xref: /dpdk/drivers/net/virtio/virtqueue.h (revision e88bd4746737a1ca464b866d29f20ff5a739cd3f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #ifndef _VIRTQUEUE_H_
6 #define _VIRTQUEUE_H_
7 
8 #include <stdint.h>
9 
10 #include <rte_atomic.h>
11 #include <rte_memory.h>
12 #include <rte_mempool.h>
13 #include <rte_net.h>
14 
15 #include "virtio_pci.h"
16 #include "virtio_ring.h"
17 #include "virtio_logs.h"
18 #include "virtio_rxtx.h"
19 
20 struct rte_mbuf;
21 
22 #define DEFAULT_TX_FREE_THRESH 32
23 #define DEFAULT_RX_FREE_THRESH 32
24 
25 #define VIRTIO_MBUF_BURST_SZ 64
26 /*
27  * Per virtio_ring.h in Linux.
28  *     For virtio_pci on SMP, we don't need to order with respect to MMIO
29  *     accesses through relaxed memory I/O windows, so thread_fence is
30  *     sufficient.
31  *
32  *     For using virtio to talk to real devices (eg. vDPA) we do need real
33  *     barriers.
34  */
35 static inline void
36 virtio_mb(uint8_t weak_barriers)
37 {
38 	if (weak_barriers)
39 		rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
40 	else
41 		rte_mb();
42 }
43 
44 static inline void
45 virtio_rmb(uint8_t weak_barriers)
46 {
47 	if (weak_barriers)
48 		rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
49 	else
50 		rte_io_rmb();
51 }
52 
53 static inline void
54 virtio_wmb(uint8_t weak_barriers)
55 {
56 	if (weak_barriers)
57 		rte_atomic_thread_fence(__ATOMIC_RELEASE);
58 	else
59 		rte_io_wmb();
60 }
61 
62 static inline uint16_t
63 virtqueue_fetch_flags_packed(struct vring_packed_desc *dp,
64 			      uint8_t weak_barriers)
65 {
66 	uint16_t flags;
67 
68 	if (weak_barriers) {
69 /* x86 prefers to using rte_io_rmb over __atomic_load_n as it reports
70  * a better perf(~1.5%), which comes from the saved branch by the compiler.
71  * The if and else branch are identical  on the platforms except Arm.
72  */
73 #ifdef RTE_ARCH_ARM
74 		flags = __atomic_load_n(&dp->flags, __ATOMIC_ACQUIRE);
75 #else
76 		flags = dp->flags;
77 		rte_io_rmb();
78 #endif
79 	} else {
80 		flags = dp->flags;
81 		rte_io_rmb();
82 	}
83 
84 	return flags;
85 }
86 
87 static inline void
88 virtqueue_store_flags_packed(struct vring_packed_desc *dp,
89 			      uint16_t flags, uint8_t weak_barriers)
90 {
91 	if (weak_barriers) {
92 /* x86 prefers to using rte_io_wmb over __atomic_store_n as it reports
93  * a better perf(~1.5%), which comes from the saved branch by the compiler.
94  * The if and else branch are identical on the platforms except Arm.
95  */
96 #ifdef RTE_ARCH_ARM
97 		__atomic_store_n(&dp->flags, flags, __ATOMIC_RELEASE);
98 #else
99 		rte_io_wmb();
100 		dp->flags = flags;
101 #endif
102 	} else {
103 		rte_io_wmb();
104 		dp->flags = flags;
105 	}
106 }
107 
108 #ifdef RTE_PMD_PACKET_PREFETCH
109 #define rte_packet_prefetch(p)  rte_prefetch1(p)
110 #else
111 #define rte_packet_prefetch(p)  do {} while(0)
112 #endif
113 
114 #define VIRTQUEUE_MAX_NAME_SZ 32
115 
116 #ifdef RTE_VIRTIO_USER
117 /**
118  * Return the physical address (or virtual address in case of
119  * virtio-user) of mbuf data buffer.
120  *
121  * The address is firstly casted to the word size (sizeof(uintptr_t))
122  * before casting it to uint64_t. This is to make it work with different
123  * combination of word size (64 bit and 32 bit) and virtio device
124  * (virtio-pci and virtio-user).
