1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #ifndef _VIRTQUEUE_H_ 6 #define _VIRTQUEUE_H_ 7 8 #include <stdint.h> 9 10 #include <rte_atomic.h> 11 #include <rte_memory.h> 12 #include <rte_mempool.h> 13 #include <rte_net.h> 14 15 #include "virtio.h" 16 #include "virtio_ring.h" 17 #include "virtio_logs.h" 18 #include "virtio_rxtx.h" 19 20 struct rte_mbuf; 21 22 #define DEFAULT_TX_FREE_THRESH 32 23 #define DEFAULT_RX_FREE_THRESH 32 24 25 #define VIRTIO_MBUF_BURST_SZ 64 26 /* 27 * Per virtio_ring.h in Linux. 28 * For virtio_pci on SMP, we don't need to order with respect to MMIO 29 * accesses through relaxed memory I/O windows, so thread_fence is 30 * sufficient. 31 * 32 * For using virtio to talk to real devices (eg. vDPA) we do need real 33 * barriers. 34 */ 35 static inline void 36 virtio_mb(uint8_t weak_barriers) 37 { 38 if (weak_barriers) 39 rte_atomic_thread_fence(__ATOMIC_SEQ_CST); 40 else 41 rte_mb(); 42 } 43 44 static inline void 45 virtio_rmb(uint8_t weak_barriers) 46 { 47 if (weak_barriers) 48 rte_atomic_thread_fence(__ATOMIC_ACQUIRE); 49 else 50 rte_io_rmb(); 51 } 52 53 static inline void 54 virtio_wmb(uint8_t weak_barriers) 55 { 56 if (weak_barriers) 57 rte_atomic_thread_fence(__ATOMIC_RELEASE); 58 else 59 rte_io_wmb(); 60 } 61 62 static inline uint16_t 63 virtqueue_fetch_flags_packed(struct vring_packed_desc *dp, 64 uint8_t weak_barriers) 65 { 66 uint16_t flags; 67 68 if (weak_barriers) { 69 /* x86 prefers to using rte_io_rmb over __atomic_load_n as it reports 70 * a better perf(~1.5%), which comes from the saved branch by the compiler. 71 * The if and else branch are identical on the platforms except Arm. 72 */ 73 #ifdef RTE_ARCH_ARM 74 flags = __atomic_load_n(&dp->flags, __ATOMIC_ACQUIRE); 75 #else 76 flags = dp->flags; 77 rte_io_rmb(); 78 #endif 79 } else { 80 flags = dp->flags; 81 rte_io_rmb(); 82 } 83 84 return flags; 85 } 86 87 static inline void 88 virtqueue_store_flags_packed(struct vring_packed_desc *dp, 89 uint16_t flags, uint8_t weak_barriers) 90 { 91 if (weak_barriers) { 92 /* x86 prefers to using rte_io_wmb over __atomic_store_n as it reports 93 * a better perf(~1.5%), which comes from the saved branch by the compiler. 94 * The if and else branch are identical on the platforms except Arm. 95 */ 96 #ifdef RTE_ARCH_ARM 97 __atomic_store_n(&dp->flags, flags, __ATOMIC_RELEASE); 98 #else 99 rte_io_wmb(); 100 dp->flags = flags; 101 #endif 102 } else { 103 rte_io_wmb(); 104 dp->flags = flags; 105 } 106 } 107 108 #ifdef RTE_PMD_PACKET_PREFETCH 109 #define rte_packet_prefetch(p) rte_prefetch1(p) 110 #else 111 #define rte_packet_prefetch(p) do {} while(0) 112 #endif 113 114 #define VIRTQUEUE_MAX_NAME_SZ 32 115 116 #define VTNET_SQ_RQ_QUEUE_IDX 0 117 #define VTNET_SQ_TQ_QUEUE_IDX 1 118 #define VTNET_SQ_CQ_QUEUE_IDX 2 119 120 enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 }; 121 /** 122 * The maximum virtqueue size is 2^15. Use that value as the end of 123 * descriptor chain terminator since it will never be a valid index 124 * in the descriptor table. This is used to verify we are correctly 125 * handling vq_free_cnt. 126 */ 127 #define VQ_RING_DESC_CHAIN_END 32768 128 129 /** 130 * Control the RX mode, ie. promiscuous, allmulti, etc... 131 * All commands require an "out" sg entry containing a 1 byte 132 * state value, zero = disable, non-zero = enable. Commands 133 * 0 and 1 are supported with the VIRTIO_NET_F_CTRL_RX feature. 134 * Commands 2-5 are added with VIRTIO_NET_F_CTRL_RX_EXTRA. 