xref: /dpdk/drivers/net/sfc/sfc_tx.c (revision d38febb08d57fec29fed27a2d12a507fc6fcdfa1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include "sfc.h"
11 #include "sfc_debug.h"
12 #include "sfc_log.h"
13 #include "sfc_ev.h"
14 #include "sfc_tx.h"
15 #include "sfc_tweak.h"
16 #include "sfc_kvargs.h"
17 
18 /*
19  * Maximum number of TX queue flush attempts in case of
20  * failure or flush timeout
21  */
22 #define SFC_TX_QFLUSH_ATTEMPTS		(3)
23 
24 /*
25  * Time to wait between event queue polling attempts when waiting for TX
26  * queue flush done or flush failed events
27  */
28 #define SFC_TX_QFLUSH_POLL_WAIT_MS	(1)
29 
30 /*
31  * Maximum number of event queue polling attempts when waiting for TX queue
32  * flush done or flush failed events; it defines TX queue flush attempt timeout
33  * together with SFC_TX_QFLUSH_POLL_WAIT_MS
34  */
35 #define SFC_TX_QFLUSH_POLL_ATTEMPTS	(2000)
36 
37 struct sfc_txq_info *
38 sfc_txq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
39 			   sfc_ethdev_qid_t ethdev_qid)
40 {
41 	sfc_sw_index_t sw_index;
42 
43 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_txq_count);
44 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
45 
46 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
47 	return &sas->txq_info[sw_index];
48 }
49 
50 static uint64_t
51 sfc_tx_get_offload_mask(struct sfc_adapter *sa)
52 {
53 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
54 	uint64_t no_caps = 0;
55 
56 	if (!encp->enc_hw_tx_insert_vlan_enabled)
57 		no_caps |= DEV_TX_OFFLOAD_VLAN_INSERT;
58 
59 	if (!encp->enc_tunnel_encapsulations_supported)
60 		no_caps |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
61 
62 	if (!sa->tso)
63 		no_caps |= DEV_TX_OFFLOAD_TCP_TSO;
64 
65 	if (!sa->tso_encap ||
66 	    (encp->enc_tunnel_encapsulations_supported &
67 	     (1u << EFX_TUNNEL_PROTOCOL_VXLAN)) == 0)
68 		no_caps |= DEV_TX_OFFLOAD_VXLAN_TNL_TSO;
69 
70 	if (!sa->tso_encap ||
71 	    (encp->enc_tunnel_encapsulations_supported &
72 	     (1u << EFX_TUNNEL_PROTOCOL_GENEVE)) == 0)
73 		no_caps |= DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
74 
75 	return ~no_caps;
76 }
77 
78 uint64_t
79 sfc_tx_get_dev_offload_caps(struct sfc_adapter *sa)
80 {
81 	return sa->priv.dp_tx->dev_offload_capa & sfc_tx_get_offload_mask(sa);
82 }
83 
84 uint64_t
85 sfc_tx_get_queue_offload_caps(struct sfc_adapter *sa)
86 {
87 	return sa->priv.dp_tx->queue_offload_capa & sfc_tx_get_offload_mask(sa);
88 }
89 
90 static int
91 sfc_tx_qcheck_conf(struct sfc_adapter *sa, unsigned int txq_max_fill_level,
92 		   const struct rte_eth_txconf *tx_conf,
93 		   uint64_t offloads)
94 {
95 	int rc = 0;
96 
97 	if (tx_conf->tx_rs_thresh != 0) {
98 		sfc_err(sa, "RS bit in transmit descriptor is not supported");
99 		rc = EINVAL;
100 	}
101 
102 	if (tx_conf->tx_free_thresh > txq_max_fill_level) {
103 		sfc_err(sa,
104 			"TxQ free threshold too large: %u vs maximum %u",
105 			tx_conf->tx_free_thresh, txq_max_fill_level);
106 		rc = EINVAL;
107 	}
108 
109 	if (tx_conf->tx_thresh.pthresh != 0 ||
110 	    tx_conf->tx_thresh.hthresh != 0 ||
111 	    tx_conf->tx_thresh.wthresh != 0) {
112 		sfc_warn(sa,
113 			"prefetch/host/writeback thresholds are not supported");
114 	}
115 
116 	/* We either perform both TCP and UDP offload, or no offload at all */
117 	if (((offloads & DEV_TX_OFFLOAD_TCP_CKSUM) == 0) !=
118 	    ((offloads & DEV_TX_OFFLOAD_UDP_CKSUM) == 0)) {
119 		sfc_err(sa, "TCP and UDP offloads can't be set independently");
120 		rc = EINVAL;
121 	}
122 
123 	return rc;
124 }
125 
126 void
127 sfc_tx_qflush_done(struct sfc_txq_info *txq_info)
128 {
129 	txq_info->state |= SFC_TXQ_FLUSHED;
130 	txq_info->state &= ~SFC_TXQ_FLUSHING;
131 }
132 
133 int
134 sfc_tx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
135 	     uint16_t nb_tx_desc, unsigned int socket_id,
136 	     const struct rte_eth_txconf *tx_conf)
137 {
138 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
139 	sfc_ethdev_qid_t ethdev_qid;
140 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
141 	unsigned int txq_entries;
142 	unsigned int evq_entries;
143 	unsigned int txq_max_fill_level;
144 	struct sfc_txq_info *txq_info;
145 	struct sfc_evq *evq;
146 	struct sfc_txq *txq;
147 	int rc = 0;
148 	struct sfc_dp_tx_qcreate_info info;
149 	uint64_t offloads;
150 	struct sfc_dp_tx_hw_limits hw_limits;
151 
152 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
153 
154 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
155 
156 	memset(&hw_limits, 0, sizeof(hw_limits));
157 	hw_limits.txq_max_entries = sa->txq_max_entries;
158 	hw_limits.txq_min_entries = sa->txq_min_entries;
159 
160 	rc = sa->priv.dp_tx->qsize_up_rings(nb_tx_desc, &hw_limits,
161 					    &txq_entries, &evq_entries,
162 					    &txq_max_fill_level);
163 	if (rc != 0)
164 		goto fail_size_up_rings;
165 	SFC_ASSERT(txq_entries >= sa->txq_min_entries);
166 	SFC_ASSERT(txq_entries <= sa->txq_max_entries);
167 	SFC_ASSERT(txq_entries >= nb_tx_desc);
168 	SFC_ASSERT(txq_max_fill_level <= nb_tx_desc);
169 
170 	offloads = tx_conf->offloads;
171 	/* Add device level Tx offloads if the queue is an ethdev Tx queue */