125  */
126 #define VIRTIO_MBUF_ADDR(mb, vq) \
127 	((uint64_t)(*(uintptr_t *)((uintptr_t)(mb) + (vq)->offset)))
128 #else
129 #define VIRTIO_MBUF_ADDR(mb, vq) ((mb)->buf_iova)
130 #endif
131 
132 /**
133  * Return the physical address (or virtual address in case of
134  * virtio-user) of mbuf data buffer, taking care of mbuf data offset
135  */
136 #define VIRTIO_MBUF_DATA_DMA_ADDR(mb, vq) \
137 	(VIRTIO_MBUF_ADDR(mb, vq) + (mb)->data_off)
138 
139 #define VTNET_SQ_RQ_QUEUE_IDX 0
140 #define VTNET_SQ_TQ_QUEUE_IDX 1
141 #define VTNET_SQ_CQ_QUEUE_IDX 2
142 
143 enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 };
144 /**
145  * The maximum virtqueue size is 2^15. Use that value as the end of
146  * descriptor chain terminator since it will never be a valid index
147  * in the descriptor table. This is used to verify we are correctly
148  * handling vq_free_cnt.
149  */
150 #define VQ_RING_DESC_CHAIN_END 32768
151 
152 /**
153  * Control the RX mode, ie. promiscuous, allmulti, etc...
154  * All commands require an "out" sg entry containing a 1 byte
155  * state value, zero = disable, non-zero = enable.  Commands
156  * 0 and 1 are supported with the VIRTIO_NET_F_CTRL_RX feature.
157  * Commands 2-5 are added with VIRTIO_NET_F_CTRL_RX_EXTRA.
158  */
159 #define VIRTIO_NET_CTRL_RX              0
160 #define VIRTIO_NET_CTRL_RX_PROMISC      0
161 #define VIRTIO_NET_CTRL_RX_ALLMULTI     1
162 #define VIRTIO_NET_CTRL_RX_ALLUNI       2
163 #define VIRTIO_NET_CTRL_RX_NOMULTI      3
164 #define VIRTIO_NET_CTRL_RX_NOUNI        4
165 #define VIRTIO_NET_CTRL_RX_NOBCAST      5
166 
167 /**
168  * Control the MAC
169  *
170  * The MAC filter table is managed by the hypervisor, the guest should
171  * assume the size is infinite.  Filtering should be considered
172  * non-perfect, ie. based on hypervisor resources, the guest may
173  * received packets from sources not specified in the filter list.
174  *
175  * In addition to the class/cmd header, the TABLE_SET command requires
176  * two out scatterlists.  Each contains a 4 byte count of entries followed
177  * by a concatenated byte stream of the ETH_ALEN MAC addresses.  The
178  * first sg list contains unicast addresses, the second is for multicast.
179  * This functionality is present if the VIRTIO_NET_F_CTRL_RX feature
180  * is available.
181  *
182  * The ADDR_SET command requests one out scatterlist, it contains a
183  * 6 bytes MAC address. This functionality is present if the
184  * VIRTIO_NET_F_CTRL_MAC_ADDR feature is available.
185  */
186 struct virtio_net_ctrl_mac {
187 	uint32_t entries;
188 	uint8_t macs[][RTE_ETHER_ADDR_LEN];
189 } __rte_packed;
190 
191 #define VIRTIO_NET_CTRL_MAC    1
192 #define VIRTIO_NET_CTRL_MAC_TABLE_SET        0
193 #define VIRTIO_NET_CTRL_MAC_ADDR_SET         1
194 
195 /**
196  * Control VLAN filtering
197  *
198  * The VLAN filter table is controlled via a simple ADD/DEL interface.
199  * VLAN IDs not added may be filtered by the hypervisor.  Del is the
200  * opposite of add.  Both commands expect an out entry containing a 2
201  * byte VLAN ID.  VLAN filtering is available with the
202  * VIRTIO_NET_F_CTRL_VLAN feature bit.
203  */
204 #define VIRTIO_NET_CTRL_VLAN     2
205 #define VIRTIO_NET_CTRL_VLAN_ADD 0
206 #define VIRTIO_NET_CTRL_VLAN_DEL 1
207 
208 /*
209  * Control link announce acknowledgement
210  *
211  * The command VIRTIO_NET_CTRL_ANNOUNCE_ACK is used to indicate that
212  * driver has recevied the notification; device would clear the
213  * VIRTIO_NET_S_ANNOUNCE bit in the status field after it receives
214  * this command.
