1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <string.h> 41 #include <sys/queue.h> 42 #include <stdarg.h> 43 #include <errno.h> 44 #include <getopt.h> 45 46 #include <rte_common.h> 47 #include <rte_byteorder.h> 48 #include <rte_log.h> 49 #include <rte_memory.h> 50 #include <rte_memcpy.h> 51 #include <rte_memzone.h> 52 #include <rte_eal.h> 53 #include <rte_per_lcore.h> 54 #include <rte_launch.h> 55 #include <rte_atomic.h> 56 #include <rte_cycles.h> 57 #include <rte_prefetch.h> 58 #include <rte_lcore.h> 59 #include <rte_per_lcore.h> 60 #include <rte_branch_prediction.h> 61 #include <rte_interrupts.h> 62 #include <rte_pci.h> 63 #include <rte_random.h> 64 #include <rte_debug.h> 65 #include <rte_ether.h> 66 #include <rte_ethdev.h> 67 #include <rte_ring.h> 68 #include <rte_mempool.h> 69 #include <rte_mbuf.h> 70 #include <rte_lpm.h> 71 #include <rte_lpm6.h> 72 #include <rte_ip.h> 73 #include <rte_string_fns.h> 74 75 #include <rte_ip_frag.h> 76 77 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1 78 79 /* allow max jumbo frame 9.5 KB */ 80 #define JUMBO_FRAME_MAX_SIZE 0x2600 81 82 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b)) 83 84 /* 85 * Default byte size for the IPv6 Maximum Transfer Unit (MTU). 86 * This value includes the size of IPv6 header. 87 */ 88 #define IPV4_MTU_DEFAULT ETHER_MTU 89 #define IPV6_MTU_DEFAULT ETHER_MTU 90 91 /* 92 * Default payload in bytes for the IPv6 packet. 93 */ 94 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr)) 95 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr)) 96 97 /* 98 * Max number of fragments per packet expected - defined by config file. 99 */ 100 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG 101 102 #define NB_MBUF 8192 103 104 #define MAX_PKT_BURST 32 105 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 106 107 /* Configure how many packets ahead to prefetch, when reading packets */ 108 #define PREFETCH_OFFSET 3 109 110 /* 111 * Configurable number of RX/TX ring descriptors 112 */ 113 #define RTE_TEST_RX_DESC_DEFAULT 128 114 #define RTE_TEST_TX_DESC_DEFAULT 512 115 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 116 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 117 118 /* ethernet addresses of ports */ 119 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 120 121 #ifndef IPv4_BYTES 122 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 123 #define IPv4_BYTES(addr) \ 124 (uint8_t) (((addr) >> 24) & 0xFF),\ 125 (uint8_t) (((addr) >> 16) & 0xFF),\ 126 (uint8_t) (((addr) >> 8) & 0xFF),\ 127 (uint8_t) ((addr) & 0xFF) 128 #endif 129 130 #ifndef IPv6_BYTES 131 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 132 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 133 #define IPv6_BYTES(addr) \ 134 addr[0], addr[1], addr[2], addr[3], \ 135 addr[4], addr[5], addr[6], addr[7], \ 136 addr[8], addr[9], addr[10], addr[11],\ 137 addr[12], addr[13],addr[14], addr[15] 138 #endif 139 140 #define IPV6_ADDR_LEN 16 141 142 /* mask of enabled ports */ 143 static int enabled_port_mask = 0; 144 145 static int rx_queue_per_lcore = 1; 146 147 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG)) 148 149 struct mbuf_table { 150 uint16_t len; 151 struct rte_mbuf *m_table[MBUF_TABLE_SIZE]; 152 }; 153 154 struct rx_queue { 155 struct rte_mempool *direct_pool; 156 struct rte_mempool *indirect_pool; 157 struct rte_lpm *lpm; 158 struct rte_lpm6 *lpm6; 159 uint8_t portid; 160 }; 161 162 #define MAX_RX_QUEUE_PER_LCORE 16 163 #define MAX_TX_QUEUE_PER_PORT 16 164 struct lcore_queue_conf { 165 uint16_t n_rx_queue; 166 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 167 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 168 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 169 } __rte_cache_aligned; 170 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 171 172 static const struct rte_eth_conf port_conf = { 173 .rxmode = { 174 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 175 .split_hdr_size = 0, 176 .header_split = 0, /**< Header Split disabled */ 177 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 178 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 179 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */ 