1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #ifndef _VIRTQUEUE_H_ 6 #define _VIRTQUEUE_H_ 7 8 #include <stdint.h> 9 10 #include <rte_atomic.h> 11 #include <rte_memory.h> 12 #include <rte_mempool.h> 13 #include <rte_net.h> 14 15 #include "virtio.h" 16 #include "virtio_ring.h" 17 #include "virtio_logs.h" 18 #include "virtio_rxtx.h" 19 20 struct rte_mbuf; 21 22 #define DEFAULT_TX_FREE_THRESH 32 23 #define DEFAULT_RX_FREE_THRESH 32 24 25 #define VIRTIO_MBUF_BURST_SZ 64 26 /* 27 * Per virtio_ring.h in Linux. 28 * For virtio_pci on SMP, we don't need to order with respect to MMIO 29 * accesses through relaxed memory I/O windows, so thread_fence is 30 * sufficient. 31 * 32 * For using virtio to talk to real devices (eg. vDPA) we do need real 33 * barriers. 34 */ 35 static inline void 36 virtio_mb(uint8_t weak_barriers) 37 { 38 if (weak_barriers) 39 rte_atomic_thread_fence(__ATOMIC_SEQ_CST); 40 else 41 rte_mb(); 42 } 43 44 static inline void 45 virtio_rmb(uint8_t weak_barriers) 46 { 47 if (weak_barriers) 48 rte_atomic_thread_fence(__ATOMIC_ACQUIRE); 49 else 50 rte_io_rmb(); 51 } 52 53 static inline void 54 virtio_wmb(uint8_t weak_barriers) 55 { 56 if (weak_barriers) 57 rte_atomic_thread_fence(__ATOMIC_RELEASE); 58 else 59 rte_io_wmb(); 60 } 61 62 static inline uint16_t 63 virtqueue_fetch_flags_packed(struct vring_packed_desc *dp, 64 uint8_t weak_barriers) 65 { 66 uint16_t flags; 67 68 if (weak_barriers) { 69 /* x86 prefers to using rte_io_rmb over __atomic_load_n as it reports 70 * a better perf(~1.5%), which comes from the saved branch by the compiler. 71 * The if and else branch are identical on the platforms except Arm. 72 */ 73 #ifdef RTE_ARCH_ARM 74 flags = __atomic_load_n(&dp->flags, __ATOMIC_ACQUIRE); 75 #else 76 flags = dp->flags; 77 rte_io_rmb(); 78 #endif 79 } else { 80 flags = dp->flags; 81 rte_io_rmb(); 82 } 83 84 return flags; 85 } 86 87 static inline void 88 virtqueue_store_flags_packed(struct vring_packed_desc *dp, 89 uint16_t flags, uint8_t weak_barriers) 90 { 91 if (weak_barriers) { 92 /* x86 prefers to using rte_io_wmb over __atomic_store_n as it reports 93 * a better perf(~1.5%), which comes from the saved branch by the compiler. 94 * The if and else branch are identical on the platforms except Arm. 95 */ 96 #ifdef RTE_ARCH_ARM 97 __atomic_store_n(&dp->flags, flags, __ATOMIC_RELEASE); 98 #else 99 rte_io_wmb(); 100 dp->flags = flags; 101 #endif 102 } else { 103 rte_io_wmb(); 104 dp->flags = flags; 105 } 106 } 107 108 #ifdef RTE_PMD_PACKET_PREFETCH 109 #define rte_packet_prefetch(p) rte_prefetch1(p) 110 #else 111 #define rte_packet_prefetch(p) do {} while(0) 112 #endif 113 114 #define VIRTQUEUE_MAX_NAME_SZ 32 115 116 #define VTNET_SQ_RQ_QUEUE_IDX 0 117 #define VTNET_SQ_TQ_QUEUE_IDX 1 118 #define VTNET_SQ_CQ_QUEUE_IDX 2 119 120 enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 }; 121 /** 122 * The maximum virtqueue size is 2^15. Use that value as the end of 123 * descriptor chain terminator since it will never be a valid index 124 * in the descriptor table. This is used to verify we are correctly 125 * handling vq_free_cnt. 126 */ 127 #define VQ_RING_DESC_CHAIN_END 32768 128 129 /** 130 * Control the RX mode, ie. promiscuous, allmulti, etc... 131 * All commands require an "out" sg entry containing a 1 byte 132 * state value, zero = disable, non-zero = enable. Commands 133 * 0 and 1 are supported with the VIRTIO_NET_F_CTRL_RX feature. 134 * Commands 2-5 are added with VIRTIO_NET_F_CTRL_RX_EXTRA. 