172 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
173 		offloads |= sa->eth_dev->data->dev_conf.txmode.offloads;
174 
175 	rc = sfc_tx_qcheck_conf(sa, txq_max_fill_level, tx_conf, offloads);
176 	if (rc != 0)
177 		goto fail_bad_conf;
178 
179 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
180 	txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
181 
182 	txq_info->entries = txq_entries;
183 
184 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index,
185 			  evq_entries, socket_id, &evq);
186 	if (rc != 0)
187 		goto fail_ev_qinit;
188 
189 	txq = &sa->txq_ctrl[sw_index];
190 	txq->hw_index = sw_index;
191 	txq->evq = evq;
192 	txq_info->free_thresh =
193 		(tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
194 		SFC_TX_DEFAULT_FREE_THRESH;
195 	txq_info->offloads = offloads;
196 
197 	rc = sfc_dma_alloc(sa, "txq", sw_index,
198 			   efx_txq_size(sa->nic, txq_info->entries),
199 			   socket_id, &txq->mem);
200 	if (rc != 0)
201 		goto fail_dma_alloc;
202 
203 	memset(&info, 0, sizeof(info));
204 	info.max_fill_level = txq_max_fill_level;
205 	info.free_thresh = txq_info->free_thresh;
206 	info.offloads = offloads;
207 	info.txq_entries = txq_info->entries;
208 	info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max;
209 	info.txq_hw_ring = txq->mem.esm_base;
210 	info.evq_entries = evq_entries;
211 	info.evq_hw_ring = evq->mem.esm_base;
212 	info.hw_index = txq->hw_index;
213 	info.mem_bar = sa->mem_bar.esb_base;
214 	info.vi_window_shift = encp->enc_vi_window_shift;
215 	info.tso_tcp_header_offset_limit =
216 		encp->enc_tx_tso_tcp_header_offset_limit;
217 	info.tso_max_nb_header_descs =
218 		RTE_MIN(encp->enc_tx_tso_max_header_ndescs,
219 			(uint32_t)UINT16_MAX);
220 	info.tso_max_header_len =
221 		RTE_MIN(encp->enc_tx_tso_max_header_length,
222 			(uint32_t)UINT16_MAX);
223 	info.tso_max_nb_payload_descs =
224 		RTE_MIN(encp->enc_tx_tso_max_payload_ndescs,
225 			(uint32_t)UINT16_MAX);
226 	info.tso_max_payload_len = encp->enc_tx_tso_max_payload_length;
227 	info.tso_max_nb_outgoing_frames = encp->enc_tx_tso_max_nframes;
228 
229 	rc = sa->priv.dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index,
230 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
231 				     socket_id, &info, &txq_info->dp);
232 	if (rc != 0)
233 		goto fail_dp_tx_qinit;
234 
235 	evq->dp_txq = txq_info->dp;
236 
237 	txq_info->state = SFC_TXQ_INITIALIZED;
238 
239 	txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);
240 
241 	return 0;
242 
243 fail_dp_tx_qinit:
244 	sfc_dma_free(sa, &txq->mem);
245 
246 fail_dma_alloc:
247 	sfc_ev_qfini(evq);
248 
249 fail_ev_qinit:
250 	txq_info->entries = 0;
251 
252 fail_bad_conf:
253 fail_size_up_rings:
254 	sfc_log_init(sa, "failed (TxQ = %d (internal %u), rc = %d)", ethdev_qid,
255 		     sw_index, rc);
256 	return rc;
257 }
258 
259 void
260 sfc_tx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
261 {
262 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
263 	sfc_ethdev_qid_t ethdev_qid;
264 	struct sfc_txq_info *txq_info;
265 	struct sfc_txq *txq;
266 
267 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
268 
269 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
270 
271 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
272 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
273 		sa->eth_dev->data->tx_queues[ethdev_qid] = NULL;
274 
275 	txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
276 
277 	SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
278 
279 	sa->priv.dp_tx->qdestroy(txq_info->dp);
280 	txq_info->dp = NULL;
281 
282 	txq_info->state &= ~SFC_TXQ_INITIALIZED;
283 	txq_info->entries = 0;
284 
285 	txq = &sa->txq_ctrl[sw_index];
286 
287 	sfc_dma_free(sa, &txq->mem);
288 
289 	sfc_ev_qfini(txq->evq);
290 	txq->evq = NULL;
291 }
292 
293 static int
294 sfc_tx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
295 {
296 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
297 	sfc_ethdev_qid_t ethdev_qid;
298 
299 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
300 
301 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
302 
303 	return 0;
304 }
305 
306 static int
307 sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
308 {
309 	int rc = 0;
310 
311 	switch (txmode->mq_mode) {
312 	case ETH_MQ_TX_NONE:
313 		break;
314 	default:
315 		sfc_err(sa, "Tx multi-queue mode %u not supported",
316 			txmode->mq_mode);
317 		rc = EINVAL;
318 	}
319 
320 	/*
321 	 * These features are claimed to be i40e-specific,
322 	 * but it does make sense to double-check their absence
323 	 */
324 	if (txmode->hw_vlan_reject_tagged) {
325 		sfc_err(sa, "Rejecting tagged packets not supported");
326 		rc = EINVAL;
327 	}
328 
329 	if (txmode->hw_vlan_reject_untagged) {
330 		sfc_err(sa, "Rejecting untagged packets not supported");
331 		rc = EINVAL;
332 	}
333 
334 	if (txmode->hw_vlan_insert_pvid) {
335 		sfc_err(sa, "Port-based VLAN insertion not supported");
336 		rc = EINVAL;
337 	}
338 
339 	return rc;
340 }
341 
342 /**
343  * Destroy excess queues that are no longer needed after reconfiguration
344  * or complete close.
