xref: /dpdk/examples/ip_fragmentation/main.c (revision 03ab51eafda992874a48c392ca66ffb577fe2b71)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <sys/param.h>
11 #include <string.h>
12 #include <sys/queue.h>
13 #include <stdarg.h>
14 #include <errno.h>
15 #include <getopt.h>
16 
17 #include <rte_common.h>
18 #include <rte_byteorder.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_memcpy.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_lpm.h>
38 #include <rte_lpm6.h>
39 #include <rte_ip.h>
40 #include <rte_string_fns.h>
41 
42 #include <rte_ip_frag.h>
43 
44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
45 
46 /* allow max jumbo frame 9.5 KB */
47 #define JUMBO_FRAME_MAX_SIZE	0x2600
48 
49 #define	ROUNDUP_DIV(a, b)	(((a) + (b) - 1) / (b))
50 
51 /*
52  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
53  * This value includes the size of IPv6 header.
54  */
55 #define	IPV4_MTU_DEFAULT	RTE_ETHER_MTU
56 #define	IPV6_MTU_DEFAULT	RTE_ETHER_MTU
57 
58 /*
59  * The overhead from max frame size to MTU.
60  * We have to consider the max possible overhead.
61  */
62 #define MTU_OVERHEAD	\
63 	(RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \
64 		2 * sizeof(struct rte_vlan_hdr))
65 
66 /*
67  * Default payload in bytes for the IPv6 packet.
68  */
69 #define	IPV4_DEFAULT_PAYLOAD	(IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr))
70 #define	IPV6_DEFAULT_PAYLOAD	(IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr))
71 
72 /*
73  * Max number of fragments per packet expected - defined by config file.
74  */
75 #define	MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
76 
77 #define NB_MBUF   8192
78 
79 #define MAX_PKT_BURST	32
80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
81 
82 /* Configure how many packets ahead to prefetch, when reading packets */
83 #define PREFETCH_OFFSET	3
84 
85 /*
86  * Configurable number of RX/TX ring descriptors
87  */
88 #define RTE_TEST_RX_DESC_DEFAULT 1024
89 #define RTE_TEST_TX_DESC_DEFAULT 1024
90 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
91 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
92 
93 /* ethernet addresses of ports */
94 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
95 
96 #ifndef IPv4_BYTES
97 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
98 #define IPv4_BYTES(addr) \
99 		(uint8_t) (((addr) >> 24) & 0xFF),\
100 		(uint8_t) (((addr) >> 16) & 0xFF),\
101 		(uint8_t) (((addr) >> 8) & 0xFF),\
102 		(uint8_t) ((addr) & 0xFF)
103 #endif
104 
105 #ifndef IPv6_BYTES
106 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
107                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
108 #define IPv6_BYTES(addr) \
109 	addr[0],  addr[1], addr[2],  addr[3], \
110 	addr[4],  addr[5], addr[6],  addr[7], \
111 	addr[8],  addr[9], addr[10], addr[11],\
112 	addr[12], addr[13],addr[14], addr[15]
113 #endif
114 
115 #define IPV6_ADDR_LEN 16
116 
117 /* mask of enabled ports */
118 static int enabled_port_mask = 0;
119 
120 static int rx_queue_per_lcore = 1;
121 
122 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
123 
124 struct mbuf_table {
125 	uint16_t len;
126 	struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
127 };
128 
129 struct rx_queue {
130 	struct rte_mempool *direct_pool;
131 	struct rte_mempool *indirect_pool;
132 	struct rte_lpm *lpm;
133 	struct rte_lpm6 *lpm6;
134 	uint16_t portid;
135 };
136 
137 #define MAX_RX_QUEUE_PER_LCORE 16
138 #define MAX_TX_QUEUE_PER_PORT 16
139 struct lcore_queue_conf {
140 	uint16_t n_rx_queue;
141 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
142 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
143 	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
144 } __rte_cache_aligned;
145 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
146 
147 static struct rte_eth_conf port_conf = {
148 	.rxmode = {
149 		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
