1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #ifndef _VIRTQUEUE_H_
6 #define _VIRTQUEUE_H_
7
8 #include <stdint.h>
9
10 #include <rte_atomic.h>
11 #include <rte_memory.h>
12 #include <rte_mempool.h>
13 #include <rte_net.h>
14
15 #include "virtio.h"
16 #include "virtio_ring.h"
17 #include "virtio_logs.h"
18 #include "virtio_rxtx.h"
19 #include "virtio_cvq.h"
20
21 struct rte_mbuf;
22
23 #define DEFAULT_TX_FREE_THRESH 32
24 #define DEFAULT_RX_FREE_THRESH 32
25
26 #define VIRTIO_MBUF_BURST_SZ 64
27 /*
28 * Per virtio_ring.h in Linux.
29 * For virtio_pci on SMP, we don't need to order with respect to MMIO
30 * accesses through relaxed memory I/O windows, so thread_fence is
31 * sufficient.
32 *
33 * For using virtio to talk to real devices (eg. vDPA) we do need real
34 * barriers.
35 */
36 static inline void
virtio_mb(uint8_t weak_barriers)37 virtio_mb(uint8_t weak_barriers)
38 {
39 if (weak_barriers)
40 rte_atomic_thread_fence(rte_memory_order_seq_cst);
41 else
42 rte_mb();
43 }
44
45 static inline void
virtio_rmb(uint8_t weak_barriers)46 virtio_rmb(uint8_t weak_barriers)
47 {
48 if (weak_barriers)
49 rte_atomic_thread_fence(rte_memory_order_acquire);
50 else
51 rte_io_rmb();
52 }
53
54 static inline void
virtio_wmb(uint8_t weak_barriers)55 virtio_wmb(uint8_t weak_barriers)
56 {
57 if (weak_barriers)
58 rte_atomic_thread_fence(rte_memory_order_release);
59 else
60 rte_io_wmb();
61 }
62
63 static inline uint16_t
virtqueue_fetch_flags_packed(struct vring_packed_desc * dp,uint8_t weak_barriers)64 virtqueue_fetch_flags_packed(struct vring_packed_desc *dp,
65 uint8_t weak_barriers)
66 {
67 uint16_t flags;
68
69 if (weak_barriers) {
70 /* x86 prefers to using rte_io_rmb over rte_atomic_load_explicit as it reports
71 * a better perf(~1.5%), which comes from the saved branch by the compiler.
72 * The if and else branch are identical on the platforms except Arm.
73 */
74 #ifdef RTE_ARCH_ARM
75 flags = rte_atomic_load_explicit(&dp->flags, rte_memory_order_acquire);
76 #else
77 flags = dp->flags;
78 rte_io_rmb();
79 #endif
80 } else {
81 flags = dp->flags;
82 rte_io_rmb();
83 }
84
85 return flags;
86 }
87
88 static inline void
virtqueue_store_flags_packed(struct vring_packed_desc * dp,uint16_t flags,uint8_t weak_barriers)89 virtqueue_store_flags_packed(struct vring_packed_desc *dp,
90 uint16_t flags, uint8_t weak_barriers)
91 {
92 if (weak_barriers) {
93 /* x86 prefers to using rte_io_wmb over rte_atomic_store_explicit as it reports
94 * a better perf(~1.5%), which comes from the saved branch by the compiler.
95 * The if and else branch are identical on the platforms except Arm.
96 */
97 #ifdef RTE_ARCH_ARM
98 rte_atomic_store_explicit(&dp->flags, flags, rte_memory_order_release);
99 #else
100 rte_io_wmb();
101 dp->flags = flags;
102 #endif
103 } else {
104 rte_io_wmb();
105 dp->flags = flags;
106 }
107 }
108
109 #ifdef RTE_PMD_PACKET_PREFETCH
110 #define rte_packet_prefetch(p) rte_prefetch1(p)
111 #else
112 #define rte_packet_prefetch(p) do {} while(0)
113 #endif
114
115 #define VIRTQUEUE_MAX_NAME_SZ 32
116
117 #ifdef RTE_ARCH_32
118 #define VIRTIO_MBUF_ADDR_MASK(vq) ((vq)->mbuf_addr_mask)
119 #else
120 #define VIRTIO_MBUF_ADDR_MASK(vq) UINT64_MAX
121 #endif
122
123 /**
124 * Return the IOVA (or virtual address in case of virtio-user) of mbuf
125 * data buffer.