345  */
346 static void
347 sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues)
348 {
349 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
350 	sfc_sw_index_t sw_index;
351 	sfc_ethdev_qid_t ethdev_qid;
352 
353 	SFC_ASSERT(nb_tx_queues <= sas->ethdev_txq_count);
354 
355 	/*
356 	 * Finalize only ethdev queues since other ones are finalized only
357 	 * on device close and they may require additional deinitializaton.
358 	 */
359 	ethdev_qid = sas->ethdev_txq_count;
360 	while (--ethdev_qid >= (int)nb_tx_queues) {
361 		struct sfc_txq_info *txq_info;
362 
363 		sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
364 		txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
365 		if (txq_info->state & SFC_TXQ_INITIALIZED)
366 			sfc_tx_qfini(sa, sw_index);
367 	}
368 
369 	sas->ethdev_txq_count = nb_tx_queues;
370 }
371 
372 int
373 sfc_tx_configure(struct sfc_adapter *sa)
374 {
375 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
376 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
377 	const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
378 	const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues;
379 	int rc = 0;
380 
381 	sfc_log_init(sa, "nb_tx_queues=%u (old %u)",
382 		     nb_tx_queues, sas->ethdev_txq_count);
383 
384 	/*
385 	 * The datapath implementation assumes absence of boundary
386 	 * limits on Tx DMA descriptors. Addition of these checks on
387 	 * datapath would simply make the datapath slower.
388 	 */
389 	if (encp->enc_tx_dma_desc_boundary != 0) {
390 		rc = ENOTSUP;
391 		goto fail_tx_dma_desc_boundary;
392 	}
393 
394 	rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
395 	if (rc != 0)
396 		goto fail_check_mode;
397 
398 	if (nb_tx_queues == sas->txq_count)
399 		goto done;
400 
401 	if (sas->txq_info == NULL) {
402 		sas->txq_info = rte_calloc_socket("sfc-txqs", nb_tx_queues,
403 						  sizeof(sas->txq_info[0]), 0,
404 						  sa->socket_id);
405 		if (sas->txq_info == NULL)
406 			goto fail_txqs_alloc;
407 
408 		/*
409 		 * Allocate primary process only TxQ control from heap
410 		 * since it should not be shared.
411 		 */
412 		rc = ENOMEM;
413 		sa->txq_ctrl = calloc(nb_tx_queues, sizeof(sa->txq_ctrl[0]));
414 		if (sa->txq_ctrl == NULL)
415 			goto fail_txqs_ctrl_alloc;
416 	} else {
417 		struct sfc_txq_info *new_txq_info;
418 		struct sfc_txq *new_txq_ctrl;
419 
420 		if (nb_tx_queues < sas->ethdev_txq_count)
421 			sfc_tx_fini_queues(sa, nb_tx_queues);
422 
423 		new_txq_info =
424 			rte_realloc(sas->txq_info,
425 				    nb_tx_queues * sizeof(sas->txq_info[0]), 0);
426 		if (new_txq_info == NULL && nb_tx_queues > 0)
427 			goto fail_txqs_realloc;
428 
429 		new_txq_ctrl = realloc(sa->txq_ctrl,
430 				       nb_tx_queues * sizeof(sa->txq_ctrl[0]));
431 		if (new_txq_ctrl == NULL && nb_tx_queues > 0)
432 			goto fail_txqs_ctrl_realloc;
433 
434 		sas->txq_info = new_txq_info;
435 		sa->txq_ctrl = new_txq_ctrl;
436 		if (nb_tx_queues > sas->ethdev_txq_count) {
437 			memset(&sas->txq_info[sas->ethdev_txq_count], 0,
438 			       (nb_tx_queues - sas->ethdev_txq_count) *
439 			       sizeof(sas->txq_info[0]));
440 			memset(&sa->txq_ctrl[sas->ethdev_txq_count], 0,
441 			       (nb_tx_queues - sas->ethdev_txq_count) *
442 			       sizeof(sa->txq_ctrl[0]));
443 		}
444 	}
445 
446 	while (sas->ethdev_txq_count < nb_tx_queues) {
447 		sfc_sw_index_t sw_index;
448 
449 		sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas,
450 				sas->ethdev_txq_count);
451 		rc = sfc_tx_qinit_info(sa, sw_index);
452 		if (rc != 0)
453 			goto fail_tx_qinit_info;
454 
455 		sas->ethdev_txq_count++;
456 	}
457 
458 	sas->txq_count = sas->ethdev_txq_count;
459 
460 done:
461 	return 0;
462 
463 fail_tx_qinit_info:
464 fail_txqs_ctrl_realloc:
465 fail_txqs_realloc:
466 fail_txqs_ctrl_alloc:
467 fail_txqs_alloc:
468 	sfc_tx_close(sa);
469 
470 fail_check_mode:
471 fail_tx_dma_desc_boundary:
472 	sfc_log_init(sa, "failed (rc = %d)", rc);
473 	return rc;
474 }
475 
476 void
477 sfc_tx_close(struct sfc_adapter *sa)
478 {
479 	sfc_tx_fini_queues(sa, 0);
480 