150 		.split_hdr_size = 0,
151 		.offloads = (DEV_RX_OFFLOAD_CHECKSUM |
152 			     DEV_RX_OFFLOAD_SCATTER |
153 			     DEV_RX_OFFLOAD_JUMBO_FRAME),
154 	},
155 	.txmode = {
156 		.mq_mode = ETH_MQ_TX_NONE,
157 		.offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
158 			     DEV_TX_OFFLOAD_MULTI_SEGS),
159 	},
160 };
161 
162 /*
163  * IPv4 forwarding table
164  */
165 struct l3fwd_ipv4_route {
166 	uint32_t ip;
167 	uint8_t  depth;
168 	uint8_t  if_out;
169 };
170 
171 /* Default l3fwd_ipv4_route_array table. 8< */
172 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
173 		{RTE_IPV4(100,10,0,0), 16, 0},
174 		{RTE_IPV4(100,20,0,0), 16, 1},
175 		{RTE_IPV4(100,30,0,0), 16, 2},
176 		{RTE_IPV4(100,40,0,0), 16, 3},
177 		{RTE_IPV4(100,50,0,0), 16, 4},
178 		{RTE_IPV4(100,60,0,0), 16, 5},
179 		{RTE_IPV4(100,70,0,0), 16, 6},
180 		{RTE_IPV4(100,80,0,0), 16, 7},
181 };
182 /* >8 End of default l3fwd_ipv4_route_array table */
183 
184 /*
185  * IPv6 forwarding table
186  */
187 
188 struct l3fwd_ipv6_route {
189 	uint8_t ip[IPV6_ADDR_LEN];
190 	uint8_t depth;
191 	uint8_t if_out;
192 };
193 
194 /* Default l3fwd_ipv6_route_array table. 8< */
195 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
196 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
197 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
198 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
199 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
200 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
201 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
202 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
203 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
204 };
205 /* >8 End of default l3fwd_ipv6_route_array table. */
206 
207 #define LPM_MAX_RULES         1024
208 #define LPM6_MAX_RULES         1024
209 #define LPM6_NUMBER_TBL8S (1 << 16)
210 
211 struct rte_lpm6_config lpm6_config = {
212 		.max_rules = LPM6_MAX_RULES,
213 		.number_tbl8s = LPM6_NUMBER_TBL8S,
214 		.flags = 0
215 };
216 
217 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
218 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
219 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
220 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
221 
222 /* Send burst of packets on an output interface */
223 static inline int
224 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
225 {
226 	struct rte_mbuf **m_table;
227 	int ret;
228 	uint16_t queueid;
229 
230 	queueid = qconf->tx_queue_id[port];
231 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
232 
233 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
234 	if (unlikely(ret < n)) {
235 		do {
236 			rte_pktmbuf_free(m_table[ret]);
237 		} while (++ret < n);
238 	}
239 
240 	return 0;
241 }
242 
243 static inline void
244 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
245 		uint8_t queueid, uint16_t port_in)
246 {
247 	struct rx_queue *rxq;
248 	uint32_t i, len, next_hop;
249 	uint16_t port_out, ether_type;
250 	int32_t len2;
251 	uint64_t ol_flags;
252 	const struct rte_ether_hdr *eth;
253 
254 	ol_flags = 0;
255 	rxq = &qconf->rx_queue_list[queueid];
256 
257 	/* by default, send everything back to the source port */
258 	port_out = port_in;
259 
260 	/* save ether type of the incoming packet */
261 	eth = rte_pktmbuf_mtod(m, const struct rte_ether_hdr *);
262 	ether_type = eth->ether_type;
263 
264 	/* Remove the Ethernet header and trailer from the input packet */
265 	rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
266 
267 	/* Build transmission burst */
268 	len = qconf->tx_mbufs[port_out].len;
269 
270 	/* if this is an IPv4 packet */
271 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
272 		struct rte_ipv4_hdr *ip_hdr;
273 		uint32_t ip_dst;
274 		/* Read the lookup key (i.e. ip_dst) from the input packet */