126 *
127 * The address is firstly casted to the word size (sizeof(uintptr_t))
128 * before casting it to uint64_t. It is then masked with the expected
129 * address length (64 bits for virtio-pci, word size for virtio-user).
130 *
131 * This is to make it work with different combination of word size (64
132 * bit and 32 bit) and virtio device (virtio-pci and virtio-user).
133 */
134 #define VIRTIO_MBUF_ADDR(mb, vq) \
135 ((*(uint64_t *)((uintptr_t)(mb) + (vq)->mbuf_addr_offset)) & \
136 VIRTIO_MBUF_ADDR_MASK(vq))
137
138 /**
139 * Return the physical address (or virtual address in case of
140 * virtio-user) of mbuf data buffer, taking care of mbuf data offset
141 */
142 #define VIRTIO_MBUF_DATA_DMA_ADDR(mb, vq) \
143 (VIRTIO_MBUF_ADDR(mb, vq) + (mb)->data_off)
144
145 #define VTNET_SQ_RQ_QUEUE_IDX 0
146 #define VTNET_SQ_TQ_QUEUE_IDX 1
147 #define VTNET_SQ_CQ_QUEUE_IDX 2
148
149 enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 };
150 /**
151 * The maximum virtqueue size is 2^15. Use that value as the end of
152 * descriptor chain terminator since it will never be a valid index
153 * in the descriptor table. This is used to verify we are correctly
154 * handling vq_free_cnt.
155 */
156 #define VQ_RING_DESC_CHAIN_END 32768
157
158 #define VIRTIO_NET_OK 0
159 #define VIRTIO_NET_ERR 1
160
161 struct vq_desc_extra {
162 void *cookie;
163 uint16_t ndescs;
164 uint16_t next;
165 };
166
167 #define virtnet_rxq_to_vq(rxvq) container_of(rxvq, struct virtqueue, rxq)
168 #define virtnet_txq_to_vq(txvq) container_of(txvq, struct virtqueue, txq)
169 #define virtnet_cq_to_vq(cvq) container_of(cvq, struct virtqueue, cq)
170
171 struct virtqueue {
172 struct virtio_hw *hw; /**< virtio_hw structure pointer. */
173 union {
174 struct {
175 /**< vring keeping desc, used and avail */
176 struct vring ring;
177 } vq_split;
178
179 struct {
180 /**< vring keeping descs and events */
181 struct vring_packed ring;
182 bool used_wrap_counter;
183 uint16_t cached_flags; /**< cached flags for descs */
184 uint16_t event_flags_shadow;
185 } vq_packed;
186 };
187
188 uint16_t vq_used_cons_idx; /**< last consumed descriptor */
189 uint16_t vq_nentries; /**< vring desc numbers */
190 uint16_t vq_free_cnt; /**< num of desc available */
191 uint16_t vq_avail_idx; /**< sync until needed */
192 uint16_t vq_free_thresh; /**< free threshold */
193
194 /**
195 * Head of the free chain in the descriptor table. If
196 * there are no free descriptors, this will be set to
197 * VQ_RING_DESC_CHAIN_END.
198 */
199 uint16_t vq_desc_head_idx;
200 uint16_t vq_desc_tail_idx;
201 uint16_t vq_queue_index; /**< PCI queue index */
202
203 void *vq_ring_virt_mem; /**< linear address of vring*/
204 unsigned int vq_ring_size;
205 uint16_t mbuf_addr_offset;
206 uint64_t mbuf_addr_mask;
207
208 union {
209 struct virtnet_rx rxq;
210 struct virtnet_tx txq;
211 struct virtnet_ctl cq;
212 };
213
214 const struct rte_memzone *mz; /**< mem zone to populate ring. */
215 rte_iova_t vq_ring_mem; /**< physical address of vring,
216 * or virtual address for virtio_user. */
217
218 uint16_t *notify_addr;
219 struct vq_desc_extra vq_descx[];
220 };
221
222 /* If multiqueue is provided by host, then we support it. */
223 #define VIRTIO_NET_CTRL_MQ 4
224
225 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET 0
226 #define VIRTIO_NET_CTRL_MQ_RSS_CONFIG 1
227
228 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN 1
229 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX 0x8000
230
231 /**
232 * This is the first element of the scatter-gather list. If you don't
233 * specify GSO or CSUM features, you can simply ignore the header.