135 */ 136 #define VIRTIO_NET_CTRL_RX 0 137 #define VIRTIO_NET_CTRL_RX_PROMISC 0 138 #define VIRTIO_NET_CTRL_RX_ALLMULTI 1 139 #define VIRTIO_NET_CTRL_RX_ALLUNI 2 140 #define VIRTIO_NET_CTRL_RX_NOMULTI 3 141 #define VIRTIO_NET_CTRL_RX_NOUNI 4 142 #define VIRTIO_NET_CTRL_RX_NOBCAST 5 143 144 /** 145 * Control the MAC 146 * 147 * The MAC filter table is managed by the hypervisor, the guest should 148 * assume the size is infinite. Filtering should be considered 149 * non-perfect, ie. based on hypervisor resources, the guest may 150 * received packets from sources not specified in the filter list. 151 * 152 * In addition to the class/cmd header, the TABLE_SET command requires 153 * two out scatterlists. Each contains a 4 byte count of entries followed 154 * by a concatenated byte stream of the ETH_ALEN MAC addresses. The 155 * first sg list contains unicast addresses, the second is for multicast. 156 * This functionality is present if the VIRTIO_NET_F_CTRL_RX feature 157 * is available. 158 * 159 * The ADDR_SET command requests one out scatterlist, it contains a 160 * 6 bytes MAC address. This functionality is present if the 161 * VIRTIO_NET_F_CTRL_MAC_ADDR feature is available. 162 */ 163 struct virtio_net_ctrl_mac { 164 uint32_t entries; 165 uint8_t macs[][RTE_ETHER_ADDR_LEN]; 166 } __rte_packed; 167 168 #define VIRTIO_NET_CTRL_MAC 1 169 #define VIRTIO_NET_CTRL_MAC_TABLE_SET 0 170 #define VIRTIO_NET_CTRL_MAC_ADDR_SET 1 171 172 /** 173 * Control VLAN filtering 174 * 175 * The VLAN filter table is controlled via a simple ADD/DEL interface. 176 * VLAN IDs not added may be filtered by the hypervisor. Del is the 177 * opposite of add. Both commands expect an out entry containing a 2 178 * byte VLAN ID. VLAN filtering is available with the 179 * VIRTIO_NET_F_CTRL_VLAN feature bit. 180 */ 181 #define VIRTIO_NET_CTRL_VLAN 2 182 #define VIRTIO_NET_CTRL_VLAN_ADD 0 183 #define VIRTIO_NET_CTRL_VLAN_DEL 1 184 185 /* 186 * Control link announce acknowledgement 187 * 188 * The command VIRTIO_NET_CTRL_ANNOUNCE_ACK is used to indicate that 189 * driver has recevied the notification; device would clear the 190 * VIRTIO_NET_S_ANNOUNCE bit in the status field after it receives 191 * this command. 192 */ 193 #define VIRTIO_NET_CTRL_ANNOUNCE 3 194 #define VIRTIO_NET_CTRL_ANNOUNCE_ACK 0 195 196 struct virtio_net_ctrl_hdr { 197 uint8_t class; 198 uint8_t cmd; 199 } __rte_packed; 200 201 typedef uint8_t virtio_net_ctrl_ack; 202 203 #define VIRTIO_NET_OK 0 204 #define VIRTIO_NET_ERR 1 205 206 #define VIRTIO_MAX_CTRL_DATA 2048 207 208 struct virtio_pmd_ctrl { 209 struct virtio_net_ctrl_hdr hdr; 210 virtio_net_ctrl_ack status; 211 uint8_t data[VIRTIO_MAX_CTRL_DATA]; 212 }; 213 214 struct vq_desc_extra { 215 void *cookie; 216 uint16_t ndescs; 217 uint16_t next; 218 }; 219 220 struct virtqueue { 221 struct virtio_hw *hw; /**< virtio_hw structure pointer. */ 222 union { 223 struct { 224 /**< vring keeping desc, used and avail */ 225 struct vring ring; 226 } vq_split; 227 228 struct { 229 /**< vring keeping descs and events */ 230 struct vring_packed ring; 231 bool used_wrap_counter; 232 uint16_t cached_flags; /**< cached flags for descs */ 233 uint16_t event_flags_shadow; 234 } vq_packed; 235 }; 236 237 uint16_t vq_used_cons_idx; /**< last consumed descriptor */ 238 uint16_t vq_nentries; /**< vring desc numbers */ 239 uint16_t vq_free_cnt; /**< num of desc available */ 240 uint16_t vq_avail_idx; /**< sync until needed */ 241 uint16_t vq_free_thresh; /**< free threshold */ 242 243 void *vq_ring_virt_mem; /**< linear address of vring*/ 244 unsigned int vq_ring_size; 245 246 union { 247 struct virtnet_rx rxq; 248 struct virtnet_tx txq; 249 struct virtnet_ctl cq; 250 }; 251 252 rte_iova_t vq_ring_mem; /**< physical address of vring, 253 * or virtual address for virtio_user. */ 254 255 /** 256 * Head of the free chain in the descriptor table. If 257 * there are no free descriptors, this will be set to 258 * VQ_RING_DESC_CHAIN_END. 259 */ 260 uint16_t vq_desc_head_idx; 261 uint16_t vq_desc_tail_idx; 262 uint16_t vq_queue_index; 263 uint16_t offset; /**< relative offset to obtain addr in mbuf */ 264 uint16_t *notify_addr; 265 struct rte_mbuf **sw_ring; /**< RX software ring. */ 266 struct vq_desc_extra vq_descx[0]; 267 }; 268 269 /* If multiqueue is provided by host, then we suppport it. */ 270 #define VIRTIO_NET_CTRL_MQ 4 271 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET 0 272 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN 1 273 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX 0x8000 274 275 /** 276 * This is the first element of the scatter-gather list. If you don't 277 * specify GSO or CSUM features, you can simply ignore the header. 278 */ 279 struct virtio_net_hdr { 280 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /**< Use csum_start,csum_offset*/ 281 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /**< Checksum is valid */ 282 uint8_t flags; 283 #define VIRTIO_NET_HDR_GSO_NONE 0 /**< Not a GSO frame */ 284 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /**< GSO frame, IPv4 TCP (TSO) */ 285 #define VIRTIO_NET_HDR_GSO_UDP 3 /**< GSO frame, IPv4 UDP (UFO) */ 286 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /**< GSO frame, IPv6 TCP */ 287 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /**< TCP has ECN set */ 288 uint8_t gso_type; 289 uint16_t hdr_len; /**< Ethernet + IP + tcp/udp hdrs */ 290 uint16_t gso_size; /**< Bytes to append to hdr_len per frame */ 291 uint16_t csum_start; /**< Position to start checksumming from */ 292 uint16_t csum_offset; /**< Offset after that to place checksum */ 293 }; 294 295 /** 296 * This is the version of the header to use when the MRG_RXBUF 297 * feature has been negotiated. 298 */ 299 struct virtio_net_hdr_mrg_rxbuf { 300 struct virtio_net_hdr hdr; 301 uint16_t num_buffers; /**< Number of merged rx buffers */ 302 }; 303 304 /* Region reserved to allow for transmit header and indirect ring */ 305 #define VIRTIO_MAX_TX_INDIRECT 8 306 struct virtio_tx_region { 307 struct virtio_net_hdr_mrg_rxbuf tx_hdr; 308 union { 309 struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT]; 310 struct vring_packed_desc 311 tx_packed_indir[VIRTIO_MAX_TX_INDIRECT]; 312 } __rte_aligned(16); 313 }; 314 315 static inline int 316 desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq) 317 { 318 uint16_t used, avail, flags; 319 320 flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers); 321 used = !!(flags & VRING_PACKED_DESC_F_USED); 322 avail = !!