481 	free(sa->txq_ctrl);
482 	sa->txq_ctrl = NULL;
483 
484 	rte_free(sfc_sa2shared(sa)->txq_info);
485 	sfc_sa2shared(sa)->txq_info = NULL;
486 }
487 
488 int
489 sfc_tx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
490 {
491 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
492 	sfc_ethdev_qid_t ethdev_qid;
493 	uint64_t offloads_supported = sfc_tx_get_dev_offload_caps(sa) |
494 				      sfc_tx_get_queue_offload_caps(sa);
495 	struct sfc_txq_info *txq_info;
496 	struct sfc_txq *txq;
497 	struct sfc_evq *evq;
498 	uint16_t flags = 0;
499 	unsigned int desc_index;
500 	int rc = 0;
501 
502 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
503 
504 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
505 
506 	SFC_ASSERT(sw_index < sas->txq_count);
507 	txq_info = &sas->txq_info[sw_index];
508 
509 	SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
510 
511 	txq = &sa->txq_ctrl[sw_index];
512 	evq = txq->evq;
513 
514 	rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_txq_sw_index(sa, sw_index));
515 	if (rc != 0)
516 		goto fail_ev_qstart;
517 
518 	if (txq_info->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
519 		flags |= EFX_TXQ_CKSUM_IPV4;
520 
521 	if (txq_info->offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
522 		flags |= EFX_TXQ_CKSUM_INNER_IPV4;
523 
524 	if ((txq_info->offloads & DEV_TX_OFFLOAD_TCP_CKSUM) ||
525 	    (txq_info->offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
526 		flags |= EFX_TXQ_CKSUM_TCPUDP;
527 
528 		if (offloads_supported & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
529 			flags |= EFX_TXQ_CKSUM_INNER_TCPUDP;
530 	}
531 
532 	if (txq_info->offloads & (DEV_TX_OFFLOAD_TCP_TSO |
533 				  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
534 				  DEV_TX_OFFLOAD_GENEVE_TNL_TSO))
535 		flags |= EFX_TXQ_FATSOV2;
536 
537 	rc = efx_tx_qcreate(sa->nic, txq->hw_index, 0, &txq->mem,
538 			    txq_info->entries, 0 /* not used on EF10 */,
539 			    flags, evq->common,
540 			    &txq->common, &desc_index);
541 	if (rc != 0) {
542 		if (sa->tso && (rc == ENOSPC))
543 			sfc_err(sa, "ran out of TSO contexts");
544 
545 		goto fail_tx_qcreate;
546 	}
547 
548 	efx_tx_qenable(txq->common);
549 
550 	txq_info->state |= SFC_TXQ_STARTED;
551 
552 	rc = sa->priv.dp_tx->qstart(txq_info->dp, evq->read_ptr, desc_index);
553 	if (rc != 0)
554 		goto fail_dp_qstart;
555 
556 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID) {
557 		struct rte_eth_dev_data *dev_data;
558 
559 		/*
560 		 * It sems to be used by DPDK for debug purposes only
561 		 * ('rte_ether').
562 		 */
563 		dev_data = sa->eth_dev->data;
564 		dev_data->tx_queue_state[ethdev_qid] =
565 			RTE_ETH_QUEUE_STATE_STARTED;
566 	}
567 
568 	return 0;
569 
570 fail_dp_qstart:
571 	txq_info->state = SFC_TXQ_INITIALIZED;
572 	efx_tx_qdestroy(txq->common);
573 
574 fail_tx_qcreate:
575 	sfc_ev_qstop(evq);
576 
577 fail_ev_qstart:
578 	return rc;
579 }
580 
581 void
582 sfc_tx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
583 {
584 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
585 	sfc_ethdev_qid_t ethdev_qid;
586 	struct sfc_txq_info *txq_info;
587 	struct sfc_txq *txq;
588 	unsigned int retry_count;
589 	unsigned int wait_count;
590 	int rc;
591 
592 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
593 
594 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
595 
596 	SFC_ASSERT(sw_index < sas->txq_count);
597 	txq_info = &sas->txq_info[sw_index];
598 
599 	if (txq_info->state == SFC_TXQ_INITIALIZED)
600 		return;
601 
602 	SFC_ASSERT(txq_info->state & SFC_TXQ_STARTED);
603 
604 	txq = &sa->txq_ctrl[sw_index];
605 	sa->priv.dp_tx->qstop(txq_info->dp, &txq->evq->read_ptr);
606 
607 	/*
608 	 * Retry TX queue flushing in case of flush failed or
609 	 * timeout; in the worst case it can delay for 6 seconds
610 	 */
611 	for (retry_count = 0;
612 	     ((txq_info->state & SFC_TXQ_FLUSHED) == 0) &&
613 	     (retry_count < SFC_TX_QFLUSH_ATTEMPTS);
614 	     ++retry_count) {
615 		rc = efx_tx_qflush(txq->common);
616 		if (rc != 0) {
617 			txq_info->state |= (rc == EALREADY) ?