135 */ 136 #define VIRTIO_NET_CTRL_RX 0 137 #define VIRTIO_NET_CTRL_RX_PROMISC 0 138 #define VIRTIO_NET_CTRL_RX_ALLMULTI 1 139 #define VIRTIO_NET_CTRL_RX_ALLUNI 2 140 #define VIRTIO_NET_CTRL_RX_NOMULTI 3 141 #define VIRTIO_NET_CTRL_RX_NOUNI 4 142 #define VIRTIO_NET_CTRL_RX_NOBCAST 5 143 144 /** 145 * Control the MAC 146 * 147 * The MAC filter table is managed by the hypervisor, the guest should 148 * assume the size is infinite. Filtering should be considered 149 * non-perfect, ie. based on hypervisor resources, the guest may 150 * received packets from sources not specified in the filter list. 151 * 152 * In addition to the class/cmd header, the TABLE_SET command requires 153 * two out scatterlists. Each contains a 4 byte count of entries followed 154 * by a concatenated byte stream of the ETH_ALEN MAC addresses. The 155 * first sg list contains unicast addresses, the second is for multicast. 156 * This functionality is present if the VIRTIO_NET_F_CTRL_RX feature 157 * is available. 158 * 159 * The ADDR_SET command requests one out scatterlist, it contains a 160 * 6 bytes MAC address. This functionality is present if the 161 * VIRTIO_NET_F_CTRL_MAC_ADDR feature is available. 162 */ 163 struct virtio_net_ctrl_mac { 164 uint32_t entries; 165 uint8_t macs[][RTE_ETHER_ADDR_LEN]; 166 } __rte_packed; 167 168 #define VIRTIO_NET_CTRL_MAC 1 169 #define VIRTIO_NET_CTRL_MAC_TABLE_SET 0 170 #define VIRTIO_NET_CTRL_MAC_ADDR_SET 1 171 172 /** 173 * Control VLAN filtering 174 * 175 * The VLAN filter table is controlled via a simple ADD/DEL interface. 176 * VLAN IDs not added may be filtered by the hypervisor. Del is the 177 * opposite of add. Both commands expect an out entry containing a 2 178 * byte VLAN ID. VLAN filtering is available with the 179 * VIRTIO_NET_F_CTRL_VLAN feature bit. 180 */ 181 #define VIRTIO_NET_CTRL_VLAN 2 182 #define VIRTIO_NET_CTRL_VLAN_ADD 0 183 #define VIRTIO_NET_CTRL_VLAN_DEL 1 184 185 /* 186 * Control link announce acknowledgement 187 * 188 * The command VIRTIO_NET_CTRL_ANNOUNCE_ACK is used to indicate that 189 * driver has recevied the notification; device would clear the 190 * VIRTIO_NET_S_ANNOUNCE bit in the status field after it receives 191 * this command. 192 */ 193 #define VIRTIO_NET_CTRL_ANNOUNCE 3 194 #define VIRTIO_NET_CTRL_ANNOUNCE_ACK 0 195 196 struct virtio_net_ctrl_hdr { 197 uint8_t class; 198 uint8_t cmd; 199 } __rte_packed; 200 201 typedef uint8_t virtio_net_ctrl_ack; 202 203 #define VIRTIO_NET_OK 0 204 #define VIRTIO_NET_ERR 1 205 206 #define VIRTIO_MAX_CTRL_DATA 2048 207 208 struct virtio_pmd_ctrl { 209 struct virtio_net_ctrl_hdr hdr; 210 virtio_net_ctrl_ack status; 211 uint8_t data[VIRTIO_MAX_CTRL_DATA]; 212 }; 213 214 struct vq_desc_extra { 215 void *cookie; 216 uint16_t ndescs; 217 uint16_t next; 218 }; 219 220 #define virtnet_rxq_to_vq(rxvq) container_of(rxvq, struct virtqueue, rxq) 221 #define virtnet_txq_to_vq(txvq) container_of(txvq, struct virtqueue, txq) 222 #define virtnet_cq_to_vq(cvq) container_of(cvq, struct virtqueue, cq) 223 224 struct virtqueue { 225 struct virtio_hw *hw; /**< virtio_hw structure pointer. */ 226 union { 227 struct { 228 /**< vring keeping desc, used and avail */ 229 struct vring ring; 230 } vq_split; 231 232 struct { 233 /**< vring keeping descs and events */ 234 struct vring_packed ring; 235 bool used_wrap_counter; 236 uint16_t cached_flags; /**< cached flags for descs */ 237 uint16_t event_flags_shadow; 238 } vq_packed; 239 }; 240 241 uint16_t vq_used_cons_idx; /**< last consumed descriptor */ 242 uint16_t vq_nentries; /**< vring desc numbers */ 243 uint16_t vq_free_cnt; /**< num of desc available */ 244 uint16_t vq_avail_idx; /**< sync until needed */ 245 uint16_t vq_free_thresh; /**< free threshold */ 246 247 /** 248 * Head of the free chain in the descriptor table. If 249 * there are no free descriptors, this will be set to 250 * VQ_RING_DESC_CHAIN_END. 251 */ 252 uint16_t vq_desc_head_idx; 253 uint16_t vq_desc_tail_idx; 254 uint16_t vq_queue_index; /**< PCI queue index */ 255 256 void *vq_ring_virt_mem; /**< linear address of vring*/ 257 unsigned int vq_ring_size; 258 259 union { 260 struct virtnet_rx rxq; 261 struct virtnet_tx txq; 262 struct virtnet_ctl cq; 263 }; 264 265 rte_iova_t vq_ring_mem; /**< physical address of vring, 266 * or virtual address for virtio_user. */ 267 268 uint16_t *notify_addr; 269 struct rte_mbuf **sw_ring; /**< RX software ring. */ 270 struct vq_desc_extra vq_descx[0]; 271 }; 272 273 /* If multiqueue is provided by host, then we suppport it. */ 274 #define VIRTIO_NET_CTRL_MQ 4 275 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET 0 276 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN 1 277 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX 0x8000 278 279 /** 280 * This is the first element of the scatter-gather list. If you don't 281 * specify GSO or CSUM features, you can simply ignore the header. 282 */ 283 struct virtio_net_hdr { 284 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /**< Use csum_start,csum_offset*/ 285 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /**< Checksum is valid */ 286 uint8_t flags; 287 #define VIRTIO_NET_HDR_GSO_NONE 0 /**< Not a GSO frame */ 288 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /**< GSO frame, IPv4 TCP (TSO) */ 289 #define VIRTIO_NET_HDR_GSO_UDP 3 /**< GSO frame, IPv4 UDP (UFO) */ 290 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /**< GSO frame, IPv6 TCP */ 291 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /**< TCP has ECN set */ 292 uint8_t gso_type; 293 uint16_t hdr_len; /**< Ethernet + IP + tcp/udp hdrs */ 294 uint16_t gso_size; /**< Bytes to append to hdr_len per frame */ 295 uint16_t csum_start; /**< Position to start checksumming from */ 296 uint16_t csum_offset; /**< Offset after that to place checksum */ 297 }; 298 299 /** 300 * This is the version of the header to use when the MRG_RXBUF 301 * feature has been negotiated. 302 */ 303 struct virtio_net_hdr_mrg_rxbuf { 304 struct virtio_net_hdr hdr; 305 uint16_t num_buffers; /**< Number of merged rx buffers */ 306 }; 307 308 /* Region reserved to allow for transmit header and indirect ring */ 309 #define VIRTIO_MAX_TX_INDIRECT 8 310 struct virtio_tx_region { 311 struct virtio_net_hdr_mrg_rxbuf tx_hdr; 312 union { 313 struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT]; 314 struct vring_packed_desc 315 tx_packed_indir[VIRTIO_MAX_TX_INDIRECT]; 316 } __rte_aligned(16); 317 }; 318 319 static inline int 320 desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq) 321 { 322 uint16_t used, avail, flags; 323 324 flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers); 325 used = !!(flags & VRING_PACKED_DESC_F_USED); 326 avail = !!