180 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 181 }, 182 .txmode = { 183 .mq_mode = ETH_MQ_TX_NONE, 184 }, 185 }; 186 187 /* 188 * IPv4 forwarding table 189 */ 190 struct l3fwd_ipv4_route { 191 uint32_t ip; 192 uint8_t depth; 193 uint8_t if_out; 194 }; 195 196 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 197 {IPv4(100,10,0,0), 16, 0}, 198 {IPv4(100,20,0,0), 16, 1}, 199 {IPv4(100,30,0,0), 16, 2}, 200 {IPv4(100,40,0,0), 16, 3}, 201 {IPv4(100,50,0,0), 16, 4}, 202 {IPv4(100,60,0,0), 16, 5}, 203 {IPv4(100,70,0,0), 16, 6}, 204 {IPv4(100,80,0,0), 16, 7}, 205 }; 206 207 /* 208 * IPv6 forwarding table 209 */ 210 211 struct l3fwd_ipv6_route { 212 uint8_t ip[IPV6_ADDR_LEN]; 213 uint8_t depth; 214 uint8_t if_out; 215 }; 216 217 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 218 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 219 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 220 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 221 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 222 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 223 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 224 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 225 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 226 }; 227 228 #define LPM_MAX_RULES 1024 229 #define LPM6_MAX_RULES 1024 230 #define LPM6_NUMBER_TBL8S (1 << 16) 231 232 struct rte_lpm6_config lpm6_config = { 233 .max_rules = LPM6_MAX_RULES, 234 .number_tbl8s = LPM6_NUMBER_TBL8S, 235 .flags = 0 236 }; 237 238 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES]; 239 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES]; 240 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 241 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 242 243 /* Send burst of packets on an output interface */ 244 static inline int 245 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port) 246 { 247 struct rte_mbuf **m_table; 248 int ret; 249 uint16_t queueid; 250 251 queueid = qconf->tx_queue_id[port]; 252 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 253 254 ret = rte_eth_tx_burst(port, queueid, m_table, n); 255 if (unlikely(ret < n)) { 256 do { 257 rte_pktmbuf_free(m_table[ret]); 258 } while (++ret < n); 259 } 260 261 return 0; 262 } 263 264 static inline void 265 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf, 266 uint8_t queueid, uint8_t port_in) 267 { 268 struct rx_queue *rxq; 269 uint32_t i, len; 270 uint8_t next_hop, port_out, ipv6; 271 int32_t len2; 272 273 ipv6 = 0; 274 rxq = &qconf->rx_queue_list[queueid]; 275 276 /* by default, send everything back to the source port */ 277 port_out = port_in; 278 279 /* Remove the Ethernet header and trailer from the input packet */ 280 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr)); 281 282 /* Build transmission burst */ 283 len = qconf->tx_mbufs[port_out].len; 284 285 /* if this is an IPv4 packet */ 286 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 287 struct ipv4_hdr *ip_hdr; 288 uint32_t ip_dst; 289 /* Read the lookup key (i.e. ip_dst) from the input packet */ 290 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *); 291 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 292 293 /* Find destination port */ 294 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 295 (enabled_port_mask & 1 << next_hop) != 0) { 296 port_out = next_hop; 297 298 /* Build transmission burst for new port */ 299 len = qconf->tx_mbufs[port_out].len; 300 } 301 302 /* if we don't need to do any fragmentation */ 303 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) { 304 qconf->tx_mbufs[port_out].m_table[len] = m; 305 len2 = 1; 306 } else { 307 len2 = rte_ipv4_fragment_packet(m, 308 &qconf->tx_mbufs[port_out].m_table[len], 309 (uint16_t)(MBUF_TABLE_SIZE - len), 310 IPV4_MTU_DEFAULT, 311 rxq->direct_pool, rxq->indirect_pool); 312 313 /* Free input packet */ 314 rte_pktmbuf_free(m); 315 316 /* If we fail to fragment the packet */ 317 if (unlikely (len2 < 0)) 318 return; 319 } 320 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 321 /* if this is an IPv6 packet */ 322 struct ipv6_hdr *ip_hdr; 323 324 ipv6 = 1; 325 326 /* Read the