618 				SFC_TXQ_FLUSHED : SFC_TXQ_FLUSH_FAILED;
619 			break;
620 		}
621 
622 		/*
623 		 * Wait for TX queue flush done or flush failed event at least
624 		 * SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
625 		 * than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
626 		 * by SFC_TX_QFLUSH_POLL_ATTEMPTS)
627 		 */
628 		wait_count = 0;
629 		do {
630 			rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
631 			sfc_ev_qpoll(txq->evq);
632 		} while ((txq_info->state & SFC_TXQ_FLUSHING) &&
633 			 wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);
634 
635 		if (txq_info->state & SFC_TXQ_FLUSHING)
636 			sfc_err(sa, "TxQ %d (internal %u) flush timed out",
637 				ethdev_qid, sw_index);
638 
639 		if (txq_info->state & SFC_TXQ_FLUSHED)
640 			sfc_notice(sa, "TxQ %d (internal %u) flushed",
641 				   ethdev_qid, sw_index);
642 	}
643 
644 	sa->priv.dp_tx->qreap(txq_info->dp);
645 
646 	txq_info->state = SFC_TXQ_INITIALIZED;
647 
648 	efx_tx_qdestroy(txq->common);
649 
650 	sfc_ev_qstop(txq->evq);
651 
652 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID) {
653 		struct rte_eth_dev_data *dev_data;
654 
655 		/*
656 		 * It seems to be used by DPDK for debug purposes only
657 		 * ('rte_ether')
658 		 */
659 		dev_data = sa->eth_dev->data;
660 		dev_data->tx_queue_state[ethdev_qid] =
661 			RTE_ETH_QUEUE_STATE_STOPPED;
662 	}
663 }
664 
665 int
666 sfc_tx_start(struct sfc_adapter *sa)
667 {
668 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
669 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
670 	sfc_sw_index_t sw_index;
671 	int rc = 0;
672 
673 	sfc_log_init(sa, "txq_count = %u (internal %u)",
674 		     sas->ethdev_txq_count, sas->txq_count);
675 
676 	if (sa->tso) {
677 		if (!encp->enc_fw_assisted_tso_v2_enabled &&
678 		    !encp->enc_tso_v3_enabled) {
679 			sfc_warn(sa, "TSO support was unable to be restored");
680 			sa->tso = B_FALSE;
681 			sa->tso_encap = B_FALSE;
682 		}
683 	}
684 
685 	if (sa->tso_encap && !encp->enc_fw_assisted_tso_v2_encap_enabled &&
686 	    !encp->enc_tso_v3_enabled) {
687 		sfc_warn(sa, "Encapsulated TSO support was unable to be restored");
688 		sa->tso_encap = B_FALSE;
689 	}
690 
691 	rc = efx_tx_init(sa->nic);
692 	if (rc != 0)
693 		goto fail_efx_tx_init;
694 
695 	for (sw_index = 0; sw_index < sas->txq_count; ++sw_index) {
696 		if (sas->txq_info[sw_index].state == SFC_TXQ_INITIALIZED &&
697 		    (!(sas->txq_info[sw_index].deferred_start) ||
698 		     sas->txq_info[sw_index].deferred_started)) {
699 			rc = sfc_tx_qstart(sa, sw_index);
700 			if (rc != 0)
701 				goto fail_tx_qstart;
702 		}
703 	}
704 
705 	return 0;
706 
707 fail_tx_qstart:
708 	while (sw_index-- > 0)
709 		sfc_tx_qstop(sa, sw_index);
710 
711 	efx_tx_fini(sa->nic);
712 
713 fail_efx_tx_init:
714 	sfc_log_init(sa, "failed (rc = %d)", rc);
715 	return rc;
716 }
717 
718 void
719 sfc_tx_stop(struct sfc_adapter *sa)
720 {
721 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
722 	sfc_sw_index_t sw_index;
723 
724 	sfc_log_init(sa, "txq_count = %u (internal %u)",
725 		     sas->ethdev_txq_count, sas->txq_count);
726 
727 	sw_index = sas->txq_count;
728 	while (sw_index-- > 0) {
729 		if (sas->txq_info[sw_index].state & SFC_TXQ_STARTED)
730 			sfc_tx_qstop(sa, sw_index);
731 	}
732 
733 	efx_tx_fini(sa->nic);
734 }
735 
736 static void
737 sfc_efx_tx_reap(struct sfc_efx_txq *txq)
738 {
739 	unsigned int completed;
740 
741 	sfc_ev_qpoll(txq->evq);
742 
743 	for (completed = txq->completed;
744 	     completed != txq->pending; completed++) {
745 		struct sfc_efx_tx_sw_desc *txd;
746 
747 		txd = &txq->sw_ring[completed & txq->ptr_mask];
748 
749 		if (txd->mbuf != NULL) {
750 			rte_pktmbuf_free(txd->mbuf);
751 			txd->mbuf = NULL;
752 		}
753 	}
754 
755 	txq->completed = completed;
756 }
757 
758 /*
759  * The function is used to insert or update VLAN tag;
760  * the firmware has state of the firmware tag to insert per TxQ
761  * (controlled by option descriptors), hence, if the tag of the
762  * packet to be sent is different from one remembered by the firmware,
763  * the function will update it
764  */
765 static unsigned int
766 sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m,
767 			    efx_desc_t **pend)
768 {
769 	uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ?