275 		ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
276 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
277 
278 		/* Find destination port */
279 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
280 				(enabled_port_mask & 1 << next_hop) != 0) {
281 			port_out = next_hop;
282 
283 			/* Build transmission burst for new port */
284 			len = qconf->tx_mbufs[port_out].len;
285 		}
286 
287 		/* if we don't need to do any fragmentation */
288 		if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
289 			qconf->tx_mbufs[port_out].m_table[len] = m;
290 			len2 = 1;
291 		} else {
292 			len2 = rte_ipv4_fragment_packet(m,
293 				&qconf->tx_mbufs[port_out].m_table[len],
294 				(uint16_t)(MBUF_TABLE_SIZE - len),
295 				IPV4_MTU_DEFAULT,
296 				rxq->direct_pool, rxq->indirect_pool);
297 
298 			/* Free input packet */
299 			rte_pktmbuf_free(m);
300 
301 			/* request HW to regenerate IPv4 cksum */
302 			ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM);
303 
304 			/* If we fail to fragment the packet */
305 			if (unlikely (len2 < 0))
306 				return;
307 		}
308 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
309 		/* if this is an IPv6 packet */
310 		struct rte_ipv6_hdr *ip_hdr;
311 
312 		/* Read the lookup key (i.e. ip_dst) from the input packet */
313 		ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *);
314 
315 		/* Find destination port */
316 		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
317 						&next_hop) == 0 &&
318 				(enabled_port_mask & 1 << next_hop) != 0) {
319 			port_out = next_hop;
320 
321 			/* Build transmission burst for new port */
322 			len = qconf->tx_mbufs[port_out].len;
323 		}
324 
325 		/* if we don't need to do any fragmentation */
326 		if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
327 			qconf->tx_mbufs[port_out].m_table[len] = m;
328 			len2 = 1;
329 		} else {
330 			len2 = rte_ipv6_fragment_packet(m,
331 				&qconf->tx_mbufs[port_out].m_table[len],
332 				(uint16_t)(MBUF_TABLE_SIZE - len),
333 				IPV6_MTU_DEFAULT,
334 				rxq->direct_pool, rxq->indirect_pool);
335 
336 			/* Free input packet */
337 			rte_pktmbuf_free(m);
338 
339 			/* If we fail to fragment the packet */
340 			if (unlikely (len2 < 0))
341 				return;
342 		}
343 	}
344 	/* else, just forward the packet */
345 	else {
346 		qconf->tx_mbufs[port_out].m_table[len] = m;
347 		len2 = 1;
348 	}
349 
350 	for (i = len; i < len + len2; i ++) {
351 		void *d_addr_bytes;
352 
353 		m = qconf->tx_mbufs[port_out].m_table[i];
354 		struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *)
355 			rte_pktmbuf_prepend(m,
356 				(uint16_t)sizeof(struct rte_ether_hdr));
357 		if (eth_hdr == NULL) {
358 			rte_panic("No headroom in mbuf.\n");
359 		}
360 
361 		m->ol_flags |= ol_flags;
362 		m->l2_len = sizeof(struct rte_ether_hdr);
363 
364 		/* 02:00:00:00:00:xx */
365 		d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
366 		*((uint64_t *)d_addr_bytes) = 0x000000000002 +
367 			((uint64_t)port_out << 40);
368 
369 		/* src addr */
370 		rte_ether_addr_copy(&ports_eth_addr[port_out],
371 				&eth_hdr->src_addr);
372 		eth_hdr->ether_type = ether_type;
373 	}
374 
375 	len += len2;
376 
377 	if (likely(len < MAX_PKT_BURST)) {
378 		qconf->tx_mbufs[port_out].len = (uint16_t)len;
379 		return;
380 	}
381 
382 	/* Transmit packets */
383 	send_burst(qconf, (uint16_t)len, port_out);
384 	qconf->tx_mbufs[port_out].len = 0;
385 }
386 
387 /* main processing loop */
388 static int
389 main_loop(__rte_unused void *dummy)
390 {
391 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
392 	unsigned lcore_id;
393 	uint64_t prev_tsc, diff_tsc, cur_tsc;
394 	int i, j, nb_rx;
395 	uint16_t portid;
396 	struct lcore_queue_conf *qconf;
397 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
398 
399 	prev_tsc = 0;
400 
401 	lcore_id = rte_lcore_id();
402 	qconf = &lcore_queue_conf[lcore_id];
403 
