[portid] = queueid; 988 queueid++; 989 } 990 991 printf("\n"); 992 } 993 994 printf("\n"); 995 996 /* start ports */ 997 for (portid = 0; portid < nb_ports; portid++) { 998 if ((enabled_port_mask & (1 << portid)) == 0) { 999 continue; 1000 } 1001 /* Start device */ 1002 ret = rte_eth_dev_start(portid); 1003 if (ret < 0) 1004 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1005 ret, portid); 1006 1007 rte_eth_promiscuous_enable(portid); 1008 1009 if (check_ptype(portid) == 0) { 1010 rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL); 1011 printf("Add Rx callback function to detect L3 packet type by SW :" 1012 " port = %d\n", portid); 1013 } 1014 } 1015 1016 if (init_routing_table() < 0) 1017 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1018 1019 check_all_ports_link_status(nb_ports, enabled_port_mask); 1020 1021 /* launch per-lcore init on every lcore */ 1022 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1023 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1024 if (rte_eal_wait_lcore(lcore_id) < 0) 1025 return -1; 1026 } 1027 1028 return 0; 1029 } 1030