(flags & VRING_PACKED_DESC_F_AVAIL); 323 324 return avail == used && used == vq->vq_packed.used_wrap_counter; 325 } 326 327 static inline void 328 vring_desc_init_packed(struct virtqueue *vq, int n) 329 { 330 int i; 331 for (i = 0; i < n - 1; i++) { 332 vq->vq_packed.ring.desc[i].id = i; 333 vq->vq_descx[i].next = i + 1; 334 } 335 vq->vq_packed.ring.desc[i].id = i; 336 vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END; 337 } 338 339 /* Chain all the descriptors in the ring with an END */ 340 static inline void 341 vring_desc_init_split(struct vring_desc *dp, uint16_t n) 342 { 343 uint16_t i; 344 345 for (i = 0; i < n - 1; i++) 346 dp[i].next = (uint16_t)(i + 1); 347 dp[i].next = VQ_RING_DESC_CHAIN_END; 348 } 349 350 static inline void 351 vring_desc_init_indirect_packed(struct vring_packed_desc *dp, int n) 352 { 353 int i; 354 for (i = 0; i < n; i++) { 355 dp[i].id = (uint16_t)i; 356 dp[i].flags = VRING_DESC_F_WRITE; 357 } 358 } 359 360 /** 361 * Tell the backend not to interrupt us. Implementation for packed virtqueues. 362 */ 363 static inline void 364 virtqueue_disable_intr_packed(struct virtqueue *vq) 365 { 366 if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) { 367 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE; 368 vq->vq_packed.ring.driver->desc_event_flags = 369 vq->vq_packed.event_flags_shadow; 370 } 371 } 372 373 /** 374 * Tell the backend not to interrupt us. Implementation for split virtqueues. 375 */ 376 static inline void 377 virtqueue_disable_intr_split(struct virtqueue *vq) 378 { 379 vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT; 380 } 381 382 /** 383 * Tell the backend not to interrupt us. 384 */ 385 static inline void 386 virtqueue_disable_intr(struct virtqueue *vq) 387 { 388 if (virtio_with_packed_queue(vq->hw)) 389 virtqueue_disable_intr_packed(vq); 390 else 391 virtqueue_disable_intr_split(vq); 392 } 393 394 /** 395 * Tell the backend to interrupt. Implementation for packed virtqueues. 396 */ 397 static inline void 398 virtqueue_enable_intr_packed(struct virtqueue *vq) 399 { 400 if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) { 401 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE; 402 vq->vq_packed.ring.driver->desc_event_flags = 403 vq->vq_packed.event_flags_shadow; 404 } 405 } 406 407 /** 408 * Tell the backend to interrupt. Implementation for split virtqueues. 409 */ 410 static inline void 411 virtqueue_enable_intr_split(struct virtqueue *vq) 412 { 413 vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT); 414 } 415 416 /** 417 * Tell the backend to interrupt us. 418 */ 419 static inline void 420 virtqueue_enable_intr(struct virtqueue *vq) 421 { 422 if (virtio_with_packed_queue(vq->hw)) 423 virtqueue_enable_intr_packed(vq); 424 else 425 virtqueue_enable_intr_split(vq); 426 } 427 428 /** 429 * Dump virtqueue internal structures, for debug purpose only. 430 */ 431 void virtqueue_dump(struct virtqueue *vq); 432 /** 433 * Get all mbufs to be freed. 434 */ 435 struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq); 436 437 /* Flush the elements in the used ring. */ 438 void virtqueue_rxvq_flush(struct virtqueue *vq); 439 440 int virtqueue_rxvq_reset_packed(struct virtqueue *vq); 441 442 int virtqueue_txvq_reset_packed(struct virtqueue *vq); 443 444 static inline int 445 virtqueue_full(const struct virtqueue *vq) 446 { 447 return vq->vq_free_cnt == 0; 448 } 449 450 static inline int 451 virtio_get_queue_type(struct virtio_hw *hw, uint16_t vq_idx) 452 { 453 if (vq_idx == hw->max_queue_pairs * 2) 454 return VTNET_CQ; 455 else if (vq_idx % 2 == 0) 456 return VTNET_RQ; 457 else 458 return VTNET_TQ; 459 } 460 461 /* virtqueue_nused has load-acquire or rte_io_rmb insed */ 462 static inline uint16_t 463 virtqueue_nused(const struct virtqueue *vq) 464 { 465 uint16_t idx; 466 467 if (vq->hw->weak_barriers) { 468 /** 469 * x86 prefers to using rte_smp_rmb over __atomic_load_n as it 470 * reports a slightly better perf, which comes from the saved 471 * branch by the compiler. 