(flags & VRING_PACKED_DESC_F_AVAIL); 327 328 return avail == used && used == vq->vq_packed.used_wrap_counter; 329 } 330 331 static inline void 332 vring_desc_init_packed(struct virtqueue *vq, int n) 333 { 334 int i; 335 for (i = 0; i < n - 1; i++) { 336 vq->vq_packed.ring.desc[i].id = i; 337 vq->vq_descx[i].next = i + 1; 338 } 339 vq->vq_packed.ring.desc[i].id = i; 340 vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END; 341 } 342 343 /* Chain all the descriptors in the ring with an END */ 344 static inline void 345 vring_desc_init_split(struct vring_desc *dp, uint16_t n) 346 { 347 uint16_t i; 348 349 for (i = 0; i < n - 1; i++) 350 dp[i].next = (uint16_t)(i + 1); 351 dp[i].next = VQ_RING_DESC_CHAIN_END; 352 } 353 354 static inline void 355 vring_desc_init_indirect_packed(struct vring_packed_desc *dp, int n) 356 { 357 int i; 358 for (i = 0; i < n; i++) { 359 dp[i].id = (uint16_t)i; 360 dp[i].flags = VRING_DESC_F_WRITE; 361 } 362 } 363 364 /** 365 * Tell the backend not to interrupt us. Implementation for packed virtqueues. 366 */ 367 static inline void 368 virtqueue_disable_intr_packed(struct virtqueue *vq) 369 { 370 if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) { 371 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE; 372 vq->vq_packed.ring.driver->desc_event_flags = 373 vq->vq_packed.event_flags_shadow; 374 } 375 } 376 377 /** 378 * Tell the backend not to interrupt us. Implementation for split virtqueues. 379 */ 380 static inline void 381 virtqueue_disable_intr_split(struct virtqueue *vq) 382 { 383 vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT; 384 } 385 386 /** 387 * Tell the backend not to interrupt us. 388 */ 389 static inline void 390 virtqueue_disable_intr(struct virtqueue *vq) 391 { 392 if (virtio_with_packed_queue(vq->hw)) 393 virtqueue_disable_intr_packed(vq); 394 else 395 virtqueue_disable_intr_split(vq); 396 } 397 398 /** 399 * Tell the backend to interrupt. Implementation for packed virtqueues. 400 */ 401 static inline void 402 virtqueue_enable_intr_packed(struct virtqueue *vq) 403 { 404 if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) { 405 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE; 406 vq->vq_packed.ring.driver->desc_event_flags = 407 vq->vq_packed.event_flags_shadow; 408 } 409 } 410 411 /** 412 * Tell the backend to interrupt. Implementation for split virtqueues. 413 */ 414 static inline void 415 virtqueue_enable_intr_split(struct virtqueue *vq) 416 { 417 vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT); 418 } 419 420 /** 421 * Tell the backend to interrupt us. 422 */ 423 static inline void 424 virtqueue_enable_intr(struct virtqueue *vq) 425 { 426 if (virtio_with_packed_queue(vq->hw)) 427 virtqueue_enable_intr_packed(vq); 428 else 429 virtqueue_enable_intr_split(vq); 430 } 431 432 /** 433 * Dump virtqueue internal structures, for debug purpose only. 434 */ 435 void virtqueue_dump(struct virtqueue *vq); 436 /** 437 * Get all mbufs to be freed. 438 */ 439 struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq); 440 441 /* Flush the elements in the used ring. */ 442 void virtqueue_rxvq_flush(struct virtqueue *vq); 443 444 int virtqueue_rxvq_reset_packed(struct virtqueue *vq); 445 446 int virtqueue_txvq_reset_packed(struct virtqueue *vq); 447 448 static inline int 449 virtqueue_full(const struct virtqueue *vq) 450 { 451 return vq->vq_free_cnt == 0; 452 } 453 454 static inline int 455 virtio_get_queue_type(struct virtio_hw *hw, uint16_t vq_idx) 456 { 457 if (vq_idx == hw->max_queue_pairs * 2) 458 return VTNET_CQ; 459 else if (vq_idx % 2 == 0) 460 return VTNET_RQ; 461 else 462 return VTNET_TQ; 463 } 464 465 /* virtqueue_nused has load-acquire or rte_io_rmb insed */ 466 static inline uint16_t 467 virtqueue_nused(const struct virtqueue *vq) 468 { 469 uint16_t idx; 470 471 if (vq->hw->weak_barriers) { 472 /** 473 * x86 prefers to using rte_smp_rmb over __atomic_load_n as it 474 * reports a slightly better perf, which comes from the saved 475 * branch by the compiler. 