404 	if (qconf->n_rx_queue == 0) {
405 		RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
406 		return 0;
407 	}
408 
409 	RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
410 
411 	for (i = 0; i < qconf->n_rx_queue; i++) {
412 
413 		portid = qconf->rx_queue_list[i].portid;
414 		RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
415 				portid);
416 	}
417 
418 	while (1) {
419 
420 		cur_tsc = rte_rdtsc();
421 
422 		/*
423 		 * TX burst queue drain
424 		 */
425 		diff_tsc = cur_tsc - prev_tsc;
426 		if (unlikely(diff_tsc > drain_tsc)) {
427 
428 			/*
429 			 * This could be optimized (use queueid instead of
430 			 * portid), but it is not called so often
431 			 */
432 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
433 				if (qconf->tx_mbufs[portid].len == 0)
434 					continue;
435 				send_burst(&lcore_queue_conf[lcore_id],
436 					   qconf->tx_mbufs[portid].len,
437 					   portid);
438 				qconf->tx_mbufs[portid].len = 0;
439 			}
440 
441 			prev_tsc = cur_tsc;
442 		}
443 
444 		/*
445 		 * Read packet from RX queues
446 		 */
447 		for (i = 0; i < qconf->n_rx_queue; i++) {
448 
449 			portid = qconf->rx_queue_list[i].portid;
450 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
451 						 MAX_PKT_BURST);
452 
453 			/* Prefetch first packets */
454 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
455 				rte_prefetch0(rte_pktmbuf_mtod(
456 						pkts_burst[j], void *));
457 			}
458 
459 			/* Prefetch and forward already prefetched packets */
460 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
461 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
462 						j + PREFETCH_OFFSET], void *));
463 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
464 			}
465 
466 			/* Forward remaining prefetched packets */
467 			for (; j < nb_rx; j++) {
468 				l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
469 			}
470 		}
471 	}
472 }
473 
474 /* display usage */
475 static void
476 print_usage(const char *prgname)
477 {
478 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
479 	       "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
480 	       "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
481 	       prgname);
482 }
483 
484 static int
485 parse_portmask(const char *portmask)
486 {
487 	char *end = NULL;
488 	unsigned long pm;
489 
490 	/* parse hexadecimal string */
491 	pm = strtoul(portmask, &end, 16);
492 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
493 		return -1;
494 
495 	if (pm == 0)
496 		return -1;
497 
498 	return pm;
499 }
500 
501 static int
502 parse_nqueue(const char *q_arg)
503 {
504 	char *end = NULL;
505 	unsigned long n;
506 
507 	/* parse hexadecimal string */
508 	n = strtoul(q_arg, &end, 10);
509 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
510 		return -1;
511 	if (n == 0)
512 		return -1;
513 	if (n >= MAX_RX_QUEUE_PER_LCORE)
514 		return -1;
515 
516 	return n;
517 }
518 
519 /* Parse the argument given in the command line of the application */
520 static int
521 parse_args(int argc, char **argv)
522 {
523 	int opt, ret;
524 	char **argvopt;
525 	int option_index;
526 	char *prgname = argv[0];
527 	static struct option lgopts[] = {
528 		{NULL, 0, 0, 0}
529 	};
530 
531 	argvopt = argv;
532 
533 	while ((opt = getopt_long(argc, argvopt, "p:q:",
534 				  lgopts, &option_index)) != EOF) {
535 
536 		switch (opt) {
537 		/* portmask */
538 		case 'p':
539 			enabled_port_mask = parse_portmask(optarg);
540 			if (enabled_port_mask < 0) {
541 				printf("invalid portmask\n");
542 				print_usage(prgname);
543 				return -1;
544 			}
545 			break;
546 
547 		/* nqueue */
548 		case 'q':
549 			rx_queue_per_lcore = parse_nqueue(optarg);
550 			if (rx_queue_per_lcore < 0) {
551 				printf("invalid queue number\n");
552 				print_usage(prgname);
553 				return -1;
554 			}
555 			break;
556 
557 		/* long options */
558 		case 0:
