1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include "sfc.h" 11 #include "sfc_debug.h" 12 #include "sfc_log.h" 13 #include "sfc_ev.h" 14 #include "sfc_tx.h" 15 #include "sfc_tweak.h" 16 #include "sfc_kvargs.h" 17 18 /* 19 * Maximum number of TX queue flush attempts in case of 20 * failure or flush timeout 21 */ 22 #define SFC_TX_QFLUSH_ATTEMPTS (3) 23 24 /* 25 * Time to wait between event queue polling attempts when waiting for TX 26 * queue flush done or flush failed events 27 */ 28 #define SFC_TX_QFLUSH_POLL_WAIT_MS (1) 29 30 /* 31 * Maximum number of event queue polling attempts when waiting for TX queue 32 * flush done or flush failed events; it defines TX queue flush attempt timeout 33 * together with SFC_TX_QFLUSH_POLL_WAIT_MS 34 */ 35 #define SFC_TX_QFLUSH_POLL_ATTEMPTS (2000) 36 37 struct sfc_txq_info * 38 sfc_txq_info_by_ethdev_qid(struct sfc_adapter_shared *sas, 39 sfc_ethdev_qid_t ethdev_qid) 40 { 41 sfc_sw_index_t sw_index; 42 43 SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_txq_count); 44 SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID); 45 46 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 47 return &sas->txq_info[sw_index]; 48 } 49 50 static uint64_t 51 sfc_tx_get_offload_mask(struct sfc_adapter *sa) 52 { 53 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 54 uint64_t no_caps = 0; 55 56 if (!encp->enc_hw_tx_insert_vlan_enabled) 57 no_caps |= DEV_TX_OFFLOAD_VLAN_INSERT; 58 59 if (!encp->enc_tunnel_encapsulations_supported) 60 no_caps |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM; 61 62 if (!sa->tso) 63 no_caps |= DEV_TX_OFFLOAD_TCP_TSO; 64 65 if (!sa->tso_encap || 66 (encp->enc_tunnel_encapsulations_supported & 67 (1u << EFX_TUNNEL_PROTOCOL_VXLAN)) == 0) 68 no_caps |= DEV_TX_OFFLOAD_VXLAN_TNL_TSO; 69 70 if (!sa->tso_encap || 71 (encp->enc_tunnel_encapsulations_supported & 72 (1u << EFX_TUNNEL_PROTOCOL_GENEVE)) == 0) 73 no_caps |= DEV_TX_OFFLOAD_GENEVE_TNL_TSO; 74 75 return ~no_caps; 76 } 77 78 uint64_t 79 sfc_tx_get_dev_offload_caps(struct sfc_adapter *sa) 80 { 81 return sa->priv.dp_tx->dev_offload_capa & sfc_tx_get_offload_mask(sa); 82 } 83 84 uint64_t 85 sfc_tx_get_queue_offload_caps(struct sfc_adapter *sa) 86 { 87 return sa->priv.dp_tx->queue_offload_capa & sfc_tx_get_offload_mask(sa); 88 } 89 90 static int 91 sfc_tx_qcheck_conf(struct sfc_adapter *sa, unsigned int txq_max_fill_level, 92 const struct rte_eth_txconf *tx_conf, 93 uint64_t offloads) 94 { 95 int rc = 0; 96 97 if (tx_conf->tx_rs_thresh != 0) { 98 sfc_err(sa, "RS bit in transmit descriptor is not supported"); 99 rc = EINVAL; 100 } 101 102 if (tx_conf->tx_free_thresh > txq_max_fill_level) { 103 sfc_err(sa, 104 "TxQ free threshold too large: %u vs maximum %u", 105 tx_conf->tx_free_thresh, txq_max_fill_level); 106 rc = EINVAL; 107 } 108 109 if (tx_conf->tx_thresh.pthresh != 0 || 110 tx_conf->tx_thresh.hthresh != 0 || 111 tx_conf->tx_thresh.wthresh != 0) { 112 sfc_warn(sa, 113 "prefetch/host/writeback thresholds are not supported"); 114 } 115 116 /* We either perform both TCP and UDP offload, or no offload at all */ 117 if (((offloads & DEV_TX_OFFLOAD_TCP_CKSUM) == 0) != 118 ((offloads & DEV_TX_OFFLOAD_UDP_CKSUM) == 0)) { 119 sfc_err(sa, "TCP and UDP offloads can't be set independently"); 120 rc = EINVAL; 121 } 122 123 return rc; 124 } 125 126 void 127 sfc_tx_qflush_done(struct sfc_txq_info *txq_info) 128 { 129 txq_info->state |= SFC_TXQ_FLUSHED; 130 txq_info->state &= ~SFC_TXQ_FLUSHING; 131 } 132 133 int 134 sfc_tx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index, 135 uint16_t nb_tx_desc, unsigned int socket_id, 