215  */
216 #define VIRTIO_NET_CTRL_ANNOUNCE     3
217 #define VIRTIO_NET_CTRL_ANNOUNCE_ACK 0
218 
219 struct virtio_net_ctrl_hdr {
220 	uint8_t class;
221 	uint8_t cmd;
222 } __rte_packed;
223 
224 typedef uint8_t virtio_net_ctrl_ack;
225 
226 #define VIRTIO_NET_OK     0
227 #define VIRTIO_NET_ERR    1
228 
229 #define VIRTIO_MAX_CTRL_DATA 2048
230 
231 struct virtio_pmd_ctrl {
232 	struct virtio_net_ctrl_hdr hdr;
233 	virtio_net_ctrl_ack status;
234 	uint8_t data[VIRTIO_MAX_CTRL_DATA];
235 };
236 
237 struct vq_desc_extra {
238 	void *cookie;
239 	uint16_t ndescs;
240 	uint16_t next;
241 };
242 
243 struct virtqueue {
244 	struct virtio_hw  *hw; /**< virtio_hw structure pointer. */
245 	union {
246 		struct {
247 			/**< vring keeping desc, used and avail */
248 			struct vring ring;
249 		} vq_split;
250 
251 		struct {
252 			/**< vring keeping descs and events */
253 			struct vring_packed ring;
254 			bool used_wrap_counter;
255 			uint16_t cached_flags; /**< cached flags for descs */
256 			uint16_t event_flags_shadow;
257 		} vq_packed;
258 	};
259 
260 	uint16_t vq_used_cons_idx; /**< last consumed descriptor */
261 	uint16_t vq_nentries;  /**< vring desc numbers */
262 	uint16_t vq_free_cnt;  /**< num of desc available */
263 	uint16_t vq_avail_idx; /**< sync until needed */
264 	uint16_t vq_free_thresh; /**< free threshold */
265 
266 	void *vq_ring_virt_mem;  /**< linear address of vring*/
267 	unsigned int vq_ring_size;
268 
269 	union {
270 		struct virtnet_rx rxq;
271 		struct virtnet_tx txq;
272 		struct virtnet_ctl cq;
273 	};
274 
275 	rte_iova_t vq_ring_mem; /**< physical address of vring,
276 	                         * or virtual address for virtio_user. */
277 
278 	/**
279 	 * Head of the free chain in the descriptor table. If
280 	 * there are no free descriptors, this will be set to
281 	 * VQ_RING_DESC_CHAIN_END.
282 	 */
283 	uint16_t  vq_desc_head_idx;
284 	uint16_t  vq_desc_tail_idx;
285 	uint16_t  vq_queue_index;   /**< PCI queue index */
286 	uint16_t offset; /**< relative offset to obtain addr in mbuf */
287 	uint16_t  *notify_addr;
288 	struct rte_mbuf **sw_ring;  /**< RX software ring. */
289 	struct vq_desc_extra vq_descx[0];
290 };
291 
292 /* If multiqueue is provided by host, then we suppport it. */
293 #define VIRTIO_NET_CTRL_MQ   4
294 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET        0
295 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN        1
296 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX        0x8000
297 
298 /**
299  * This is the first element of the scatter-gather list.  If you don't
300  * specify GSO or CSUM features, you can simply ignore the header.
301  */
302 struct virtio_net_hdr {
303 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1    /**< Use csum_start,csum_offset*/
304 #define VIRTIO_NET_HDR_F_DATA_VALID 2    /**< Checksum is valid */
305 	uint8_t flags;
306 #define VIRTIO_NET_HDR_GSO_NONE     0    /**< Not a GSO frame */
307 #define VIRTIO_NET_HDR_GSO_TCPV4    1    /**< GSO frame, IPv4 TCP (TSO) */
308 #define VIRTIO_NET_HDR_GSO_UDP      3    /**< GSO frame, IPv4 UDP (UFO) */
309 #define VIRTIO_NET_HDR_GSO_TCPV6    4    /**< GSO frame, IPv6 TCP */
310 #define VIRTIO_NET_HDR_GSO_ECN      0x80 /**< TCP has ECN set */
311 	uint8_t gso_type;
312 	uint16_t hdr_len;     /**< Ethernet + IP + tcp/udp hdrs */
313 	uint16_t gso_size;    /**< Bytes to append to hdr_len per frame */
314 	uint16_t csum_start;  /**< Position to start checksumming from */
315 	uint16_t csum_offset; /**< Offset after that to place checksum */
316 };
317 
318 /**
319  * This is the version of the header to use when the MRG_RXBUF
320  * feature has been negotiated.