770 			     m->vlan_tci : 0);
771 
772 	if (this_tag == txq->hw_vlan_tci)
773 		return 0;
774 
775 	/*
776 	 * The expression inside SFC_ASSERT() is not desired to be checked in
777 	 * a non-debug build because it might be too expensive on the data path
778 	 */
779 	SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);
780 
781 	efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
782 				    *pend);
783 	(*pend)++;
784 	txq->hw_vlan_tci = this_tag;
785 
786 	return 1;
787 }
788 
789 static uint16_t
790 sfc_efx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
791 		     uint16_t nb_pkts)
792 {
793 	struct sfc_dp_txq *dp_txq = tx_queue;
794 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
795 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->evq->sa->nic);
796 	uint16_t i;
797 
798 	for (i = 0; i < nb_pkts; i++) {
799 		int ret;
800 
801 		/*
802 		 * EFX Tx datapath may require extra VLAN descriptor if VLAN
803 		 * insertion offload is requested regardless the offload
804 		 * requested/supported.
805 		 */
806 		ret = sfc_dp_tx_prepare_pkt(tx_pkts[i], 0, SFC_TSOH_STD_LEN,
807 				encp->enc_tx_tso_tcp_header_offset_limit,
808 				txq->max_fill_level, EFX_TX_FATSOV2_OPT_NDESCS,
809 				1);
810 		if (unlikely(ret != 0)) {
811 			rte_errno = ret;
812 			break;
813 		}
814 	}
815 
816 	return i;
817 }
818 
819 static uint16_t
820 sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
821 {
822 	struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue;
823 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
824 	unsigned int added = txq->added;
825 	unsigned int pushed = added;
826 	unsigned int pkts_sent = 0;
827 	efx_desc_t *pend = &txq->pend_desc[0];
828 	const unsigned int hard_max_fill = txq->max_fill_level;
829 	const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
830 	unsigned int fill_level = added - txq->completed;
831 	boolean_t reap_done;
832 	int rc __rte_unused;
833 	struct rte_mbuf **pktp;
834 
835 	if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0))
836 		goto done;
837 
838 	/*
839 	 * If insufficient space for a single packet is present,
840 	 * we should reap; otherwise, we shouldn't do that all the time
841 	 * to avoid latency increase
842 	 */
843 	reap_done = (fill_level > soft_max_fill);
844 
845 	if (reap_done) {
846 		sfc_efx_tx_reap(txq);
847 		/*
848 		 * Recalculate fill level since 'txq->completed'
849 		 * might have changed on reap
850 		 */
851 		fill_level = added - txq->completed;
852 	}
853 
854 	for (pkts_sent = 0, pktp = &tx_pkts[0];
855 	     (pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
856 	     pkts_sent++, pktp++) {
857 		uint16_t		hw_vlan_tci_prev = txq->hw_vlan_tci;
858 		struct rte_mbuf		*m_seg = *pktp;
859 		size_t			pkt_len = m_seg->pkt_len;
860 		unsigned int		pkt_descs = 0;
861 		size_t			in_off = 0;
862 
863 		/*
864 		 * Here VLAN TCI is expected to be zero in case if no
865 		 * DEV_TX_OFFLOAD_VLAN_INSERT capability is advertised;
866 		 * if the calling app ignores the absence of
867 		 * DEV_TX_OFFLOAD_VLAN_INSERT and pushes VLAN TCI, then
868 		 * TX_ERROR will occur
869 		 */
870 		pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend);
871 
872 		if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
873 			/*
874 			 * We expect correct 'pkt->l[2, 3, 4]_len' values
875 			 * to be set correctly by the caller
876 			 */
877 			if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend,
878 					   &pkt_descs, &pkt_len) != 0) {
879 				/* We may have reached this place if packet
880 				 * header linearization is needed but the
881 				 * header length is greater than
882 				 * SFC_TSOH_STD_LEN
883 				 *
884 				 * We will deceive RTE saying that we have sent
885 				 * the packet, but we will actually drop it.
886 				 * Hence, we should revert 'pend' to the
887 				 * previous state (in case we have added
888 				 * VLAN descriptor) and start processing
889 				 * another one packet. But the original
890 				 * mbuf shouldn't be orphaned
891 				 */
892 				pend -= pkt_descs;
893 				txq->hw_vlan_tci = hw_vlan_tci_prev;
894 
895 				rte_pktmbuf_free(*pktp);
896 
897 				continue;
898 			}
899 
900 			/*
901 			 * We've only added 2 FATSOv2 option descriptors
902 			 * and 1 descriptor for the linearized packet header.
903 			 * The outstanding work will be done in the same manner
904 			 * as for the usual non-TSO path
905 			 */
906 		}
907 
908 		for (; m_seg != NULL; m_seg = m_seg->next) {
909 			efsys_dma_addr_t	next_frag;
910 			size_t			seg_len;
911 
912 			seg_len = m_seg->data_len;
913 			next_frag = rte_mbuf_data_iova(m_seg);
914 
915 			/*
916 			 * If we've started TSO transaction few steps earlier,
917 			 * we'll skip packet header using an offset in the
918 			 * current segment (which has been set to the
919 			 * first one containing payload)
920 			 */
921 			seg_len -= in_off;
922 			next_frag += in_off;
923 			in_off = 0;
924 
925 			do {
926 				efsys_dma_addr_t	frag_addr = next_frag;
927 				size_t			frag_len;
928 
929 				/*
930 				 * It is assumed here that there is no
931 				 * limitation on address boundary
932 				 * crossing by DMA descriptor.