lookup key (i.e. ip_dst) from the input packet */ 327 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *); 328 329 /* Find destination port */ 330 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop) == 0 && 331 (enabled_port_mask & 1 << next_hop) != 0) { 332 port_out = next_hop; 333 334 /* Build transmission burst for new port */ 335 len = qconf->tx_mbufs[port_out].len; 336 } 337 338 /* if we don't need to do any fragmentation */ 339 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) { 340 qconf->tx_mbufs[port_out].m_table[len] = m; 341 len2 = 1; 342 } else { 343 len2 = rte_ipv6_fragment_packet(m, 344 &qconf->tx_mbufs[port_out].m_table[len], 345 (uint16_t)(MBUF_TABLE_SIZE - len), 346 IPV6_MTU_DEFAULT, 347 rxq->direct_pool, rxq->indirect_pool); 348 349 /* Free input packet */ 350 rte_pktmbuf_free(m); 351 352 /* If we fail to fragment the packet */ 353 if (unlikely (len2 < 0)) 354 return; 355 } 356 } 357 /* else, just forward the packet */ 358 else { 359 qconf->tx_mbufs[port_out].m_table[len] = m; 360 len2 = 1; 361 } 362 363 for (i = len; i < len + len2; i ++) { 364 void *d_addr_bytes; 365 366 m = qconf->tx_mbufs[port_out].m_table[i]; 367 struct ether_hdr *eth_hdr = (struct ether_hdr *) 368 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr)); 369 if (eth_hdr == NULL) { 370 rte_panic("No headroom in mbuf.\n"); 371 } 372 373 m->l2_len = sizeof(struct ether_hdr); 374 375 /* 02:00:00:00:00:xx */ 376 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 377 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40); 378 379 /* src addr */ 380 ether_addr_copy(&ports_eth_addr[port_out], ð_hdr->s_addr); 381 if (ipv6) 382 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 383 else 384 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 385 } 386 387 len += len2; 388 389 if (likely(len < MAX_PKT_BURST)) { 390 qconf->tx_mbufs[port_out].len = (uint16_t)len; 391 return; 392 } 393 394 /* Transmit packets */ 395 send_burst(qconf, (uint16_t)len, port_out); 396 qconf->tx_mbufs[port_out].len = 0; 397 } 398 399 /* main processing loop */ 400 static int 401 main_loop(__attribute__((unused)) void *dummy) 402 { 403 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 404 unsigned lcore_id; 405 uint64_t prev_tsc, diff_tsc, cur_tsc; 406 int i, j, nb_rx; 407 uint8_t portid; 408 struct lcore_queue_conf *qconf; 409 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 410 411 prev_tsc = 0; 412 413 lcore_id = rte_lcore_id(); 414 qconf = &lcore_queue_conf[lcore_id]; 415 416 if (qconf->n_rx_queue == 0) { 417 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id); 418 return 0; 419 } 420 421 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id); 422 423 for (i = 0; i < qconf->n_rx_queue; i++) { 424 425 portid = qconf->rx_queue_list[i].portid; 426 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id, 427 (int) portid); 428 } 429 430 while (1) { 431 432 cur_tsc = rte_rdtsc(); 433 434 /* 435 * TX burst queue drain 436 */ 437 diff_tsc = cur_tsc - prev_tsc; 438 if (unlikely(diff_tsc > drain_tsc)) { 439 440 /* 441 * This could be optimized (use queueid instead of 442 * portid), but it is not called so often 443 */ 444 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 445 if (qconf->tx_mbufs[portid].len == 0) 446 continue; 447 send_burst(&lcore_queue_conf[lcore_id], 448 qconf->tx_mbufs[portid].len, 449 portid); 450 qconf->tx_mbufs[portid].len = 0; 451 } 452 453 prev_tsc = cur_tsc; 454 } 455 456 /* 457 * Read packet from RX queues 458 */ 459 for (i = 0; i < qconf->n_rx_queue; i++) { 460 461 portid = qconf->rx_queue_list[i].portid; 462 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 463 MAX_PKT_BURST); 464 465 /* Prefetch first packets */ 466 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 467 rte_prefetch0(rte_pktmbuf_mtod( 468 pkts_burst[j], void *)); 469 } 470 471 /* Prefetch and forward already prefetched packets */ 472 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 473 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 474 j + PREFETCH_OFFSET], void *)); 475 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 476 } 477 478 /* Forward remaining prefetched packets */ 479 for (; j < nb_rx; j++) { 