476 * The if and else branches are identical with the smp and io 477 * barriers both defined as compiler barriers on x86. 478 */ 479 #ifdef RTE_ARCH_X86_64 480 idx = vq->vq_split.ring.used->idx; 481 rte_smp_rmb(); 482 #else 483 idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx, 484 __ATOMIC_ACQUIRE); 485 #endif 486 } else { 487 idx = vq->vq_split.ring.used->idx; 488 rte_io_rmb(); 489 } 490 return idx - vq->vq_used_cons_idx; 491 } 492 493 void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx); 494 void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx); 495 void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx, 496 uint16_t num); 497 498 static inline void 499 vq_update_avail_idx(struct virtqueue *vq) 500 { 501 if (vq->hw->weak_barriers) { 502 /* x86 prefers to using rte_smp_wmb over __atomic_store_n as 503 * it reports a slightly better perf, which comes from the 504 * saved branch by the compiler. 505 * The if and else branches are identical with the smp and 506 * io barriers both defined as compiler barriers on x86. 507 */ 508 #ifdef RTE_ARCH_X86_64 509 rte_smp_wmb(); 510 vq->vq_split.ring.avail->idx = vq->vq_avail_idx; 511 #else 512 __atomic_store_n(&vq->vq_split.ring.avail->idx, 513 vq->vq_avail_idx, __ATOMIC_RELEASE); 514 #endif 515 } else { 516 rte_io_wmb(); 517 vq->vq_split.ring.avail->idx = vq->vq_avail_idx; 518 } 519 } 520 521 static inline void 522 vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx) 523 { 524 uint16_t avail_idx; 525 /* 526 * Place the head of the descriptor chain into the next slot and make 527 * it usable to the host. The chain is made available now rather than 528 * deferring to virtqueue_notify() in the hopes that if the host is 529 * currently running on another CPU, we can keep it processing the new 530 * descriptor. 531 */ 532 avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1)); 533 if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx)) 534 vq->vq_split.ring.avail->ring[avail_idx] = desc_idx; 535 vq->vq_avail_idx++; 536 } 537 538 static inline int 539 virtqueue_kick_prepare(struct virtqueue *vq) 540 { 541 /* 542 * Ensure updated avail->idx is visible to vhost before reading 543 * the used->flags. 544 */ 545 virtio_mb(vq->hw->weak_barriers); 546 return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY); 547 } 548 549 static inline int 550 virtqueue_kick_prepare_packed(struct virtqueue *vq) 551 { 552 uint16_t flags; 553 554 /* 555 * Ensure updated data is visible to vhost before reading the flags. 556 */ 557 virtio_mb(vq->hw->weak_barriers); 558 flags = vq->vq_packed.ring.device->desc_event_flags; 559 560 return flags != RING_EVENT_FLAGS_DISABLE; 561 } 562 563 /* 564 * virtqueue_kick_prepare*() or the virtio_wmb() should be called 565 * before this function to be sure that all the data is visible to vhost. 566 */ 567 static inline void 568 virtqueue_notify(struct virtqueue *vq) 569 { 570 VIRTIO_OPS(vq->hw)->notify_queue(vq->hw, vq); 571 } 572 573 #ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP 574 #define VIRTQUEUE_DUMP(vq) do { \ 575 uint16_t used_idx, nused; \ 576 used_idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx, \ 577 __ATOMIC_RELAXED); \ 578 nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \ 579 if (virtio_with_packed_queue((vq)->hw)) { \ 580 PMD_INIT_LOG(DEBUG, \ 581 "VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \ 582 " cached_flags=0x%x; used_wrap_counter=%d", \ 583 (vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \ 584 (vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \ 585 (vq)->vq_packed.used_wrap_counter); \ 586 break; \ 587 } \ 588 PMD_INIT_LOG(DEBUG, \ 589 "VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \ 590 " avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \ 591 " avail.flags=0x%x; used.flags=0x%x", \ 592 (vq)->vq_nentries, (vq)->vq_free_cnt, nused, (vq)->vq_desc_head_idx, \ 593 (vq)->vq_split.ring.avail->idx, (vq)->vq_used_cons_idx, \ 594 __atomic_load_n(&(vq)->vq_split.ring.used->idx, __ATOMIC_RELAXED), \ 595 (vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \ 596 } while (0) 597 #else 598 #define VIRTQUEUE_DUMP(vq) do { } while (0) 599 #endif 600 601 /* avoid write operation when necessary, to lessen cache issues */ 602 #define ASSIGN_UNLESS_EQUAL(var, val) do { \ 603 typeof(var) *const var_ = &(var); \ 604 typeof(val) const val_ = (val); \ 605 if (*var_ != val_) \ 606 *var_ = val_; \ 607 } while (0) 608 609 #define virtqueue_clear_net_hdr(hdr) do { \ 610 typeof(hdr) hdr_ = (hdr); \ 611 ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0); \ 612 ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0); \ 613 ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0); \ 614 ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0); \ 615 ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0); \ 616 ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0); \ 617 } while (0) 618 619 static inline void 620 virtqueue_xmit_offload(struct virtio_net_hdr *hdr, 621 struct rte_mbuf *cookie, 622 uint8_t offload) 623 { 624 if (offload) { 625 if (cookie->ol_flags & PKT_TX_TCP_SEG) 626 cookie->ol_flags |= PKT_TX_TCP_CKSUM; 627 628 switch (cookie->ol_flags & PKT_TX_L4_MASK) { 629 case PKT_TX_UDP_CKSUM: 630 hdr->csum_start = cookie->l2_len + cookie->l3_len; 631 hdr->csum_offset = offsetof(struct rte_udp_hdr, 632 dgram_cksum); 633 hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; 634 break; 635 636 case PKT_TX_TCP_CKSUM: 637 hdr->csum_start = cookie->l2_len + cookie->l3_len; 638 hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum); 639 hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; 640 break; 641 642 default: 643 ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0); 644 ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0); 645 ASSIGN_UNLESS_EQUAL(hdr->flags, 0); 646 break; 647 } 648 649 /* TCP Segmentation Offload */ 650 if (cookie->ol_flags & PKT_TX_TCP_SEG) { 651 hdr->gso_type = (cookie->ol_flags & PKT_TX_IPV6) ? 652 VIRTIO_NET_HDR_GSO_TCPV6 : 653 VIRTIO_NET_HDR_GSO_TCPV4; 654 hdr->gso_size = cookie->tso_segsz; 655 hdr->hdr_len = 656 cookie->l2_len + 657 cookie->l3_len + 658 cookie->l4_len; 659 } else { 660 ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0); 661 ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0); 662 ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0); 663 } 664 } 665 } 666 667 static inline void 668 virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie, 669 uint16_t needed, int use_indirect, int can_push, 670 int in_order) 671 { 672 struct virtio_tx_region *txr = txvq->virtio_net_hdr_mz->addr; 673 struct vq_desc_extra *dxp; 674 struct virtqueue *vq = virtnet_txq_to_vq(txvq); 675 struct vring_packed_desc *start_dp, *head_dp; 676 uint16_t idx, id, head_idx, head_flags; 677 int16_t head_size = vq->hw->vtnet_hdr_size; 678 struct virtio_net_hdr *hdr; 679 uint16_t prev; 680 bool prepend_header = false; 681 uint16_t seg_num = cookie->nb_segs; 682 