234 */
235 struct virtio_net_hdr {
236 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /**< Use csum_start,csum_offset*/
237 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /**< Checksum is valid */
238 uint8_t flags;
239 #define VIRTIO_NET_HDR_GSO_NONE 0 /**< Not a GSO frame */
240 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /**< GSO frame, IPv4 TCP (TSO) */
241 #define VIRTIO_NET_HDR_GSO_UDP 3 /**< GSO frame, IPv4 UDP (UFO) */
242 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /**< GSO frame, IPv6 TCP */
243 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /**< TCP has ECN set */
244 uint8_t gso_type;
245 uint16_t hdr_len; /**< Ethernet + IP + tcp/udp hdrs */
246 uint16_t gso_size; /**< Bytes to append to hdr_len per frame */
247 uint16_t csum_start; /**< Position to start checksumming from */
248 uint16_t csum_offset; /**< Offset after that to place checksum */
249 };
250
251 /**
252 * This is the version of the header to use when the MRG_RXBUF
253 * feature has been negotiated.
254 */
255 struct virtio_net_hdr_mrg_rxbuf {
256 struct virtio_net_hdr hdr;
257 uint16_t num_buffers; /**< Number of merged rx buffers */
258 };
259
260 /* Region reserved to allow for transmit header and indirect ring */
261 #define VIRTIO_MAX_TX_INDIRECT 8
262 struct virtio_tx_region {
263 struct virtio_net_hdr_mrg_rxbuf tx_hdr;
264 union __rte_aligned(16) {
265 struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT];
266 struct vring_packed_desc
267 tx_packed_indir[VIRTIO_MAX_TX_INDIRECT];
268 };
269 };
270
271 static inline int
desc_is_used(struct vring_packed_desc * desc,struct virtqueue * vq)272 desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq)
273 {
274 uint16_t used, avail, flags;
275
276 flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers);
277 used = !!(flags & VRING_PACKED_DESC_F_USED);
278 avail = !!(flags & VRING_PACKED_DESC_F_AVAIL);
279
280 return avail == used && used == vq->vq_packed.used_wrap_counter;
281 }
282
283 static inline void
vring_desc_init_packed(struct virtqueue * vq,int n)284 vring_desc_init_packed(struct virtqueue *vq, int n)
285 {
286 int i;
287 for (i = 0; i < n - 1; i++) {
288 vq->vq_packed.ring.desc[i].id = i;
289 vq->vq_descx[i].next = i + 1;
290 }
291 vq->vq_packed.ring.desc[i].id = i;
292 vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END;
293 }
294
295 /* Chain all the descriptors in the ring with an END */
296 static inline void
vring_desc_init_split(struct vring_desc * dp,uint16_t n)297 vring_desc_init_split(struct vring_desc *dp, uint16_t n)
298 {
299 uint16_t i;
300
301 for (i = 0; i < n - 1; i++)
302 dp[i].next = (uint16_t)(i + 1);
303 dp[i].next = VQ_RING_DESC_CHAIN_END;
304 }
305
306 static inline void
vring_desc_init_indirect_packed(struct vring_packed_desc * dp,int n)307 vring_desc_init_indirect_packed(struct vring_packed_desc *dp, int n)
308 {
309 int i;
310 for (i = 0; i < n; i++) {
311 dp[i].id = (uint16_t)i;
312 dp[i].flags = VRING_DESC_F_WRITE;
313 }
314 }
315
316 /**
317 * Tell the backend not to interrupt us. Implementation for packed virtqueues.
318 */
319 static inline void
virtqueue_disable_intr_packed(struct virtqueue * vq)320 virtqueue_disable_intr_packed(struct virtqueue *vq)
321 {
322 if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) {
323 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE;
324 vq->vq_packed.ring.driver->desc_event_flags =
325 vq->vq_packed.event_flags_shadow;
326 }
327 }
328
329 /**
330 * Tell the backend not to interrupt us. Implementation for split virtqueues.