480 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid); 481 } 482 } 483 } 484 } 485 486 /* display usage */ 487 static void 488 print_usage(const char *prgname) 489 { 490 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" 491 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 492 " -q NQ: number of queue (=ports) per lcore (default is 1)\n", 493 prgname); 494 } 495 496 static int 497 parse_portmask(const char *portmask) 498 { 499 char *end = NULL; 500 unsigned long pm; 501 502 /* parse hexadecimal string */ 503 pm = strtoul(portmask, &end, 16); 504 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 505 return -1; 506 507 if (pm == 0) 508 return -1; 509 510 return pm; 511 } 512 513 static int 514 parse_nqueue(const char *q_arg) 515 { 516 char *end = NULL; 517 unsigned long n; 518 519 /* parse hexadecimal string */ 520 n = strtoul(q_arg, &end, 10); 521 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 522 return -1; 523 if (n == 0) 524 return -1; 525 if (n >= MAX_RX_QUEUE_PER_LCORE) 526 return -1; 527 528 return n; 529 } 530 531 /* Parse the argument given in the command line of the application */ 532 static int 533 parse_args(int argc, char **argv) 534 { 535 int opt, ret; 536 char **argvopt; 537 int option_index; 538 char *prgname = argv[0]; 539 static struct option lgopts[] = { 540 {NULL, 0, 0, 0} 541 }; 542 543 argvopt = argv; 544 545 while ((opt = getopt_long(argc, argvopt, "p:q:", 546 lgopts, &option_index)) != EOF) { 547 548 switch (opt) { 549 /* portmask */ 550 case 'p': 551 enabled_port_mask = parse_portmask(optarg); 552 if (enabled_port_mask < 0) { 553 printf("invalid portmask\n"); 554 print_usage(prgname); 555 return -1; 556 } 557 break; 558 559 /* nqueue */ 560 case 'q': 561 rx_queue_per_lcore = parse_nqueue(optarg); 562 if (rx_queue_per_lcore < 0) { 563 printf("invalid queue number\n"); 564 print_usage(prgname); 565 return -1; 566 } 567 break; 568 569 /* long options */ 570 case 0: 571 print_usage(prgname); 572 return -1; 573 574 default: 575 print_usage(prgname); 576 return -1; 577 } 578 } 579 580 if (enabled_port_mask == 0) { 581 printf("portmask not specified\n"); 582 print_usage(prgname); 583 return -1; 584 } 585 586 if (optind >= 0) 587 argv[optind-1] = prgname; 588 589 ret = optind-1; 590 optind = 0; /* reset getopt lib */ 591 return ret; 592 } 593 594 static void 595 print_ethaddr(const char *name, struct ether_addr *eth_addr) 596 { 597 char buf[ETHER_ADDR_FMT_SIZE]; 598 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 599 printf("%s%s", name, buf); 600 } 601 602 /* Check the link status of all ports in up to 9s, and print them finally */ 603 static void 604 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 605 { 606 #define CHECK_INTERVAL 100 /* 100ms */ 607 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 608 uint8_t portid, count, all_ports_up, print_flag = 0; 609 struct rte_eth_link link; 610 611 printf("\nChecking link status"); 612 fflush(stdout); 613 for (count = 0; count <= MAX_CHECK_TIME; count++) { 614 all_ports_up = 1; 615 for (portid = 0; portid < port_num; portid++) { 616 if ((port_mask & (1 << portid)) == 0) 617 continue; 618 memset(&link, 0, sizeof(link)); 619 rte_eth_link_get_nowait(portid, &link); 620 /* print link status if flag set */ 621 if (print_flag == 1) { 622 if (link.link_status) 623 printf("Port %d Link Up - speed %u " 624 "Mbps - %s\n", (uint8_t)portid, 625 (unsigned)link.link_speed, 626 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 627 ("full-duplex") : ("half-duplex\n")); 628 else 629 printf("Port %d Link Down\n", 630 (uint8_t)portid); 631 continue; 632 } 633 /* clear all_ports_up flag if any link down */ 634 if (link.link_status == 0) { 635 all_ports_up = 0; 636 break; 637 } 638 } 639 /* after finally printing all link status, get out */ 640 if (print_flag == 1) 641 break; 642 643 if (all_ports_up == 0) { 644 printf("."); 645 fflush(stdout); 646 rte_delay_ms(CHECK_INTERVAL); 647 } 648 649 /* set the print_flag if all ports up or timeout */ 650 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 651 print_flag = 1; 652 printf("\ndone\n"); 653 } 654 } 655 } 656 657 static int 658 init_routing_table(void) 659 { 