472 * The if and else branches are identical with the smp and io 473 * barriers both defined as compiler barriers on x86. 474 */ 475 #ifdef RTE_ARCH_X86_64 476 idx = vq->vq_split.ring.used->idx; 477 rte_smp_rmb(); 478 #else 479 idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx, 480 __ATOMIC_ACQUIRE); 481 #endif 482 } else { 483 idx = vq->vq_split.ring.used->idx; 484 rte_io_rmb(); 485 } 486 return idx - vq->vq_used_cons_idx; 487 } 488 489 void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx); 490 void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx); 491 void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx, 492 uint16_t num); 493 494 static inline void 495 vq_update_avail_idx(struct virtqueue *vq) 496 { 497 if (vq->hw->weak_barriers) { 498 /* x86 prefers to using rte_smp_wmb over __atomic_store_n as 499 * it reports a slightly better perf, which comes from the 500 * saved branch by the compiler. 501 * The if and else branches are identical with the smp and 502 * io barriers both defined as compiler barriers on x86. 503 */ 504 #ifdef RTE_ARCH_X86_64 505 rte_smp_wmb(); 506 vq->vq_split.ring.avail->idx = vq->vq_avail_idx; 507 #else 508 __atomic_store_n(&vq->vq_split.ring.avail->idx, 509 vq->vq_avail_idx, __ATOMIC_RELEASE); 510 #endif 511 } else { 512 rte_io_wmb(); 513 vq->vq_split.ring.avail->idx = vq->vq_avail_idx; 514 } 515 } 516 517 static inline void 518 vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx) 519 { 520 uint16_t avail_idx; 521 /* 522 * Place the head of the descriptor chain into the next slot and make 523 * it usable to the host. The chain is made available now rather than 524 * deferring to virtqueue_notify() in the hopes that if the host is 525 * currently running on another CPU, we can keep it processing the new 526 * descriptor. 527 */ 528 avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1)); 529 if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx)) 530 vq->vq_split.ring.avail->ring[avail_idx] = desc_idx; 531 vq->vq_avail_idx++; 532 } 533 534 static inline int 535 virtqueue_kick_prepare(struct virtqueue *vq) 536 { 537 /* 538 * Ensure updated avail->idx is visible to vhost before reading 539 * the used->flags. 540 */ 541 virtio_mb(vq->hw->weak_barriers); 542 return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY); 543 } 544 545 static inline int 546 virtqueue_kick_prepare_packed(struct virtqueue *vq) 547 { 548 uint16_t flags; 549 550 /* 551 * Ensure updated data is visible to vhost before reading the flags. 552 */ 553 virtio_mb(vq->hw->weak_barriers); 554 flags = vq->vq_packed.ring.device->desc_event_flags; 555 556 return flags != RING_EVENT_FLAGS_DISABLE; 557 } 558 559 /* 560 * virtqueue_kick_prepare*() or the virtio_wmb() should be called 561 * before this function to be sure that all the data is visible to vhost. 562 */ 563 static inline void 564 virtqueue_notify(struct virtqueue *vq) 565 { 566 VIRTIO_OPS(vq->hw)->notify_queue(vq->hw, vq); 567 } 568 569 #ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP 570 #define VIRTQUEUE_DUMP(vq) do { \ 571 uint16_t used_idx, nused; \ 572 used_idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx, \ 573 __ATOMIC_RELAXED); \ 574 nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \ 575 if (virtio_with_packed_queue((vq)->hw)) { \ 576 PMD_INIT_LOG(DEBUG, \ 577 "VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \ 578 " cached_flags=0x%x; used_wrap_counter=%d", \ 579 (vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \ 580 (vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \ 581 (vq)->vq_packed.used_wrap_counter); \ 582 break; \ 583 } \ 584 PMD_INIT_LOG(DEBUG, \ 585 "VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \ 586 " avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \ 587 " avail.flags=0x%x; used.flags=0x%x", \ 588 (vq)->vq_nentries, (vq)->vq_free_cnt, nused, (vq)->vq_desc_head_idx, \ 589 (vq)->vq_split.ring.avail->idx, (vq)->vq_used_cons_idx, \ 590 __atomic_load_n(&(vq)->vq_split.ring.used->idx, __ATOMIC_RELAXED), \ 591 (vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \ 592 } while (0) 593 #else 594 #define VIRTQUEUE_DUMP(vq) do { } while (0) 595 #endif 596 597 /* avoid write operation when necessary, to lessen cache issues */ 598 #define ASSIGN_UNLESS_EQUAL(var, val) do { \ 599 typeof(var) *const var_ = &(var); \ 600 typeof(val) const val_ = (val); \ 601 if (*var_ != val_) \ 602 *var_ = val_; \ 603 } while (0) 604 605 #define virtqueue_clear_net_hdr(hdr) do { \ 606 typeof(hdr) hdr_ = (hdr); \ 607 ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0); \ 608 ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0); \ 609 ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0); \ 610 ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0); \ 611 ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0); \ 612 ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0); \ 613 } while (0) 614 615 static inline void 616 virtqueue_xmit_offload(struct virtio_net_hdr *hdr, 617 struct rte_mbuf *cookie, 618 uint8_t offload) 619 { 620 if (offload) { 621 if (cookie->ol_flags & PKT_TX_TCP_SEG) 622 cookie->ol_flags |= PKT_TX_TCP_CKSUM; 623 624 switch (cookie->ol_flags & PKT_TX_L4_MASK) { 625 case PKT_TX_UDP_CKSUM: 626 hdr->csum_start = cookie->l2_len + cookie->l3_len; 627 hdr->csum_offset = offsetof(struct rte_udp_hdr, 628 dgram_cksum); 629 hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; 630 break; 631 632 case PKT_TX_TCP_CKSUM: 633 hdr->csum_start = cookie->l2_len + cookie->l3_len; 634 hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum); 635 hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; 636 break; 637 638 default: 639 ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0); 640 ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0); 641 ASSIGN_UNLESS_EQUAL(hdr->flags, 0); 642 break; 643 } 644 645 /* TCP Segmentation Offload */ 646 if (cookie->ol_flags & PKT_TX_TCP_SEG) { 647 hdr->gso_type = (cookie->ol_flags & PKT_TX_IPV6) ? 648 VIRTIO_NET_HDR_GSO_TCPV6 : 649 VIRTIO_NET_HDR_GSO_TCPV4; 650 hdr->gso_size = cookie->tso_segsz; 651 hdr->hdr_len = 652 cookie->l2_len + 653 cookie->l3_len + 654 cookie->l4_len; 655 } else { 656 ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0); 657 ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0); 658 ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0); 659 } 660 } 661 } 662 663 static inline void 664 virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie, 665 uint16_t needed, int use_indirect, int can_push, 666 int in_order) 667 { 668 struct virtio_tx_region *txr = txvq->virtio_net_hdr_mz->addr; 669 struct vq_desc_extra *dxp; 670 struct virtqueue *vq = txvq->vq; 671 struct vring_packed_desc *start_dp, *head_dp; 672 uint16_t idx, id, head_idx, head_flags; 673 int16_t head_size = vq->hw->vtnet_hdr_size; 674 struct virtio_net_hdr *hdr; 675 uint16_t prev; 676 bool prepend_header = false; 677 uint16_t seg_num = cookie->nb_segs; 678 679 id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx; 