331 */
332 static inline void
virtqueue_disable_intr_split(struct virtqueue * vq)333 virtqueue_disable_intr_split(struct virtqueue *vq)
334 {
335 vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT;
336 }
337
338 /**
339 * Tell the backend not to interrupt us.
340 */
341 static inline void
virtqueue_disable_intr(struct virtqueue * vq)342 virtqueue_disable_intr(struct virtqueue *vq)
343 {
344 if (virtio_with_packed_queue(vq->hw))
345 virtqueue_disable_intr_packed(vq);
346 else
347 virtqueue_disable_intr_split(vq);
348 }
349
350 /**
351 * Tell the backend to interrupt. Implementation for packed virtqueues.
352 */
353 static inline void
virtqueue_enable_intr_packed(struct virtqueue * vq)354 virtqueue_enable_intr_packed(struct virtqueue *vq)
355 {
356 if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) {
357 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE;
358 vq->vq_packed.ring.driver->desc_event_flags =
359 vq->vq_packed.event_flags_shadow;
360 }
361 }
362
363 /**
364 * Tell the backend to interrupt. Implementation for split virtqueues.
365 */
366 static inline void
virtqueue_enable_intr_split(struct virtqueue * vq)367 virtqueue_enable_intr_split(struct virtqueue *vq)
368 {
369 vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT);
370 }
371
372 /**
373 * Tell the backend to interrupt us.
374 */
375 static inline void
virtqueue_enable_intr(struct virtqueue * vq)376 virtqueue_enable_intr(struct virtqueue *vq)
377 {
378 if (virtio_with_packed_queue(vq->hw))
379 virtqueue_enable_intr_packed(vq);
380 else
381 virtqueue_enable_intr_split(vq);
382 }
383
384 /**
385 * Get all mbufs to be freed.
386 */
387 struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq);
388
389 /* Flush the elements in the used ring. */
390 void virtqueue_rxvq_flush(struct virtqueue *vq);
391
392 int virtqueue_rxvq_reset_packed(struct virtqueue *vq);
393
394 int virtqueue_txvq_reset_packed(struct virtqueue *vq);
395
396 void virtqueue_txq_indirect_headers_init(struct virtqueue *vq);
397
398 struct virtqueue *virtqueue_alloc(struct virtio_hw *hw, uint16_t index,
399 uint16_t num, int type, int node, const char *name);
400
401 void virtqueue_free(struct virtqueue *vq);
402
403 static inline int
virtqueue_full(const struct virtqueue * vq)404 virtqueue_full(const struct virtqueue *vq)
405 {
406 return vq->vq_free_cnt == 0;
407 }
408
409 static inline int
virtio_get_queue_type(struct virtio_hw * hw,uint16_t vq_idx)410 virtio_get_queue_type(struct virtio_hw *hw, uint16_t vq_idx)
411 {
412 if (vq_idx == hw->max_queue_pairs * 2)
413 return VTNET_CQ;
414 else if (vq_idx % 2 == 0)
415 return VTNET_RQ;
416 else
417 return VTNET_TQ;
418 }
419
420 /* virtqueue_nused has load-acquire or rte_io_rmb insed */
421 static inline uint16_t
virtqueue_nused(const struct virtqueue * vq)422 virtqueue_nused(const struct virtqueue *vq)
423 {
424 uint16_t idx;
425
426 if (vq->hw->weak_barriers) {
427 /**
428 * x86 prefers to using rte_smp_rmb over rte_atomic_load_explicit as it
429 * reports a slightly better perf, which comes from the saved
430 * branch by the compiler.
431 * The if and else branches are identical with the smp and io
432 * barriers both defined as compiler barriers on x86.