321  */
322 struct virtio_net_hdr_mrg_rxbuf {
323 	struct   virtio_net_hdr hdr;
324 	uint16_t num_buffers; /**< Number of merged rx buffers */
325 };
326 
327 /* Region reserved to allow for transmit header and indirect ring */
328 #define VIRTIO_MAX_TX_INDIRECT 8
329 struct virtio_tx_region {
330 	struct virtio_net_hdr_mrg_rxbuf tx_hdr;
331 	union {
332 		struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT];
333 		struct vring_packed_desc
334 			tx_packed_indir[VIRTIO_MAX_TX_INDIRECT];
335 	} __rte_aligned(16);
336 };
337 
338 static inline int
339 desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq)
340 {
341 	uint16_t used, avail, flags;
342 
343 	flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers);
344 	used = !!(flags & VRING_PACKED_DESC_F_USED);
345 	avail = !!(flags & VRING_PACKED_DESC_F_AVAIL);
346 
347 	return avail == used && used == vq->vq_packed.used_wrap_counter;
348 }
349 
350 static inline void
351 vring_desc_init_packed(struct virtqueue *vq, int n)
352 {
353 	int i;
354 	for (i = 0; i < n - 1; i++) {
355 		vq->vq_packed.ring.desc[i].id = i;
356 		vq->vq_descx[i].next = i + 1;
357 	}
358 	vq->vq_packed.ring.desc[i].id = i;
359 	vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END;
360 }
361 
362 /* Chain all the descriptors in the ring with an END */
363 static inline void
364 vring_desc_init_split(struct vring_desc *dp, uint16_t n)
365 {
366 	uint16_t i;
367 
368 	for (i = 0; i < n - 1; i++)
369 		dp[i].next = (uint16_t)(i + 1);
370 	dp[i].next = VQ_RING_DESC_CHAIN_END;
371 }
372 
373 static inline void
374 vring_desc_init_indirect_packed(struct vring_packed_desc *dp, int n)
375 {
376 	int i;
377 	for (i = 0; i < n; i++) {
378 		dp[i].id = (uint16_t)i;
379 		dp[i].flags = VRING_DESC_F_WRITE;
380 	}
381 }
382 
383 /**
384  * Tell the backend not to interrupt us. Implementation for packed virtqueues.
385  */
386 static inline void
387 virtqueue_disable_intr_packed(struct virtqueue *vq)
388 {
389 	if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) {
390 		vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE;
391 		vq->vq_packed.ring.driver->desc_event_flags =
392 			vq->vq_packed.event_flags_shadow;
393 	}
394 }
395 
396 /**
397  * Tell the backend not to interrupt us. Implementation for split virtqueues.
398  */
399 static inline void
400 virtqueue_disable_intr_split(struct virtqueue *vq)
401 {
402 	vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT;
403 }
404 
405 /**
406  * Tell the backend not to interrupt us.
407  */
408 static inline void
409 virtqueue_disable_intr(struct virtqueue *vq)
410 {
411 	if (vtpci_packed_queue(vq->hw))
412 		virtqueue_disable_intr_packed(vq);
413 	else
414 		virtqueue_disable_intr_split(vq);
415 }
416 
417 /**
418  * Tell the backend to interrupt. Implementation for packed virtqueues.
419  */
420 static inline void
421 virtqueue_enable_intr_packed(struct virtqueue *vq)
422 {
423 	if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) {
424 		vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE;
425 		vq->vq_packed.ring.driver->desc_event_flags =
426 			vq->vq_packed.event_flags_shadow;
427 	}
428 }
429 
430 /**
431  * Tell the backend to interrupt. Implementation for split virtqueues.
432  */
433 static inline void
434 virtqueue_enable_intr_split(struct virtqueue *vq)
435 {
436 	vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT);
437 }
438 
439 /**
440  * Tell the backend to interrupt us.
441  */
442 static inline void
443 virtqueue_enable_intr(struct virtqueue *vq)
444 {
445 	if (vtpci_packed_queue(vq->hw))
446 		virtqueue_enable_intr_packed(vq);
447 	else
448 		virtqueue_enable_intr_split(vq);
449 }
450 
451 /**
452  *  Dump virtqueue internal structures, for debug purpose only.
453  */
454 void virtqueue_dump(struct virtqueue *vq);
455 /**
456  *  Get all mbufs to be freed.