680 681 dxp = &vq->vq_descx[id]; 682 dxp->ndescs = needed; 683 dxp->cookie = cookie; 684 685 head_idx = vq->vq_avail_idx; 686 idx = head_idx; 687 prev = head_idx; 688 start_dp = vq->vq_packed.ring.desc; 689 690 head_dp = &vq->vq_packed.ring.desc[idx]; 691 head_flags = cookie->next ? VRING_DESC_F_NEXT : 0; 692 head_flags |= vq->vq_packed.cached_flags; 693 694 if (can_push) { 695 /* prepend cannot fail, checked by caller */ 696 hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *, 697 -head_size); 698 prepend_header = true; 699 700 /* if offload disabled, it is not zeroed below, do it now */ 701 if (!vq->hw->has_tx_offload) 702 virtqueue_clear_net_hdr(hdr); 703 } else if (use_indirect) { 704 /* setup tx ring slot to point to indirect 705 * descriptor list stored in reserved region. 706 * 707 * the first slot in indirect ring is already preset 708 * to point to the header in reserved region 709 */ 710 start_dp[idx].addr = txvq->virtio_net_hdr_mem + 711 RTE_PTR_DIFF(&txr[idx].tx_packed_indir, txr); 712 start_dp[idx].len = (seg_num + 1) * 713 sizeof(struct vring_packed_desc); 714 /* reset flags for indirect desc */ 715 head_flags = VRING_DESC_F_INDIRECT; 716 head_flags |= vq->vq_packed.cached_flags; 717 hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr; 718 719 /* loop below will fill in rest of the indirect elements */ 720 start_dp = txr[idx].tx_packed_indir; 721 idx = 1; 722 } else { 723 /* setup first tx ring slot to point to header 724 * stored in reserved region. 725 */ 726 start_dp[idx].addr = txvq->virtio_net_hdr_mem + 727 RTE_PTR_DIFF(&txr[idx].tx_hdr, txr); 728 start_dp[idx].len = vq->hw->vtnet_hdr_size; 729 hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr; 730 idx++; 731 if (idx >= vq->vq_nentries) { 732 idx -= vq->vq_nentries; 733 vq->vq_packed.cached_flags ^= 734 VRING_PACKED_DESC_F_AVAIL_USED; 735 } 736 } 737 738 virtqueue_xmit_offload(hdr, cookie, vq->hw->has_tx_offload); 739 740 do { 741 uint16_t flags; 742 743 start_dp[idx].addr = rte_mbuf_data_iova(cookie); 744 start_dp[idx].len = cookie->data_len; 745 if (prepend_header) { 746 start_dp[idx].addr -= head_size; 747 start_dp[idx].len += head_size; 748 prepend_header = false; 749 } 750 751 if (likely(idx != head_idx)) { 752 flags = cookie->next ? VRING_DESC_F_NEXT : 0; 753 flags |= vq->vq_packed.cached_flags; 754 start_dp[idx].flags = flags; 755 } 756 prev = idx; 757 idx++; 758 if (idx >= vq->vq_nentries) { 759 idx -= vq->vq_nentries; 760 vq->vq_packed.cached_flags ^= 761 VRING_PACKED_DESC_F_AVAIL_USED; 762 } 763 } while ((cookie = cookie->next) != NULL); 764 765 start_dp[prev].id = id; 766 767 if (use_indirect) { 768 idx = head_idx; 769 if (++idx >= vq->vq_nentries) { 770 idx -= vq->vq_nentries; 771 vq->vq_packed.cached_flags ^= 772 VRING_PACKED_DESC_F_AVAIL_USED; 773 } 774 } 775 776 vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed); 777 vq->vq_avail_idx = idx; 778 779 if (!in_order) { 780 vq->vq_desc_head_idx = dxp->next; 781 if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END) 782 vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END; 783 } 784 785 virtqueue_store_flags_packed(head_dp, head_flags, 786 vq->hw->weak_barriers); 787 } 788 789 static void 790 vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id) 791 { 792 struct vq_desc_extra *dxp; 793 794 dxp = &vq->vq_descx[id]; 795 vq->vq_free_cnt += dxp->ndescs; 796 797 if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END) 798 vq->vq_desc_head_idx = id; 799 else 800 