433 */
434 #ifdef RTE_ARCH_X86_64
435 idx = vq->vq_split.ring.used->idx;
436 rte_smp_rmb();
437 #else
438 idx = rte_atomic_load_explicit(&(vq)->vq_split.ring.used->idx,
439 rte_memory_order_acquire);
440 #endif
441 } else {
442 idx = vq->vq_split.ring.used->idx;
443 rte_io_rmb();
444 }
445 return idx - vq->vq_used_cons_idx;
446 }
447
448 void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx);
449 void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx);
450 void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx,
451 uint16_t num);
452
453 static inline void
vq_update_avail_idx(struct virtqueue * vq)454 vq_update_avail_idx(struct virtqueue *vq)
455 {
456 if (vq->hw->weak_barriers) {
457 /* x86 prefers to using rte_smp_wmb over rte_atomic_store_explicit as
458 * it reports a slightly better perf, which comes from the
459 * saved branch by the compiler.
460 * The if and else branches are identical with the smp and
461 * io barriers both defined as compiler barriers on x86.
462 */
463 #ifdef RTE_ARCH_X86_64
464 rte_smp_wmb();
465 vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
466 #else
467 rte_atomic_store_explicit(&vq->vq_split.ring.avail->idx,
468 vq->vq_avail_idx, rte_memory_order_release);
469 #endif
470 } else {
471 rte_io_wmb();
472 vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
473 }
474 }
475
476 static inline void
vq_update_avail_ring(struct virtqueue * vq,uint16_t desc_idx)477 vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx)
478 {
479 uint16_t avail_idx;
480 /*
481 * Place the head of the descriptor chain into the next slot and make
482 * it usable to the host. The chain is made available now rather than
483 * deferring to virtqueue_notify() in the hopes that if the host is
484 * currently running on another CPU, we can keep it processing the new
485 * descriptor.
486 */
487 avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1));
488 if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx))
489 vq->vq_split.ring.avail->ring[avail_idx] = desc_idx;
490 vq->vq_avail_idx++;
491 }
492
493 static inline int
virtqueue_kick_prepare(struct virtqueue * vq)494 virtqueue_kick_prepare(struct virtqueue *vq)
495 {
496 /*
497 * Ensure updated avail->idx is visible to vhost before reading
498 * the used->flags.
499 */
500 virtio_mb(vq->hw->weak_barriers);
501 return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY);
502 }
503
504 static inline int
virtqueue_kick_prepare_packed(struct virtqueue * vq)505 virtqueue_kick_prepare_packed(struct virtqueue *vq)
506 {
507 uint16_t flags;
508
509 /*
510 * Ensure updated data is visible to vhost before reading the flags.
511 */
512 virtio_mb(vq->hw->weak_barriers);
513 flags = vq->vq_packed.ring.device->desc_event_flags;
514
515 return flags != RING_EVENT_FLAGS_DISABLE;
516 }
517
518 /*
519 * virtqueue_kick_prepare*() or the virtio_wmb() should be called
520 * before this function to be sure that all the data is visible to vhost.
521 */
522 static inline void
virtqueue_notify(struct virtqueue * vq)523 virtqueue_notify(struct virtqueue *vq)
524 {
525 VIRTIO_OPS(vq->hw)->notify_queue(vq->hw, vq);
526 }
527
528 #ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP
529 #define VIRTQUEUE_DUMP(vq) do { \
530 uint16_t used_idx, nused; \
531 used_idx = rte_atomic_load_explicit(&(vq)->vq_split.ring.used->idx, \
532 rte_memory_order_relaxed); \
533 nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \
534 if (virtio_with_packed_queue((vq)->hw)) { \
535 PMD_INIT_LOG(DEBUG, \
536 "VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \
537 " cached_flags=0x%x; used_wrap_counter=%d", \
538 (vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \
539 (vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \
540 (vq)->vq_packed.used_wrap_counter); \
541 break; \
542 } \
543 PMD_INIT_LOG(DEBUG, \
544 "VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \
545 " avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \
546 " avail.flags=0x%x; used.flags=0x%x", \
547 (vq)->vq_nentries, (vq)->vq_free_cnt, nused, (vq)->vq_desc_head_idx, \
548 (vq)->vq_split.ring.avail->idx, (vq)->vq_used_cons_idx, \
549 rte_atomic_load_explicit(&(vq)->vq_split.ring.used->idx, rte_memory_order_relaxed), \