457  */
458 struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq);
459 
460 /* Flush the elements in the used ring. */
461 void virtqueue_rxvq_flush(struct virtqueue *vq);
462 
463 int virtqueue_rxvq_reset_packed(struct virtqueue *vq);
464 
465 int virtqueue_txvq_reset_packed(struct virtqueue *vq);
466 
467 static inline int
468 virtqueue_full(const struct virtqueue *vq)
469 {
470 	return vq->vq_free_cnt == 0;
471 }
472 
473 static inline int
474 virtio_get_queue_type(struct virtio_hw *hw, uint16_t vtpci_queue_idx)
475 {
476 	if (vtpci_queue_idx == hw->max_queue_pairs * 2)
477 		return VTNET_CQ;
478 	else if (vtpci_queue_idx % 2 == 0)
479 		return VTNET_RQ;
480 	else
481 		return VTNET_TQ;
482 }
483 
484 /* virtqueue_nused has load-acquire or rte_io_rmb insed */
485 static inline uint16_t
486 virtqueue_nused(const struct virtqueue *vq)
487 {
488 	uint16_t idx;
489 
490 	if (vq->hw->weak_barriers) {
491 	/**
492 	 * x86 prefers to using rte_smp_rmb over __atomic_load_n as it
493 	 * reports a slightly better perf, which comes from the saved
494 	 * branch by the compiler.
495 	 * The if and else branches are identical with the smp and io
496 	 * barriers both defined as compiler barriers on x86.
497 	 */
498 #ifdef RTE_ARCH_X86_64
499 		idx = vq->vq_split.ring.used->idx;
500 		rte_smp_rmb();
501 #else
502 		idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx,
503 				__ATOMIC_ACQUIRE);
504 #endif
505 	} else {
506 		idx = vq->vq_split.ring.used->idx;
507 		rte_io_rmb();
508 	}
509 	return idx - vq->vq_used_cons_idx;
510 }
511 
512 void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx);
513 void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx);
514 void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx,
515 			  uint16_t num);
516 
517 static inline void
518 vq_update_avail_idx(struct virtqueue *vq)
519 {
520 	if (vq->hw->weak_barriers) {
521 	/* x86 prefers to using rte_smp_wmb over __atomic_store_n as
522 	 * it reports a slightly better perf, which comes from the
523 	 * saved branch by the compiler.
524 	 * The if and else branches are identical with the smp and
525 	 * io barriers both defined as compiler barriers on x86.
526 	 */
527 #ifdef RTE_ARCH_X86_64
528 		rte_smp_wmb();
529 		vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
530 #else
531 		__atomic_store_n(&vq->vq_split.ring.avail->idx,
532 				 vq->vq_avail_idx, __ATOMIC_RELEASE);
533 #endif
534 	} else {
535 		rte_io_wmb();
536 		vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
537 	}
538 }
539 
540 static inline void
541 vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx)
542 {
543 	uint16_t avail_idx;
544 	/*
545 	 * Place the head of the descriptor chain into the next slot and make
546 	 * it usable to the host. The chain is made available now rather than
547 	 * deferring to virtqueue_notify() in the hopes that if the host is
548 	 * currently running on another CPU, we can keep it processing the new
549 	 * descriptor.
550 	 */
551 	avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1));
552 	if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx))
553 		vq->vq_split.ring.avail->ring[avail_idx] = desc_idx;
554 	vq->vq_avail_idx++;
555 }
556 
557 static inline int
558 virtqueue_kick_prepare(struct virtqueue *vq)
559 {
560 	/*
561 	 * Ensure updated avail->idx is visible to vhost before reading
562 	 * the used->flags.
563 	 */
564 	virtio_mb(vq->hw->weak_barriers);
565 	return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY);
566 }
567 
568 static inline int
569 virtqueue_kick_prepare_packed(struct virtqueue *vq)
570 {
571 	uint16_t flags;
572 
573 	/*
574 	 * Ensure updated data is visible to vhost before reading the flags.
575 	 */
576 	virtio_mb(vq->hw->weak_barriers);
577 	flags = vq->vq_packed.ring.device->desc_event_flags;
578 
579 	return flags != RING_EVENT_FLAGS_DISABLE;
580 }
581 
582 /*
583  * virtqueue_kick_prepare*() or the virtio_wmb() should be called
584  * before this function to be sure that all the data is visible to vhost.