683 id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx; 684 685 dxp = &vq->vq_descx[id]; 686 dxp->ndescs = needed; 687 dxp->cookie = cookie; 688 689 head_idx = vq->vq_avail_idx; 690 idx = head_idx; 691 prev = head_idx; 692 start_dp = vq->vq_packed.ring.desc; 693 694 head_dp = &vq->vq_packed.ring.desc[idx]; 695 head_flags = cookie->next ? VRING_DESC_F_NEXT : 0; 696 head_flags |= vq->vq_packed.cached_flags; 697 698 if (can_push) { 699 /* prepend cannot fail, checked by caller */ 700 hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *, 701 -head_size); 702 prepend_header = true; 703 704 /* if offload disabled, it is not zeroed below, do it now */ 705 if (!vq->hw->has_tx_offload) 706 virtqueue_clear_net_hdr(hdr); 707 } else if (use_indirect) { 708 /* setup tx ring slot to point to indirect 709 * descriptor list stored in reserved region. 710 * 711 * the first slot in indirect ring is already preset 712 * to point to the header in reserved region 713 */ 714 start_dp[idx].addr = txvq->virtio_net_hdr_mem + 715 RTE_PTR_DIFF(&txr[idx].tx_packed_indir, txr); 716 start_dp[idx].len = (seg_num + 1) * 717 sizeof(struct vring_packed_desc); 718 /* reset flags for indirect desc */ 719 head_flags = VRING_DESC_F_INDIRECT; 720 head_flags |= vq->vq_packed.cached_flags; 721 hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr; 722 723 /* loop below will fill in rest of the indirect elements */ 724 start_dp = txr[idx].tx_packed_indir; 725 idx = 1; 726 } else { 727 /* setup first tx ring slot to point to header 728 * stored in reserved region. 729 */ 730 start_dp[idx].addr = txvq->virtio_net_hdr_mem + 731 RTE_PTR_DIFF(&txr[idx].tx_hdr, txr); 732 start_dp[idx].len = vq->hw->vtnet_hdr_size; 733 hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr; 734 idx++; 735 if (idx >= vq->vq_nentries) { 736 idx -= vq->vq_nentries; 737 vq->vq_packed.cached_flags ^= 738 VRING_PACKED_DESC_F_AVAIL_USED; 739 } 740 } 741 742 virtqueue_xmit_offload(hdr, cookie, vq->hw->has_tx_offload); 743 744 do { 745 uint16_t flags; 746 747 start_dp[idx].addr = rte_mbuf_data_iova(cookie); 748 start_dp[idx].len = cookie->data_len; 749 if (prepend_header) { 750 start_dp[idx].addr -= head_size; 751 start_dp[idx].len += head_size; 752 prepend_header = false; 753 } 754 755 if (likely(idx != head_idx)) { 756 flags = cookie->next ? VRING_DESC_F_NEXT : 0; 757 flags |= vq->vq_packed.cached_flags; 758 start_dp[idx].flags = flags; 759 } 760 prev = idx; 761 idx++; 762 if (idx >= vq->vq_nentries) { 763 idx -= vq->vq_nentries; 764 vq->vq_packed.cached_flags ^= 765 VRING_PACKED_DESC_F_AVAIL_USED; 766 } 767 } while ((cookie = cookie->next) != NULL); 768 769 start_dp[prev].id = id; 770 771 if (use_indirect) { 772 idx = head_idx; 773 if (++idx >= vq->vq_nentries) { 774 idx -= vq->vq_nentries; 775 vq->vq_packed.cached_flags ^= 776 VRING_PACKED_DESC_F_AVAIL_USED; 777 } 778 } 779 780 vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed); 781 vq->vq_avail_idx = idx; 782 783 if (!in_order) { 784 vq->vq_desc_head_idx = dxp->next; 785 if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END) 786 vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END; 787 } 788 789 virtqueue_store_flags_packed(head_dp, head_flags, 790 vq->hw->weak_barriers); 791 } 792 793 static void 794 vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id) 795 { 796 struct vq_desc_extra *dxp; 797 798 dxp = &vq->vq_descx[id]; 799 vq->vq_free_cnt += dxp->ndescs; 800 801 if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END) 802 vq->vq_desc_head_idx = id; 803 else 804 vq->vq_descx[vq->vq_desc_tail_idx].next = id; 805 806 vq->vq_desc_tail_idx = id; 807 dxp->next = VQ_RING_DESC_CHAIN_END; 808 } 809 810 static void 811 virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, int num) 812 { 813 uint16_t used_idx, id, curr_id, free_cnt = 0; 814 uint16_t size = vq->vq_nentries; 815 struct vring_packed_desc *desc = vq->vq_packed.ring.desc; 816 struct vq_desc_extra *dxp; 817 818 used_idx = vq->vq_used_cons_idx; 819 /* desc_is_used has a load-acquire or rte_io_rmb inside 820 * and wait for used desc in virtqueue. 821 */ 822 while (num > 0 && desc_is_used(&desc[used_idx], vq)) { 823 id = desc[used_idx].id; 824 do { 825 curr_id = used_idx; 826 dxp = &vq->vq_descx[used_idx]; 827 used_idx += dxp->ndescs; 828 free_cnt += dxp->ndescs; 829 num -= dxp->ndescs; 830 if (used_idx >= size) { 831 used_idx -= size; 832 vq->vq_packed.used_wrap_counter ^= 1; 833 } 834 if (dxp->cookie != NULL) { 835 rte_pktmbuf_free(dxp->cookie); 836 dxp->cookie = NULL; 837 } 838 } while (curr_id != id); 839 } 840 vq->vq_used_cons_idx = used_idx; 841 vq->vq_free_cnt += free_cnt; 842 } 843 844 static void 845 virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, int num) 846 { 847 uint16_t used_idx, id; 848 uint16_t size = vq->vq_nentries; 849 struct vring_packed_desc *desc = vq->vq_packed.ring.desc; 850 struct vq_desc_extra *dxp; 851 852 used_idx = vq->vq_used_cons_idx; 853 /* desc_is_used has a load-acquire or rte_io_rmb inside 854 * and wait for used desc in virtqueue. 855 */ 856 while (num-- && desc_is_used(&desc[used_idx], vq)) { 857 id = desc[used_idx].id; 858 dxp = &vq->vq_descx[id]; 859 vq->vq_used_cons_idx += dxp->ndescs; 860 if (vq->vq_used_cons_idx >= size) { 861 vq->vq_used_cons_idx -= size; 862 vq->vq_packed.used_wrap_counter ^= 1; 863 } 864 vq_ring_free_id_packed(vq, id); 865 if (dxp->cookie != NULL) { 866 rte_pktmbuf_free(dxp->cookie); 867 dxp->cookie = NULL; 868 } 869 used_idx = vq->vq_used_cons_idx; 870 } 871 } 872 873 /* Cleanup from completed transmits. */ 874 static inline void 875 virtio_xmit_cleanup_packed(struct virtqueue *vq, int num, int in_order) 876 { 877 if (in_order) 878 virtio_xmit_cleanup_inorder_packed(vq, num); 879 else 880 virtio_xmit_cleanup_normal_packed(vq, num); 881 } 882 883 static inline void 884 virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num) 885 { 886 uint16_t i, used_idx, desc_idx; 887 for (i = 0; i < num; i++) { 888 struct vring_used_elem *uep; 889 struct vq_desc_extra *dxp; 890 891 used_idx = (uint16_t)(vq->vq_used_cons_idx & 892 (vq->vq_nentries - 1)); 893 uep = &vq->vq_split.ring.used->ring[used_idx]; 894 895 desc_idx = (uint16_t)uep->id; 896 dxp = &vq->vq_descx[desc_idx]; 897 vq->vq_used_cons_idx++; 898 vq_ring_free_chain(vq, desc_idx); 899 900 if (dxp->cookie != NULL) { 901 rte_pktmbuf_free(dxp->cookie); 902 dxp->cookie = NULL; 903 } 904 } 905 } 906 907 /* Cleanup from completed inorder transmits. */ 908 static __rte_always_inline void 909 virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num) 910 { 911 uint16_t i, idx = vq->vq_used_cons_idx; 912 int16_t free_cnt = 0; 913 struct vq_desc_extra *dxp = NULL; 914 915 if (unlikely(num == 0)) 916 return; 917 918 for (i = 0; i < num; i++) { 919 dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)]; 920 free_cnt += dxp->ndescs; 921 if (dxp->cookie != NULL) { 922 rte_pktmbuf_free(dxp->cookie); 923 dxp->cookie = NULL; 924 } 925 } 926 927 vq->vq_free_cnt += free_cnt; 928 vq->vq_used_cons_idx = idx; 929 } 930 #endif /* _VIRTQUEUE_H_ */ 931