559 			print_usage(prgname);
560 			return -1;
561 
562 		default:
563 			print_usage(prgname);
564 			return -1;
565 		}
566 	}
567 
568 	if (enabled_port_mask == 0) {
569 		printf("portmask not specified\n");
570 		print_usage(prgname);
571 		return -1;
572 	}
573 
574 	if (optind >= 0)
575 		argv[optind-1] = prgname;
576 
577 	ret = optind-1;
578 	optind = 1; /* reset getopt lib */
579 	return ret;
580 }
581 
582 static void
583 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
584 {
585 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
586 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
587 	printf("%s%s", name, buf);
588 }
589 
590 /* Check the link status of all ports in up to 9s, and print them finally */
591 static void
592 check_all_ports_link_status(uint32_t port_mask)
593 {
594 #define CHECK_INTERVAL 100 /* 100ms */
595 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
596 	uint16_t portid;
597 	uint8_t count, all_ports_up, print_flag = 0;
598 	struct rte_eth_link link;
599 	int ret;
600 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
601 
602 	printf("\nChecking link status");
603 	fflush(stdout);
604 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
605 		all_ports_up = 1;
606 		RTE_ETH_FOREACH_DEV(portid) {
607 			if ((port_mask & (1 << portid)) == 0)
608 				continue;
609 			memset(&link, 0, sizeof(link));
610 			ret = rte_eth_link_get_nowait(portid, &link);
611 			if (ret < 0) {
612 				all_ports_up = 0;
613 				if (print_flag == 1)
614 					printf("Port %u link get failed: %s\n",
615 						portid, rte_strerror(-ret));
616 				continue;
617 			}
618 			/* print link status if flag set */
619 			if (print_flag == 1) {
620 				rte_eth_link_to_str(link_status_text,
621 					sizeof(link_status_text), &link);
622 				printf("Port %d %s\n", portid,
623 				       link_status_text);
624 				continue;
625 			}
626 			/* clear all_ports_up flag if any link down */
627 			if (link.link_status == ETH_LINK_DOWN) {
628 				all_ports_up = 0;
629 				break;
630 			}
631 		}
632 		/* after finally printing all link status, get out */
633 		if (print_flag == 1)
634 			break;
635 
636 		if (all_ports_up == 0) {
637 			printf(".");
638 			fflush(stdout);
639 			rte_delay_ms(CHECK_INTERVAL);
640 		}
641 
642 		/* set the print_flag if all ports up or timeout */
643 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
644 			print_flag = 1;
645 			printf("\ndone\n");
646 		}
647 	}
648 }
649 
650 /* Check L3 packet type detection capability of the NIC port */
651 static int
652 check_ptype(int portid)
653 {
654 	int i, ret;
655 	int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
656 	uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
657 
658 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
659 	if (ret <= 0)
660 		return 0;
661 
662 	uint32_t ptypes[ret];
663 
664 	ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
665 	for (i = 0; i < ret; ++i) {
666 		if (ptypes[i] & RTE_PTYPE_L3_IPV4)
667 			ptype_l3_ipv4 = 1;
668 		if (ptypes[i] & RTE_PTYPE_L3_IPV6)
669 			ptype_l3_ipv6 = 1;
670 	}
671 
672 	if (ptype_l3_ipv4 == 0)
673 		printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
674 
675 	if (ptype_l3_ipv6 == 0)
676 		printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
677 
678 	if (ptype_l3_ipv4 && ptype_l3_ipv6)
679 		return 1;
680 
681 	return 0;
682 
683 }
684 
685 /* Parse packet type of a packet by SW */
686 static inline void
687 parse_ptype(struct rte_mbuf *m)
688 {
689 	struct rte_ether_hdr *eth_hdr;
690 	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
691 	uint16_t ether_type;
692 
693 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
694 	ether_type = eth_hdr->ether_type;
695 	if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
696 		packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
697 	else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