933 				 */
934 				frag_len = MIN(seg_len, txq->dma_desc_size_max);
935 				next_frag += frag_len;
936 				seg_len -= frag_len;
937 				pkt_len -= frag_len;
938 
939 				efx_tx_qdesc_dma_create(txq->common,
940 							frag_addr, frag_len,
941 							(pkt_len == 0),
942 							pend++);
943 
944 				pkt_descs++;
945 			} while (seg_len != 0);
946 		}
947 
948 		added += pkt_descs;
949 
950 		fill_level += pkt_descs;
951 		if (unlikely(fill_level > hard_max_fill)) {
952 			/*
953 			 * Our estimation for maximum number of descriptors
954 			 * required to send a packet seems to be wrong.
955 			 * Try to reap (if we haven't yet).
956 			 */
957 			if (!reap_done) {
958 				sfc_efx_tx_reap(txq);
959 				reap_done = B_TRUE;
960 				fill_level = added - txq->completed;
961 				if (fill_level > hard_max_fill) {
962 					pend -= pkt_descs;
963 					txq->hw_vlan_tci = hw_vlan_tci_prev;
964 					break;
965 				}
966 			} else {
967 				pend -= pkt_descs;
968 				txq->hw_vlan_tci = hw_vlan_tci_prev;
969 				break;
970 			}
971 		}
972 
973 		/* Assign mbuf to the last used desc */
974 		txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
975 	}
976 
977 	if (likely(pkts_sent > 0)) {
978 		rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
979 				       pend - &txq->pend_desc[0],
980 				       txq->completed, &txq->added);
981 		SFC_ASSERT(rc == 0);
982 
983 		if (likely(pushed != txq->added)) {
984 			efx_tx_qpush(txq->common, txq->added, pushed);
985 			txq->dp.dpq.tx_dbells++;
986 		}
987 	}
988 
989 #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
990 	if (!reap_done)
991 		sfc_efx_tx_reap(txq);
992 #endif
993 
994 done:
995 	return pkts_sent;
996 }
997 
998 const struct sfc_dp_tx *
999 sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1000 {
1001 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1002 	struct rte_eth_dev *eth_dev;
1003 	struct sfc_adapter_priv *sap;
1004 
1005 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1006 	eth_dev = &rte_eth_devices[dpq->port_id];
1007 
1008 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
1009 
1010 	return sap->dp_tx;
1011 }
1012 
1013 struct sfc_txq_info *
1014 sfc_txq_info_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1015 {
1016 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1017 	struct rte_eth_dev *eth_dev;
1018 	struct sfc_adapter_shared *sas;
1019 
1020 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1021 	eth_dev = &rte_eth_devices[dpq->port_id];
1022 
1023 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
1024 
1025 	SFC_ASSERT(dpq->queue_id < sas->txq_count);
1026 	return &sas->txq_info[dpq->queue_id];
1027 }
1028 
1029 struct sfc_txq *
1030 sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1031 {
1032 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1033 	struct rte_eth_dev *eth_dev;
1034 	struct sfc_adapter *sa;
1035 
1036 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1037 	eth_dev = &rte_eth_devices[dpq->port_id];
1038 
1039 	sa = sfc_adapter_by_eth_dev(eth_dev);
1040 
1041 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->txq_count);
1042 	return &sa->txq_ctrl[dpq->queue_id];
1043 }
1044 
1045 static sfc_dp_tx_qsize_up_rings_t sfc_efx_tx_qsize_up_rings;
1046 static int
1047 sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc,
1048 			  __rte_unused struct sfc_dp_tx_hw_limits *limits,
1049 			  unsigned int *txq_entries,
1050 			  unsigned int *evq_entries,
1051 			  unsigned int *txq_max_fill_level)
1052 {
1053 	*txq_entries = nb_tx_desc;
1054 	*evq_entries = nb_tx_desc;
1055 	*txq_max_fill_level = EFX_TXQ_LIMIT(*txq_entries);
1056 	return 0;
1057 }
1058 
1059 static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate;
1060 static int
1061 sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id,
1062 		   const struct rte_pci_addr *pci_addr,
1063 		   int socket_id,
1064 		   const struct sfc_dp_tx_qcreate_info *info,
1065 		   struct sfc_dp_txq **dp_txqp)
1066 {
1067 	struct sfc_efx_txq *txq;
1068 	struct sfc_txq *ctrl_txq;
1069 	int rc;
1070 
1071 	rc = ENOMEM;
1072 	txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq),
1073 				 RTE_CACHE_LINE_SIZE, socket_id);
1074 	if (txq == NULL)
1075 		goto fail_txq_alloc;
1076 
1077 	sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
1078 
1079 	rc = ENOMEM;
1080 	txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc",
1081 					   EFX_TXQ_LIMIT(info->txq_entries),
1082 					   sizeof(*txq->pend_desc), 0,
1083 					   socket_id);
1084 	if (txq->pend_desc == NULL)
1085 		goto fail_pend_desc_alloc;
1086 
1087 	rc = ENOMEM;
1088 	txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring",
1089 					 info->txq_entries,
1090 					 sizeof(*txq->sw_ring),
1091 					 RTE_CACHE_LINE_SIZE, socket_id);
1092 	if (txq->sw_ring == NULL)
1093 		goto fail_sw_ring_alloc;
1094 
1095 	ctrl_txq = sfc_txq_by_dp_txq(&txq->dp);
1096 	if (ctrl_txq->evq->sa->tso) {