550 (vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \
551 } while (0)
552 #else
553 #define VIRTQUEUE_DUMP(vq) do { } while (0)
554 #endif
555
556 /* avoid write operation when necessary, to lessen cache issues */
557 #define ASSIGN_UNLESS_EQUAL(var, val) do { \
558 typeof(var) *const var_ = &(var); \
559 typeof(val) const val_ = (val); \
560 if (*var_ != val_) \
561 *var_ = val_; \
562 } while (0)
563
564 #define virtqueue_clear_net_hdr(hdr) do { \
565 typeof(hdr) hdr_ = (hdr); \
566 ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0); \
567 ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0); \
568 ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0); \
569 ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0); \
570 ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0); \
571 ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0); \
572 } while (0)
573
574 static inline void
virtqueue_xmit_offload(struct virtio_net_hdr * hdr,struct rte_mbuf * cookie)575 virtqueue_xmit_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *cookie)
576 {
577 uint64_t csum_l4 = cookie->ol_flags & RTE_MBUF_F_TX_L4_MASK;
578 uint16_t o_l23_len = (cookie->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
579 cookie->outer_l2_len + cookie->outer_l3_len : 0;
580
581 if (cookie->ol_flags & RTE_MBUF_F_TX_TCP_SEG)
582 csum_l4 |= RTE_MBUF_F_TX_TCP_CKSUM;
583
584 switch (csum_l4) {
585 case RTE_MBUF_F_TX_UDP_CKSUM:
586 hdr->csum_start = o_l23_len + cookie->l2_len + cookie->l3_len;
587 hdr->csum_offset = offsetof(struct rte_udp_hdr, dgram_cksum);
588 hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
589 break;
590
591 case RTE_MBUF_F_TX_TCP_CKSUM:
592 hdr->csum_start = o_l23_len + cookie->l2_len + cookie->l3_len;
593 hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum);
594 hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
595 break;
596
597 default:
598 ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0);
599 ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0);
600 ASSIGN_UNLESS_EQUAL(hdr->flags, 0);
601 break;
602 }
603
604 /* TCP Segmentation Offload */
605 if (cookie->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
606 hdr->gso_type = (cookie->ol_flags & RTE_MBUF_F_TX_IPV6) ?
607 VIRTIO_NET_HDR_GSO_TCPV6 :
608 VIRTIO_NET_HDR_GSO_TCPV4;
609 hdr->gso_size = cookie->tso_segsz;
610 hdr->hdr_len = o_l23_len + cookie->l2_len + cookie->l3_len +
611 cookie->l4_len;
612 } else {
613 ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0);
614 ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0);
615 ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0);
616 }
617 }
618
619 static inline void
virtqueue_enqueue_xmit_packed(struct virtnet_tx * txvq,struct rte_mbuf * cookie,uint16_t needed,int use_indirect,int can_push,int in_order)620 virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie,
621 uint16_t needed, int use_indirect, int can_push,
622 int in_order)
623 {
624 struct virtio_tx_region *txr = txvq->hdr_mz->addr;
625 struct vq_desc_extra *dxp;
626 struct virtqueue *vq = virtnet_txq_to_vq(txvq);
627 struct vring_packed_desc *start_dp, *head_dp;
628 uint16_t idx, id, head_idx, head_flags;
629 int16_t head_size = vq->hw->vtnet_hdr_size;
630 struct virtio_net_hdr *hdr;
631 uint16_t prev;
632 bool prepend_header = false;
633 uint16_t seg_num = cookie->nb_segs;
634
635 id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx;
636
637 dxp = &vq->vq_descx[id];
638 dxp->ndescs = needed;
639 dxp->cookie = cookie;
640
641 head_idx = vq->vq_avail_idx;
642 idx = head_idx;
643 prev = head_idx;
644 start_dp = vq->vq_packed.ring.desc;
645
646 head_dp = &vq->vq_packed.ring.desc[idx];
647 head_flags = cookie->next ? VRING_DESC_F_NEXT : 0;
648 head_flags |= vq->vq_packed.cached_flags;
649
650 if (can_push) {
651 /* prepend cannot fail, checked by caller */
652 hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
653 -head_size);
654 prepend_header = true;
655
656 /* if offload disabled, it is not zeroed below, do it now */
657 if (!vq->hw->has_tx_offload)
658 virtqueue_clear_net_hdr(hdr);
659 } else if (use_indirect) {
660 /* setup tx ring slot to point to indirect
661 * descriptor list stored in reserved region.