698 		packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
699 
700 	m->packet_type = packet_type;
701 }
702 
703 /* callback function to detect packet type for a queue of a port */
704 static uint16_t
705 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
706 		   struct rte_mbuf *pkts[], uint16_t nb_pkts,
707 		   uint16_t max_pkts __rte_unused,
708 		   void *user_param __rte_unused)
709 {
710 	uint16_t i;
711 
712 	for (i = 0; i < nb_pkts; ++i)
713 		parse_ptype(pkts[i]);
714 
715 	return nb_pkts;
716 }
717 
718 static int
719 init_routing_table(void)
720 {
721 	struct rte_lpm *lpm;
722 	struct rte_lpm6 *lpm6;
723 	int socket, ret;
724 	unsigned i;
725 
726 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
727 		if (socket_lpm[socket]) {
728 			lpm = socket_lpm[socket];
729 			/* populate the LPM table */
730 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
731 				ret = rte_lpm_add(lpm,
732 					l3fwd_ipv4_route_array[i].ip,
733 					l3fwd_ipv4_route_array[i].depth,
734 					l3fwd_ipv4_route_array[i].if_out);
735 
736 				if (ret < 0) {
737 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
738 						"LPM table\n", i);
739 					return -1;
740 				}
741 
742 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
743 						"/%d (port %d)\n",
744 					socket,
745 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
746 					l3fwd_ipv4_route_array[i].depth,
747 					l3fwd_ipv4_route_array[i].if_out);
748 			}
749 		}
750 
751 		if (socket_lpm6[socket]) {
752 			lpm6 = socket_lpm6[socket];
753 			/* populate the LPM6 table */
754 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
755 				ret = rte_lpm6_add(lpm6,
756 					l3fwd_ipv6_route_array[i].ip,
757 					l3fwd_ipv6_route_array[i].depth,
758 					l3fwd_ipv6_route_array[i].if_out);
759 
760 				if (ret < 0) {
761 					RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
762 						"LPM6 table\n", i);
763 					return -1;
764 				}
765 
766 				RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
767 						"/%d (port %d)\n",
768 					socket,
769 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
770 					l3fwd_ipv6_route_array[i].depth,
771 					l3fwd_ipv6_route_array[i].if_out);
772 			}
773 		}
774 	}
775 	return 0;
776 }
777 
778 static int
779 init_mem(void)
780 {
781 	char buf[PATH_MAX];
782 	struct rte_mempool *mp;
783 	struct rte_lpm *lpm;
784 	struct rte_lpm6 *lpm6;
785 	struct rte_lpm_config lpm_config;
786 	int socket;
787 	unsigned lcore_id;
788 
789 	/* traverse through lcores and initialize structures on each socket */
790 
791 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
792 
793 		if (rte_lcore_is_enabled(lcore_id) == 0)
794 			continue;
795 
796 		socket = rte_lcore_to_socket_id(lcore_id);
797 
798 		if (socket == SOCKET_ID_ANY)
799 			socket = 0;
800 
801 		if (socket_direct_pool[socket] == NULL) {
802 			RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
803 					socket);
804 			snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
805 
806 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
807 				0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
808 			if (mp == NULL) {
809 				RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
810 				return -1;
811 			}
812 			socket_direct_pool[socket] = mp;
813 		}
814 
815 		if (socket_indirect_pool[socket] == NULL) {
816 			RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
817 					socket);
818 			snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
819 
820 			mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
821 				socket);
822 			if (mp == NULL) {
823 				RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
824 				return -1;
825 			}
826 			socket_indirect_pool[socket] = mp;
827 		}
828 
829 		if (socket_lpm[socket] == NULL) {
830 			RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
831 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