585  */
586 static inline void
587 virtqueue_notify(struct virtqueue *vq)
588 {
589 	VTPCI_OPS(vq->hw)->notify_queue(vq->hw, vq);
590 }
591 
592 #ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP
593 #define VIRTQUEUE_DUMP(vq) do { \
594 	uint16_t used_idx, nused; \
595 	used_idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx, \
596 				   __ATOMIC_RELAXED); \
597 	nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \
598 	if (vtpci_packed_queue((vq)->hw)) { \
599 		PMD_INIT_LOG(DEBUG, \
600 		"VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \
601 		" cached_flags=0x%x; used_wrap_counter=%d", \
602 		(vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \
603 		(vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \
604 		(vq)->vq_packed.used_wrap_counter); \
605 		break; \
606 	} \
607 	PMD_INIT_LOG(DEBUG, \
608 	  "VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \
609 	  " avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \
610 	  " avail.flags=0x%x; used.flags=0x%x", \
611 	  (vq)->vq_nentries, (vq)->vq_free_cnt, nused, (vq)->vq_desc_head_idx, \
612 	  (vq)->vq_split.ring.avail->idx, (vq)->vq_used_cons_idx, \
613 	  __atomic_load_n(&(vq)->vq_split.ring.used->idx, __ATOMIC_RELAXED), \
614 	  (vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \
615 } while (0)
616 #else
617 #define VIRTQUEUE_DUMP(vq) do { } while (0)
618 #endif
619 
620 /* avoid write operation when necessary, to lessen cache issues */
621 #define ASSIGN_UNLESS_EQUAL(var, val) do {	\
622 	typeof(var) *const var_ = &(var);	\
623 	typeof(val)  const val_ = (val);	\
624 	if (*var_ != val_)			\
625 		*var_ = val_;			\
626 } while (0)
627 
628 #define virtqueue_clear_net_hdr(hdr) do {		\
629 	typeof(hdr) hdr_ = (hdr);			\
630 	ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0);	\
631 	ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0);	\
632 	ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0);		\
633 	ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0);	\
634 	ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0);	\
635 	ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0);	\
636 } while (0)
637 
638 static inline void
639 virtqueue_xmit_offload(struct virtio_net_hdr *hdr,
640 			struct rte_mbuf *cookie,
641 			bool offload)
642 {
643 	if (offload) {
644 		if (cookie->ol_flags & PKT_TX_TCP_SEG)
645 			cookie->ol_flags |= PKT_TX_TCP_CKSUM;
646 
647 		switch (cookie->ol_flags & PKT_TX_L4_MASK) {
648 		case PKT_TX_UDP_CKSUM:
649 			hdr->csum_start = cookie->l2_len + cookie->l3_len;
650 			hdr->csum_offset = offsetof(struct rte_udp_hdr,
651 				dgram_cksum);
652 			hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
653 			break;
654 
655 		case PKT_TX_TCP_CKSUM:
656 			hdr->csum_start = cookie->l2_len + cookie->l3_len;
657 			hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum);
658 			hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
659 			break;
660 
661 		default:
662 			ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0);
663 			ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0);
664 			ASSIGN_UNLESS_EQUAL(hdr->flags, 0);
665 			break;
666 		}
667 
668 		/* TCP Segmentation Offload */
669 		if (cookie->ol_flags & PKT_TX_TCP_SEG) {
670 			hdr->gso_type = (cookie->ol_flags & PKT_TX_IPV6) ?
671 				VIRTIO_NET_HDR_GSO_TCPV6 :
672 				VIRTIO_NET_HDR_GSO_TCPV4;
673 			hdr->gso_size = cookie->tso_segsz;
674 			hdr->hdr_len =
675 				cookie->l2_len +
676 				cookie->l3_len +
677 				cookie->l4_len;
678 		} else {
679 			ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0);
680 			ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0);
681 			ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0);
682 		}
683 	}
684 }
685 
686 static inline void
687 virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie,
688 			      uint16_t needed, int use_indirect, int can_push,
689 			      int in_order)
690 {
691 	struct virtio_tx_region *txr = txvq->virtio_net_hdr_mz->addr;
692 	struct vq_desc_extra *dxp;
693 	struct virtqueue *vq = txvq->vq;
694 	struct vring_packed_desc *start_dp, *head_dp;
695 	uint16_t idx, id, head_idx, head_flags;
696 	int16_t head_size = vq->hw->vtnet_hdr_size;
697 	struct virtio_net_hdr *hdr;
698 	uint16_t prev;
699 	bool prepend_header = false;
700 	uint16_t seg_num = cookie->nb_segs;
701 
702 	id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx;
703 
704 	dxp = &vq->vq_descx[id];
705 	dxp->ndescs = needed;
706 	dxp->cookie = cookie;
707 
708 	head_idx = vq->vq_avail_idx;
709 	idx = head_idx;
710 	prev = head_idx;
711 	start_dp = vq->vq_packed.ring.desc;
712 
713 	head_dp = &vq->vq_packed.ring.desc[idx];
714 	head_flags = cookie->next ? VRING_DESC_F_NEXT : 0;
715 	head_flags |= vq->vq_packed.cached_flags;
716 
717 	if (can_push) {
718 		/* prepend cannot fail, checked by caller */
719 		hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
720 					      -head_size);
721 		prepend_header = true;
722 
723 		/* if offload disabled, it is not zeroed below, do it now */
724 		if (!vq->hw->has_tx_offload)
725 			virtqueue_clear_net_hdr(hdr);
726 	} else if (use_indirect) {
727 		/* setup tx ring slot to point to indirect
728 		 * descriptor list stored in reserved region.