660 struct rte_lpm *lpm; 661 struct rte_lpm6 *lpm6; 662 int socket, ret; 663 unsigned i; 664 665 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 666 if (socket_lpm[socket]) { 667 lpm = socket_lpm[socket]; 668 /* populate the LPM table */ 669 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 670 ret = rte_lpm_add(lpm, 671 l3fwd_ipv4_route_array[i].ip, 672 l3fwd_ipv4_route_array[i].depth, 673 l3fwd_ipv4_route_array[i].if_out); 674 675 if (ret < 0) { 676 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 677 "LPM table\n", i); 678 return -1; 679 } 680 681 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT 682 "/%d (port %d)\n", 683 socket, 684 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 685 l3fwd_ipv4_route_array[i].depth, 686 l3fwd_ipv4_route_array[i].if_out); 687 } 688 } 689 690 if (socket_lpm6[socket]) { 691 lpm6 = socket_lpm6[socket]; 692 /* populate the LPM6 table */ 693 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 694 ret = rte_lpm6_add(lpm6, 695 l3fwd_ipv6_route_array[i].ip, 696 l3fwd_ipv6_route_array[i].depth, 697 l3fwd_ipv6_route_array[i].if_out); 698 699 if (ret < 0) { 700 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd " 701 "LPM6 table\n", i); 702 return -1; 703 } 704 705 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT 706 "/%d (port %d)\n", 707 socket, 708 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 709 l3fwd_ipv6_route_array[i].depth, 710 l3fwd_ipv6_route_array[i].if_out); 711 } 712 } 713 } 714 return 0; 715 } 716 717 static int 718 init_mem(void) 719 { 720 char buf[PATH_MAX]; 721 struct rte_mempool *mp; 722 struct rte_lpm *lpm; 723 struct rte_lpm6 *lpm6; 724 int socket; 725 unsigned lcore_id; 726 727 /* traverse through lcores and initialize structures on each socket */ 728 729 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 730 731 if (rte_lcore_is_enabled(lcore_id) == 0) 732 continue; 733 734 socket = rte_lcore_to_socket_id(lcore_id); 735 736 if (socket == SOCKET_ID_ANY) 737 socket = 0; 738 739 if (socket_direct_pool[socket] == NULL) { 740 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n", 741 socket); 742 snprintf(buf, sizeof(buf), "pool_direct_%i", socket); 743 744 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 745 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket); 746 if (mp == NULL) { 747 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n"); 748 return -1; 749 } 750 socket_direct_pool[socket] = mp; 751 } 752 753 if (socket_indirect_pool[socket] == NULL) { 754 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n", 755 socket); 756 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket); 757 758 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0, 759 socket); 760 if (mp == NULL) { 761 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n"); 762 return -1; 763 } 764 socket_indirect_pool[socket] = mp; 765 } 766 767 if (socket_lpm[socket] == NULL) { 768 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket); 769 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 770 771 lpm = rte_lpm_create(buf, socket, LPM_MAX_RULES, 0); 772 if (lpm == NULL) { 773 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 774 return -1; 775 } 776 socket_lpm[socket] = lpm; 777 } 778 779 if (socket_lpm6[socket] == NULL) { 780 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket); 781 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket); 782 783 lpm6 = rte_lpm6_create("IP_FRAG_LPM6", socket, &lpm6_config); 784 if (lpm6 == NULL) { 785 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n"); 786 return -1; 787 } 788 socket_lpm6[socket] = lpm6; 789 } 790 } 791 792 return 0; 793 } 794 795 int 796 main(int argc, char **argv) 797 { 798 struct lcore_queue_conf *qconf; 799 struct rte_eth_dev_info dev_info; 800 struct rte_eth_txconf *txconf; 801 struct rx_queue *rxq; 802 int socket, ret; 803 unsigned nb_ports; 804 uint16_t queueid = 0; 805 unsigned lcore_id = 0, rx_lcore_id = 0; 806 uint32_t n_tx_queue, nb_lcores; 807 uint8_t portid; 808 809 /* init EAL */ 810 ret = rte_eal_init(argc, argv); 811 if (ret < 0) 812 rte_exit(EXIT_FAILURE, "rte_eal_init failed"); 813 argc -= ret; 814 argv += ret; 815 816 /* parse application arguments (after the EAL ones) */ 817 ret = parse_args(argc, argv); 818 if (ret < 0) 819 rte_exit(EXIT_FAILURE, "Invalid arguments"); 820 821 nb_ports = rte_eth_dev_count(); 822 if (nb_ports > RTE_MAX_ETHPORTS) 823 nb_ports = RTE_MAX_ETHPORTS; 824 else if (nb_ports == 0) 825 rte_exit(EXIT_FAILURE, "No ports found!