832 
833 			lpm_config.max_rules = LPM_MAX_RULES;
834 			lpm_config.number_tbl8s = 256;
835 			lpm_config.flags = 0;
836 
837 			lpm = rte_lpm_create(buf, socket, &lpm_config);
838 			if (lpm == NULL) {
839 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
840 				return -1;
841 			}
842 			socket_lpm[socket] = lpm;
843 		}
844 
845 		if (socket_lpm6[socket] == NULL) {
846 			RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
847 			snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
848 
849 			lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
850 			if (lpm6 == NULL) {
851 				RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
852 				return -1;
853 			}
854 			socket_lpm6[socket] = lpm6;
855 		}
856 	}
857 
858 	return 0;
859 }
860 
861 int
862 main(int argc, char **argv)
863 {
864 	struct lcore_queue_conf *qconf;
865 	struct rte_eth_dev_info dev_info;
866 	struct rte_eth_txconf *txconf;
867 	struct rx_queue *rxq;
868 	int socket, ret;
869 	uint16_t nb_ports;
870 	uint16_t queueid = 0;
871 	unsigned lcore_id = 0, rx_lcore_id = 0;
872 	uint32_t n_tx_queue, nb_lcores;
873 	uint16_t portid;
874 
875 	/* init EAL */
876 	ret = rte_eal_init(argc, argv);
877 	if (ret < 0)
878 		rte_exit(EXIT_FAILURE, "rte_eal_init failed");
879 	argc -= ret;
880 	argv += ret;
881 
882 	/* parse application arguments (after the EAL ones) */
883 	ret = parse_args(argc, argv);
884 	if (ret < 0)
885 		rte_exit(EXIT_FAILURE, "Invalid arguments");
886 
887 	nb_ports = rte_eth_dev_count_avail();
888 	if (nb_ports == 0)
889 		rte_exit(EXIT_FAILURE, "No ports found!\n");
890 
891 	nb_lcores = rte_lcore_count();
892 
893 	/* initialize structures (mempools, lpm etc.) */
894 	if (init_mem() < 0)
895 		rte_panic("Cannot initialize memory structures!\n");
896 
897 	/* check if portmask has non-existent ports */
898 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
899 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
900 
901 	/* initialize all ports */
902 	RTE_ETH_FOREACH_DEV(portid) {
903 		struct rte_eth_conf local_port_conf = port_conf;
904 		struct rte_eth_rxconf rxq_conf;
905 
906 		/* skip ports that are not enabled */
907 		if ((enabled_port_mask & (1 << portid)) == 0) {
908 			printf("Skipping disabled port %d\n", portid);
909 			continue;
910 		}
911 
912 		qconf = &lcore_queue_conf[rx_lcore_id];
913 
914 		/* limit the frame size to the maximum supported by NIC */
915 		ret = rte_eth_dev_info_get(portid, &dev_info);
916 		if (ret != 0)
917 			rte_exit(EXIT_FAILURE,
918 				"Error during getting device (port %u) info: %s\n",
919 				portid, strerror(-ret));
920 
921 		local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
922 		    dev_info.max_rx_pktlen,
923 		    local_port_conf.rxmode.max_rx_pkt_len);
924 
925 		/* get the lcore_id for this port */
926 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
927 		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
928 
929 			rx_lcore_id ++;
930 			if (rx_lcore_id >= RTE_MAX_LCORE)
931 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
932 
933 			qconf = &lcore_queue_conf[rx_lcore_id];
934 		}
935 
936 		socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
937 		if (socket == SOCKET_ID_ANY)
938 			socket = 0;
939 
940 		rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
941 		rxq->portid = portid;
942 		rxq->direct_pool = socket_direct_pool[socket];
943 		rxq->indirect_pool = socket_indirect_pool[socket];
944 		rxq->lpm = socket_lpm[socket];
945 		rxq->lpm6 = socket_lpm6[socket];
946 		qconf->n_rx_queue++;
947 
948 		/* init port */
949 		printf("Initializing port %d on lcore %u...", portid,
950 		       rx_lcore_id);
951 		fflush(stdout);
952 
953 		n_tx_queue = nb_lcores;
954 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
955 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
956 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