729 		 *
730 		 * the first slot in indirect ring is already preset
731 		 * to point to the header in reserved region
732 		 */
733 		start_dp[idx].addr  = txvq->virtio_net_hdr_mem +
734 			RTE_PTR_DIFF(&txr[idx].tx_packed_indir, txr);
735 		start_dp[idx].len   = (seg_num + 1) *
736 			sizeof(struct vring_packed_desc);
737 		/* reset flags for indirect desc */
738 		head_flags = VRING_DESC_F_INDIRECT;
739 		head_flags |= vq->vq_packed.cached_flags;
740 		hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
741 
742 		/* loop below will fill in rest of the indirect elements */
743 		start_dp = txr[idx].tx_packed_indir;
744 		idx = 1;
745 	} else {
746 		/* setup first tx ring slot to point to header
747 		 * stored in reserved region.
748 		 */
749 		start_dp[idx].addr  = txvq->virtio_net_hdr_mem +
750 			RTE_PTR_DIFF(&txr[idx].tx_hdr, txr);
751 		start_dp[idx].len   = vq->hw->vtnet_hdr_size;
752 		hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
753 		idx++;
754 		if (idx >= vq->vq_nentries) {
755 			idx -= vq->vq_nentries;
756 			vq->vq_packed.cached_flags ^=
757 				VRING_PACKED_DESC_F_AVAIL_USED;
758 		}
759 	}
760 
761 	virtqueue_xmit_offload(hdr, cookie, vq->hw->has_tx_offload);
762 
763 	do {
764 		uint16_t flags;
765 
766 		start_dp[idx].addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq);
767 		start_dp[idx].len  = cookie->data_len;
768 		if (prepend_header) {
769 			start_dp[idx].addr -= head_size;
770 			start_dp[idx].len += head_size;
771 			prepend_header = false;
772 		}
773 
774 		if (likely(idx != head_idx)) {
775 			flags = cookie->next ? VRING_DESC_F_NEXT : 0;
776 			flags |= vq->vq_packed.cached_flags;
777 			start_dp[idx].flags = flags;
778 		}
779 		prev = idx;
780 		idx++;
781 		if (idx >= vq->vq_nentries) {
782 			idx -= vq->vq_nentries;
783 			vq->vq_packed.cached_flags ^=
784 				VRING_PACKED_DESC_F_AVAIL_USED;
785 		}
786 	} while ((cookie = cookie->next) != NULL);
787 
788 	start_dp[prev].id = id;
789 
790 	if (use_indirect) {
791 		idx = head_idx;
792 		if (++idx >= vq->vq_nentries) {
793 			idx -= vq->vq_nentries;
794 			vq->vq_packed.cached_flags ^=
795 				VRING_PACKED_DESC_F_AVAIL_USED;
796 		}
797 	}
798 
799 	vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed);
800 	vq->vq_avail_idx = idx;
801 
802 	if (!in_order) {
803 		vq->vq_desc_head_idx = dxp->next;
804 		if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
805 			vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END;
806 	}
807 
808 	virtqueue_store_flags_packed(head_dp, head_flags,
809 				     vq->hw->weak_barriers);
810 }
811 
812 static void
813 vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id)
814 {
815 	struct vq_desc_extra *dxp;
816 
817 	dxp = &vq->vq_descx[id];
818 	vq->vq_free_cnt += dxp->ndescs;
819 
820 	if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END)
821 		vq->vq_desc_head_idx = id;
822 	else
823 		vq->vq_descx[vq->vq_desc_tail_idx].next = id;
824 
825 	vq->vq_desc_tail_idx = id;
826 	dxp->next = VQ_RING_DESC_CHAIN_END;
827 }
828 
829 static void
830 virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, int num)
831 {
832 	uint16_t used_idx, id, curr_id, free_cnt = 0;
833 	uint16_t size = vq->vq_nentries;
834 	struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
835 	struct vq_desc_extra *dxp;
836 
837 	used_idx = vq->vq_used_cons_idx;
838 	/* desc_is_used has a load-acquire or rte_io_rmb inside
839 	 * and wait for used desc in virtqueue.