662 *
663 * the first slot in indirect ring is already preset
664 * to point to the header in reserved region
665 */
666 start_dp[idx].addr = txvq->hdr_mem + RTE_PTR_DIFF(&txr[idx].tx_packed_indir, txr);
667 start_dp[idx].len = (seg_num + 1) * sizeof(struct vring_packed_desc);
668 /* Packed descriptor id needs to be restored when inorder. */
669 if (in_order)
670 start_dp[idx].id = idx;
671 /* reset flags for indirect desc */
672 head_flags = VRING_DESC_F_INDIRECT;
673 head_flags |= vq->vq_packed.cached_flags;
674 hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
675
676 /* loop below will fill in rest of the indirect elements */
677 start_dp = txr[idx].tx_packed_indir;
678 idx = 1;
679 } else {
680 /* setup first tx ring slot to point to header
681 * stored in reserved region.
682 */
683 start_dp[idx].addr = txvq->hdr_mem + RTE_PTR_DIFF(&txr[idx].tx_hdr, txr);
684 start_dp[idx].len = vq->hw->vtnet_hdr_size;
685 head_flags |= VRING_DESC_F_NEXT;
686 hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
687 idx++;
688 if (idx >= vq->vq_nentries) {
689 idx -= vq->vq_nentries;
690 vq->vq_packed.cached_flags ^=
691 VRING_PACKED_DESC_F_AVAIL_USED;
692 }
693 }
694
695 if (vq->hw->has_tx_offload)
696 virtqueue_xmit_offload(hdr, cookie);
697
698 do {
699 uint16_t flags;
700
701 start_dp[idx].addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq);
702 start_dp[idx].len = cookie->data_len;
703 if (prepend_header) {
704 start_dp[idx].addr -= head_size;
705 start_dp[idx].len += head_size;
706 prepend_header = false;
707 }
708
709 if (likely(idx != head_idx)) {
710 flags = cookie->next ? VRING_DESC_F_NEXT : 0;
711 flags |= vq->vq_packed.cached_flags;
712 start_dp[idx].flags = flags;
713 }
714 prev = idx;
715 idx++;
716 if (idx >= vq->vq_nentries) {
717 idx -= vq->vq_nentries;
718 vq->vq_packed.cached_flags ^=
719 VRING_PACKED_DESC_F_AVAIL_USED;
720 }
721 } while ((cookie = cookie->next) != NULL);
722
723 start_dp[prev].id = id;
724
725 if (use_indirect) {
726 idx = head_idx;
727 if (++idx >= vq->vq_nentries) {
728 idx -= vq->vq_nentries;
729 vq->vq_packed.cached_flags ^=
730 VRING_PACKED_DESC_F_AVAIL_USED;
731 }
732 }
733
734 vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed);
735 vq->vq_avail_idx = idx;
736
737 if (!in_order) {
738 vq->vq_desc_head_idx = dxp->next;
739 if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
740 vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END;
741 }
742
743 virtqueue_store_flags_packed(head_dp, head_flags,
744 vq->hw->weak_barriers);
745 }
746
747 static void
vq_ring_free_id_packed(struct virtqueue * vq,uint16_t id)748 vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id)
749 {
750 struct vq_desc_extra *dxp;
751
752 dxp = &vq->vq_descx[id];
753 vq->vq_free_cnt += dxp->ndescs;
754
755 if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END)
756 vq->vq_desc_head_idx = id;
757 else
758 vq->vq_descx[vq->vq_desc_tail_idx].next = id;
759
760 vq->vq_desc_tail_idx = id;
761 dxp->next = VQ_RING_DESC_CHAIN_END;
762 }
763
764 static void
virtio_xmit_cleanup_inorder_packed(struct virtqueue * vq,uint16_t num)765 virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, uint16_t num)
766 {
767 uint16_t used_idx, id, curr_id, free_cnt = 0;
768 uint16_t size = vq->vq_nentries;
769 struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
770 struct vq_desc_extra *dxp;
771 int nb = num;
772
773 used_idx = vq->vq_used_cons_idx;
774 /* desc_is_used has a load-acquire or rte_io_rmb inside
775 * and wait for used desc in virtqueue.