vq->vq_descx[vq->vq_desc_tail_idx].next = id; 801 802 vq->vq_desc_tail_idx = id; 803 dxp->next = VQ_RING_DESC_CHAIN_END; 804 } 805 806 static void 807 virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, int num) 808 { 809 uint16_t used_idx, id, curr_id, free_cnt = 0; 810 uint16_t size = vq->vq_nentries; 811 struct vring_packed_desc *desc = vq->vq_packed.ring.desc; 812 struct vq_desc_extra *dxp; 813 814 used_idx = vq->vq_used_cons_idx; 815 /* desc_is_used has a load-acquire or rte_io_rmb inside 816 * and wait for used desc in virtqueue. 817 */ 818 while (num > 0 && desc_is_used(&desc[used_idx], vq)) { 819 id = desc[used_idx].id; 820 do { 821 curr_id = used_idx; 822 dxp = &vq->vq_descx[used_idx]; 823 used_idx += dxp->ndescs; 824 free_cnt += dxp->ndescs; 825 num -= dxp->ndescs; 826 if (used_idx >= size) { 827 used_idx -= size; 828 vq->vq_packed.used_wrap_counter ^= 1; 829 } 830 if (dxp->cookie != NULL) { 831 rte_pktmbuf_free(dxp->cookie); 832 dxp->cookie = NULL; 833 } 834 } while (curr_id != id); 835 } 836 vq->vq_used_cons_idx = used_idx; 837 vq->vq_free_cnt += free_cnt; 838 } 839 840 static void 841 virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, int num) 842 { 843 uint16_t used_idx, id; 844 uint16_t size = vq->vq_nentries; 845 struct vring_packed_desc *desc = vq->vq_packed.ring.desc; 846 struct vq_desc_extra *dxp; 847 848 used_idx = vq->vq_used_cons_idx; 849 /* desc_is_used has a load-acquire or rte_io_rmb inside 850 * and wait for used desc in virtqueue. 851 */ 852 while (num-- && desc_is_used(&desc[used_idx], vq)) { 853 id = desc[used_idx].id; 854 dxp = &vq->vq_descx[id]; 855 vq->vq_used_cons_idx += dxp->ndescs; 856 if (vq->vq_used_cons_idx >= size) { 857 vq->vq_used_cons_idx -= size; 858 vq->vq_packed.used_wrap_counter ^= 1; 859 } 860 vq_ring_free_id_packed(vq, id); 861 if (dxp->cookie != NULL) { 862 rte_pktmbuf_free(dxp->cookie); 863 dxp->cookie = NULL; 864 } 865 used_idx = vq->vq_used_cons_idx; 866 } 867 } 868 869 /* Cleanup from completed transmits. */ 870 static inline void 871 virtio_xmit_cleanup_packed(struct virtqueue *vq, int num, int in_order) 872 { 873 if (in_order) 874 virtio_xmit_cleanup_inorder_packed(vq, num); 875 else 876 virtio_xmit_cleanup_normal_packed(vq, num); 877 } 878 879 static inline void 880 virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num) 881 { 882 uint16_t i, used_idx, desc_idx; 883 for (i = 0; i < num; i++) { 884 struct vring_used_elem *uep; 885 struct vq_desc_extra *dxp; 886 887 used_idx = (uint16_t)(vq->vq_used_cons_idx & 888 (vq->vq_nentries - 1)); 889 uep = &vq->vq_split.ring.used->ring[used_idx]; 890 891 desc_idx = (uint16_t)uep->id; 892 dxp = &vq->vq_descx[desc_idx]; 893 vq->vq_used_cons_idx++; 894 vq_ring_free_chain(vq, desc_idx); 895 896 if (dxp->cookie != NULL) { 897 rte_pktmbuf_free(dxp->cookie); 898 dxp->cookie = NULL; 899 } 900 } 901 } 902 903 /* Cleanup from completed inorder transmits. */ 904 static __rte_always_inline void 905 virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num) 906 { 907 uint16_t i, idx = vq->vq_used_cons_idx; 908 int16_t free_cnt = 0; 909 struct vq_desc_extra *dxp = NULL; 910 911 if (unlikely(num == 0)) 912 return; 913 914 for (i = 0; i < num; i++) { 915 dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)]; 916 free_cnt += dxp->ndescs; 917 if (dxp->cookie != NULL) { 918 rte_pktmbuf_free(dxp->cookie); 919 dxp->cookie = NULL; 920 } 921 } 922 923 vq->vq_free_cnt += free_cnt; 924 vq->vq_used_cons_idx = idx; 925 } 926 #endif /* _VIRTQUEUE_H_ */ 927