840 	 */
841 	while (num > 0 && desc_is_used(&desc[used_idx], vq)) {
842 		id = desc[used_idx].id;
843 		do {
844 			curr_id = used_idx;
845 			dxp = &vq->vq_descx[used_idx];
846 			used_idx += dxp->ndescs;
847 			free_cnt += dxp->ndescs;
848 			num -= dxp->ndescs;
849 			if (used_idx >= size) {
850 				used_idx -= size;
851 				vq->vq_packed.used_wrap_counter ^= 1;
852 			}
853 			if (dxp->cookie != NULL) {
854 				rte_pktmbuf_free(dxp->cookie);
855 				dxp->cookie = NULL;
856 			}
857 		} while (curr_id != id);
858 	}
859 	vq->vq_used_cons_idx = used_idx;
860 	vq->vq_free_cnt += free_cnt;
861 }
862 
863 static void
864 virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, int num)
865 {
866 	uint16_t used_idx, id;
867 	uint16_t size = vq->vq_nentries;
868 	struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
869 	struct vq_desc_extra *dxp;
870 
871 	used_idx = vq->vq_used_cons_idx;
872 	/* desc_is_used has a load-acquire or rte_io_rmb inside
873 	 * and wait for used desc in virtqueue.
874 	 */
875 	while (num-- && desc_is_used(&desc[used_idx], vq)) {
876 		id = desc[used_idx].id;
877 		dxp = &vq->vq_descx[id];
878 		vq->vq_used_cons_idx += dxp->ndescs;
879 		if (vq->vq_used_cons_idx >= size) {
880 			vq->vq_used_cons_idx -= size;
881 			vq->vq_packed.used_wrap_counter ^= 1;
882 		}
883 		vq_ring_free_id_packed(vq, id);
884 		if (dxp->cookie != NULL) {
885 			rte_pktmbuf_free(dxp->cookie);
886 			dxp->cookie = NULL;
887 		}
888 		used_idx = vq->vq_used_cons_idx;
889 	}
890 }
891 
892 /* Cleanup from completed transmits. */
893 static inline void
894 virtio_xmit_cleanup_packed(struct virtqueue *vq, int num, int in_order)
895 {
896 	if (in_order)
897 		virtio_xmit_cleanup_inorder_packed(vq, num);
898 	else
899 		virtio_xmit_cleanup_normal_packed(vq, num);
900 }
901 
902 static inline void
903 virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num)
904 {
905 	uint16_t i, used_idx, desc_idx;
906 	for (i = 0; i < num; i++) {
907 		struct vring_used_elem *uep;
908 		struct vq_desc_extra *dxp;
909 
910 		used_idx = (uint16_t)(vq->vq_used_cons_idx &
911 				(vq->vq_nentries - 1));
912 		uep = &vq->vq_split.ring.used->ring[used_idx];
913 
914 		desc_idx = (uint16_t)uep->id;
915 		dxp = &vq->vq_descx[desc_idx];
916 		vq->vq_used_cons_idx++;
917 		vq_ring_free_chain(vq, desc_idx);
918 
919 		if (dxp->cookie != NULL) {
920 			rte_pktmbuf_free(dxp->cookie);
921 			dxp->cookie = NULL;
922 		}
923 	}
924 }
925 
926 /* Cleanup from completed inorder transmits. */
927 static __rte_always_inline void
928 virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num)
929 {
930 	uint16_t i, idx = vq->vq_used_cons_idx;
931 	int16_t free_cnt = 0;
932 	struct vq_desc_extra *dxp = NULL;
933 
934 	if (unlikely(num == 0))
935 		return;
936 
937 	for (i = 0; i < num; i++) {
938 		dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)];
939 		free_cnt += dxp->ndescs;
940 		if (dxp->cookie != NULL) {
941 			rte_pktmbuf_free(dxp->cookie);
942 			dxp->cookie = NULL;
943 		}
944 	}
945 
946 	vq->vq_free_cnt += free_cnt;
947 	vq->vq_used_cons_idx = idx;
948 }
949 #endif /* _VIRTQUEUE_H_ */
950