1097 		rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring,
1098 						 info->txq_entries, socket_id);
1099 		if (rc != 0)
1100 			goto fail_alloc_tsoh_objs;
1101 	}
1102 
1103 	txq->evq = ctrl_txq->evq;
1104 	txq->ptr_mask = info->txq_entries - 1;
1105 	txq->max_fill_level = info->max_fill_level;
1106 	txq->free_thresh = info->free_thresh;
1107 	txq->dma_desc_size_max = info->dma_desc_size_max;
1108 
1109 	*dp_txqp = &txq->dp;
1110 	return 0;
1111 
1112 fail_alloc_tsoh_objs:
1113 	rte_free(txq->sw_ring);
1114 
1115 fail_sw_ring_alloc:
1116 	rte_free(txq->pend_desc);
1117 
1118 fail_pend_desc_alloc:
1119 	rte_free(txq);
1120 
1121 fail_txq_alloc:
1122 	return rc;
1123 }
1124 
1125 static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy;
1126 static void
1127 sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq)
1128 {
1129 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1130 
1131 	sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1);
1132 	rte_free(txq->sw_ring);
1133 	rte_free(txq->pend_desc);
1134 	rte_free(txq);
1135 }
1136 
1137 static sfc_dp_tx_qstart_t sfc_efx_tx_qstart;
1138 static int
1139 sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq,
1140 		  __rte_unused unsigned int evq_read_ptr,
1141 		  unsigned int txq_desc_index)
1142 {
1143 	/* libefx-based datapath is specific to libefx-based PMD */
1144 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1145 	struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq);
1146 
1147 	txq->common = ctrl_txq->common;
1148 
1149 	txq->pending = txq->completed = txq->added = txq_desc_index;
1150 	txq->hw_vlan_tci = 0;
1151 
1152 	txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING);
1153 
1154 	return 0;
1155 }
1156 
1157 static sfc_dp_tx_qstop_t sfc_efx_tx_qstop;
1158 static void
1159 sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq,
1160 		 __rte_unused unsigned int *evq_read_ptr)
1161 {
1162 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1163 
1164 	txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING;
1165 }
1166 
1167 static sfc_dp_tx_qreap_t sfc_efx_tx_qreap;
1168 static void
1169 sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq)
1170 {
1171 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1172 	unsigned int txds;
1173 
1174 	sfc_efx_tx_reap(txq);
1175 
1176 	for (txds = 0; txds <= txq->ptr_mask; txds++) {
1177 		if (txq->sw_ring[txds].mbuf != NULL) {
1178 			rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
1179 			txq->sw_ring[txds].mbuf = NULL;
1180 		}
1181 	}
1182 
1183 	txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED;
1184 }
1185 
1186 static sfc_dp_tx_qdesc_status_t sfc_efx_tx_qdesc_status;
1187 static int
1188 sfc_efx_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
1189 {
1190 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1191 
1192 	if (unlikely(offset > txq->ptr_mask))
1193 		return -EINVAL;
1194 
1195 	if (unlikely(offset >= txq->max_fill_level))
1196 		return RTE_ETH_TX_DESC_UNAVAIL;
1197 
1198 	/*
1199 	 * Poll EvQ to derive up-to-date 'txq->pending' figure;
1200 	 * it is required for the queue to be running, but the
1201 	 * check is omitted because API design assumes that it
1202 	 * is the duty of the caller to satisfy all conditions
1203 	 */
1204 	SFC_ASSERT((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) ==
1205 		   SFC_EFX_TXQ_FLAG_RUNNING);
1206 	sfc_ev_qpoll(txq->evq);
1207 
1208 	/*
1209 	 * Ring tail is 'txq->pending', and although descriptors
1210 	 * between 'txq->completed' and 'txq->pending' are still
1211 	 * in use by the driver, they should be reported as DONE
1212 	 */
1213 	if (unlikely(offset < (txq->added - txq->pending)))
1214 		return RTE_ETH_TX_DESC_FULL;
1215 
1216 	/*
1217 	 * There is no separate return value for unused descriptors;
1218 	 * the latter will be reported as DONE because genuine DONE
1219 	 * descriptors will be freed anyway in SW on the next burst
1220 	 */
1221 	return RTE_ETH_TX_DESC_DONE;
1222 }
1223 
1224 struct sfc_dp_tx sfc_efx_tx = {
1225 	.dp = {
1226 		.name		= SFC_KVARG_DATAPATH_EFX,
1227 		.type		= SFC_DP_TX,
1228 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_TX_EFX,
1229 	},
1230 	.features		= 0,
1231 	.dev_offload_capa	= DEV_TX_OFFLOAD_VLAN_INSERT |
1232 				  DEV_TX_OFFLOAD_MULTI_SEGS,
1233 	.queue_offload_capa	= DEV_TX_OFFLOAD_IPV4_CKSUM |
1234 				  DEV_TX_OFFLOAD_UDP_CKSUM |
1235 				  DEV_TX_OFFLOAD_TCP_CKSUM |
1236 				  DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
1237 				  DEV_TX_OFFLOAD_TCP_TSO,
1238 	.qsize_up_rings		= sfc_efx_tx_qsize_up_rings,
1239 	.qcreate		= sfc_efx_tx_qcreate,
1240 	.qdestroy		= sfc_efx_tx_qdestroy,
1241 	.qstart			= sfc_efx_tx_qstart,
1242 	.qstop			= sfc_efx_tx_qstop,
1243 	.qreap			= sfc_efx_tx_qreap,
1244 	.qdesc_status		= sfc_efx_tx_qdesc_status,
1245 	.pkt_prepare		= sfc_efx_prepare_pkts,
1246 	.pkt_burst		= sfc_efx_xmit_pkts,
1247 };
1248