776 */
777 while (nb > 0 && desc_is_used(&desc[used_idx], vq)) {
778 id = desc[used_idx].id;
779 do {
780 curr_id = used_idx;
781 dxp = &vq->vq_descx[used_idx];
782 used_idx += dxp->ndescs;
783 free_cnt += dxp->ndescs;
784 nb -= dxp->ndescs;
785 if (used_idx >= size) {
786 used_idx -= size;
787 vq->vq_packed.used_wrap_counter ^= 1;
788 }
789 if (dxp->cookie != NULL) {
790 rte_pktmbuf_free(dxp->cookie);
791 dxp->cookie = NULL;
792 }
793 } while (curr_id != id);
794 }
795 vq->vq_used_cons_idx = used_idx;
796 vq->vq_free_cnt += free_cnt;
797 }
798
799 static void
virtio_xmit_cleanup_normal_packed(struct virtqueue * vq,uint16_t num)800 virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, uint16_t num)
801 {
802 uint16_t used_idx, id;
803 uint16_t size = vq->vq_nentries;
804 struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
805 struct vq_desc_extra *dxp;
806
807 used_idx = vq->vq_used_cons_idx;
808 /* desc_is_used has a load-acquire or rte_io_rmb inside
809 * and wait for used desc in virtqueue.
810 */
811 while (num-- && desc_is_used(&desc[used_idx], vq)) {
812 id = desc[used_idx].id;
813 dxp = &vq->vq_descx[id];
814 vq->vq_used_cons_idx += dxp->ndescs;
815 if (vq->vq_used_cons_idx >= size) {
816 vq->vq_used_cons_idx -= size;
817 vq->vq_packed.used_wrap_counter ^= 1;
818 }
819 vq_ring_free_id_packed(vq, id);
820 if (dxp->cookie != NULL) {
821 rte_pktmbuf_free(dxp->cookie);
822 dxp->cookie = NULL;
823 }
824 used_idx = vq->vq_used_cons_idx;
825 }
826 }
827
828 /* Cleanup from completed transmits. */
829 static inline void
virtio_xmit_cleanup_packed(struct virtqueue * vq,uint16_t num,int in_order)830 virtio_xmit_cleanup_packed(struct virtqueue *vq, uint16_t num, int in_order)
831 {
832 if (in_order)
833 virtio_xmit_cleanup_inorder_packed(vq, num);
834 else
835 virtio_xmit_cleanup_normal_packed(vq, num);
836 }
837
838 static inline void
virtio_xmit_cleanup(struct virtqueue * vq,uint16_t num)839 virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num)
840 {
841 uint16_t i, used_idx, desc_idx;
842 for (i = 0; i < num; i++) {
843 struct vring_used_elem *uep;
844 struct vq_desc_extra *dxp;
845
846 used_idx = (uint16_t)(vq->vq_used_cons_idx &
847 (vq->vq_nentries - 1));
848 uep = &vq->vq_split.ring.used->ring[used_idx];
849
850 desc_idx = (uint16_t)uep->id;
851 dxp = &vq->vq_descx[desc_idx];
852 vq->vq_used_cons_idx++;
853 vq_ring_free_chain(vq, desc_idx);
854
855 if (dxp->cookie != NULL) {
856 rte_pktmbuf_free(dxp->cookie);
857 dxp->cookie = NULL;
858 }
859 }
860 }
861
862 /* Cleanup from completed inorder transmits. */
863 static __rte_always_inline void
virtio_xmit_cleanup_inorder(struct virtqueue * vq,uint16_t num)864 virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num)
865 {
866 uint16_t i, idx = vq->vq_used_cons_idx;
867 int16_t free_cnt = 0;
868 struct vq_desc_extra *dxp = NULL;
869
870 if (unlikely(num == 0))
871 return;
872
873 for (i = 0; i < num; i++) {
874 dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)];
875 free_cnt += dxp->ndescs;
876 if (dxp->cookie != NULL) {
877 rte_pktmbuf_free(dxp->cookie);
878 dxp->cookie = NULL;
879 }
880 }
881
882 vq->vq_free_cnt += free_cnt;
883 vq->vq_used_cons_idx = idx;
884 }
885 #endif /* _VIRTQUEUE_H_ */
886