\n"); 826 827 nb_lcores = rte_lcore_count(); 828 829 /* initialize structures (mempools, lpm etc.) */ 830 if (init_mem() < 0) 831 rte_panic("Cannot initialize memory structures!\n"); 832 833 /* check if portmask has non-existent ports */ 834 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 835 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 836 837 /* initialize all ports */ 838 for (portid = 0; portid < nb_ports; portid++) { 839 /* skip ports that are not enabled */ 840 if ((enabled_port_mask & (1 << portid)) == 0) { 841 printf("Skipping disabled port %d\n", portid); 842 continue; 843 } 844 845 qconf = &lcore_queue_conf[rx_lcore_id]; 846 847 /* get the lcore_id for this port */ 848 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 849 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 850 851 rx_lcore_id ++; 852 if (rx_lcore_id >= RTE_MAX_LCORE) 853 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 854 855 qconf = &lcore_queue_conf[rx_lcore_id]; 856 } 857 858 socket = (int) rte_lcore_to_socket_id(rx_lcore_id); 859 if (socket == SOCKET_ID_ANY) 860 socket = 0; 861 862 rxq = &qconf->rx_queue_list[qconf->n_rx_queue]; 863 rxq->portid = portid; 864 rxq->direct_pool = socket_direct_pool[socket]; 865 rxq->indirect_pool = socket_indirect_pool[socket]; 866 rxq->lpm = socket_lpm[socket]; 867 rxq->lpm6 = socket_lpm6[socket]; 868 qconf->n_rx_queue++; 869 870 /* init port */ 871 printf("Initializing port %d on lcore %u...", portid, 872 rx_lcore_id); 873 fflush(stdout); 874 875 n_tx_queue = nb_lcores; 876 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 877 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 878 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 879 &port_conf); 880 if (ret < 0) { 881 printf("\n"); 882 rte_exit(EXIT_FAILURE, "Cannot configure device: " 883 "err=%d, port=%d\n", 884 ret, portid); 885 } 886 887 /* init one RX queue */ 888 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 889 socket, NULL, 890 socket_direct_pool[socket]); 891 if (ret < 0) { 892 printf("\n"); 893 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 894 "err=%d, port=%d\n", 895 ret, portid); 896 } 897 898 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 899 print_ethaddr(" Address:", &ports_eth_addr[portid]); 900 printf("\n"); 901 902 /* init one TX queue per couple (lcore,port) */ 903 queueid = 0; 904 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 905 if (rte_lcore_is_enabled(lcore_id) == 0) 906 continue; 907 908 socket = (int) rte_lcore_to_socket_id(lcore_id); 909 printf("txq=%u,%d ", lcore_id, queueid); 910 fflush(stdout); 911 912 rte_eth_dev_info_get(portid, &dev_info); 913 txconf = &dev_info.default_txconf; 914 txconf->txq_flags = 0; 915 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 916 socket, txconf); 917 if (ret < 0) { 918 printf("\n"); 919 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 920 "err=%d, port=%d\n", ret, portid); 921 } 922 923 qconf = &lcore_queue_conf[lcore_id]; 924 qconf->tx_queue_id[portid] = queueid; 925 queueid++; 926 } 927 928 printf("\n"); 929 } 930 931 printf("\n"); 932 933 /* start ports */ 934 for (portid = 0; portid < nb_ports; portid++) { 935 if ((enabled_port_mask & (1 << portid)) == 0) { 936 continue; 937 } 938 /* Start device */ 939 ret = rte_eth_dev_start(portid); 940 if (ret < 0) 941 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 942 ret, portid); 943 944 rte_eth_promiscuous_enable(portid); 945 } 946 947 if (init_routing_table() < 0) 948 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 949 950 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 951 952 /* launch per-lcore init on every lcore */ 953 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 954 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 955 if (rte_eal_wait_lcore(lcore_id) < 0) 956 return -1; 957 } 958 959 return 0; 960 } 961