957 					    &local_port_conf);
958 		if (ret < 0) {
959 			printf("\n");
960 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
961 				"err=%d, port=%d\n",
962 				ret, portid);
963 		}
964 
965 		/* set the mtu to the maximum received packet size */
966 		ret = rte_eth_dev_set_mtu(portid,
967 			local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD);
968 		if (ret < 0) {
969 			printf("\n");
970 			rte_exit(EXIT_FAILURE, "Set MTU failed: "
971 				"err=%d, port=%d\n",
972 			ret, portid);
973 		}
974 
975 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
976 					    &nb_txd);
977 		if (ret < 0) {
978 			printf("\n");
979 			rte_exit(EXIT_FAILURE, "Cannot adjust number of "
980 				"descriptors: err=%d, port=%d\n", ret, portid);
981 		}
982 
983 		/* init one RX queue */
984 		rxq_conf = dev_info.default_rxconf;
985 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
986 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
987 					     socket, &rxq_conf,
988 					     socket_direct_pool[socket]);
989 		if (ret < 0) {
990 			printf("\n");
991 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
992 				"err=%d, port=%d\n",
993 				ret, portid);
994 		}
995 
996 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
997 		if (ret < 0) {
998 			printf("\n");
999 			rte_exit(EXIT_FAILURE,
1000 				"rte_eth_macaddr_get: err=%d, port=%d\n",
1001 				ret, portid);
1002 		}
1003 
1004 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1005 		printf("\n");
1006 
1007 		/* init one TX queue per couple (lcore,port) */
1008 		ret = rte_eth_dev_info_get(portid, &dev_info);
1009 		if (ret != 0)
1010 			rte_exit(EXIT_FAILURE,
1011 				"Error during getting device (port %u) info: %s\n",
1012 				portid, strerror(-ret));
1013 
1014 		queueid = 0;
1015 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1016 			if (rte_lcore_is_enabled(lcore_id) == 0)
1017 				continue;
1018 
1019 			if (queueid >= dev_info.nb_tx_queues)
1020 				break;
1021 
1022 			socket = (int) rte_lcore_to_socket_id(lcore_id);
1023 			printf("txq=%u,%d ", lcore_id, queueid);
1024 			fflush(stdout);
1025 
1026 			txconf = &dev_info.default_txconf;
1027 			txconf->offloads = local_port_conf.txmode.offloads;
1028 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1029 						     socket, txconf);
1030 			if (ret < 0) {
1031 				printf("\n");
1032 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1033 					"err=%d, port=%d\n", ret, portid);
1034 			}
1035 
1036 			qconf = &lcore_queue_conf[lcore_id];
1037 			qconf->tx_queue_id[portid] = queueid;
1038 			queueid++;
1039 		}
1040 
1041 		printf("\n");
1042 	}
1043 
1044 	printf("\n");
1045 
1046 	/* start ports */
1047 	RTE_ETH_FOREACH_DEV(portid) {
1048 		if ((enabled_port_mask & (1 << portid)) == 0) {
1049 			continue;
1050 		}
1051 		/* Start device */
1052 		ret = rte_eth_dev_start(portid);
1053 		if (ret < 0)
1054 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1055 				ret, portid);
1056 
1057 		ret = rte_eth_promiscuous_enable(portid);
1058 		if (ret != 0)
1059 			rte_exit(EXIT_FAILURE,
1060 				"rte_eth_promiscuous_enable: err=%s, port=%d\n",
1061 				rte_strerror(-ret), portid);
1062 
1063 		if (check_ptype(portid) == 0) {
1064 			rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
1065 			printf("Add Rx callback function to detect L3 packet type by SW :"
1066 				" port = %d\n", portid);
1067 		}
1068 	}
1069 
1070 	if (init_routing_table() < 0)
1071 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1072 
1073 	check_all_ports_link_status(enabled_port_mask);
1074 
1075 	/* launch per-lcore init on every lcore */
1076 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
1077 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
1078 		if (rte_eal_wait_lcore(lcore_id) < 0)
1079 			return -1;
1080 	}
1081 
1082 	/* clean up the EAL */
1083 	rte_eal_cleanup();
1084 
1085 	return 0;
1086 }
1087