136 const struct rte_eth_txconf *tx_conf) 137 { 138 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 139 sfc_ethdev_qid_t ethdev_qid; 140 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 141 unsigned int txq_entries; 142 unsigned int evq_entries; 143 unsigned int txq_max_fill_level; 144 struct sfc_txq_info *txq_info; 145 struct sfc_evq *evq; 146 struct sfc_txq *txq; 147 int rc = 0; 148 struct sfc_dp_tx_qcreate_info info; 149 uint64_t offloads; 150 struct sfc_dp_tx_hw_limits hw_limits; 151 152 ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index); 153 154 sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index); 155 156 memset(&hw_limits, 0, sizeof(hw_limits)); 157 hw_limits.txq_max_entries = sa->txq_max_entries; 158 hw_limits.txq_min_entries = sa->txq_min_entries; 159 160 rc = sa->priv.dp_tx->qsize_up_rings(nb_tx_desc, &hw_limits, 161 &txq_entries, &evq_entries, 162 &txq_max_fill_level); 163 if (rc != 0) 164 goto fail_size_up_rings; 165 SFC_ASSERT(txq_entries >= sa->txq_min_entries); 166 SFC_ASSERT(txq_entries <= sa->txq_max_entries); 167 SFC_ASSERT(txq_entries >= nb_tx_desc); 168 SFC_ASSERT(txq_max_fill_level <= nb_tx_desc); 169 170 offloads = tx_conf->offloads; 171 /* Add device level Tx offloads if the queue is an ethdev Tx queue */ 172 if (ethdev_qid != SFC_ETHDEV_QID_INVALID) 173 offloads |= sa->eth_dev->data->dev_conf.txmode.offloads; 174 175 rc = sfc_tx_qcheck_conf(sa, txq_max_fill_level, tx_conf, offloads); 176 if (rc != 0) 177 goto fail_bad_conf; 178 179 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count); 180 txq_info = &sfc_sa2shared(sa)->txq_info[sw_index]; 181 182 txq_info->entries = txq_entries; 183 184 rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index, 185 evq_entries, socket_id, &evq); 186 if (rc != 0) 187 goto fail_ev_qinit; 188 189 txq = &sa->txq_ctrl[sw_index]; 190 txq->hw_index = sw_index; 191 txq->evq = evq; 192 txq_info->free_thresh = 193 (tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh : 194 SFC_TX_DEFAULT_FREE_THRESH; 195 txq_info->offloads = offloads; 196 197 rc = sfc_dma_alloc(sa, "txq", sw_index, 198 efx_txq_size(sa->nic, txq_info->entries), 199 socket_id, &txq->mem); 200 if (rc != 0) 201 goto fail_dma_alloc; 202 203 memset(&info, 0, sizeof(info)); 204 info.max_fill_level = txq_max_fill_level; 205 info.free_thresh = txq_info->free_thresh; 206 info.offloads = offloads; 207 info.txq_entries = txq_info->entries; 208 info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max; 209 info.txq_hw_ring = txq->mem.esm_base; 210 info.evq_entries = evq_entries; 211 info.evq_hw_ring = evq->mem.esm_base; 212 info.hw_index = txq->hw_index; 213 info.mem_bar = sa->mem_bar.esb_base; 214 info.vi_window_shift = encp->enc_vi_window_shift; 215 info.tso_tcp_header_offset_limit = 216 encp->enc_tx_tso_tcp_header_offset_limit; 217 info.tso_max_nb_header_descs = 218 RTE_MIN(encp->enc_tx_tso_max_header_ndescs, 219 (uint32_t)UINT16_MAX); 220 info.tso_max_header_len = 221 RTE_MIN(encp->enc_tx_tso_max_header_length, 222 (uint32_t)UINT16_MAX); 223 info.tso_max_nb_payload_descs = 224 RTE_MIN(encp->enc_tx_tso_max_payload_ndescs, 225 (uint32_t)UINT16_MAX); 226 info.tso_max_payload_len = encp->enc_tx_tso_max_payload_length; 227 info.tso_max_nb_outgoing_frames = encp->enc_tx_tso_max_nframes; 228 229 rc = sa->priv.dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index, 230 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr, 231 socket_id, &info, &txq_info->dp); 232 if (rc != 0) 233 goto fail_dp_tx_qinit; 234 235 evq->dp_txq = txq_info->dp; 236 237 txq_info->state = SFC_TXQ_INITIALIZED; 238 239 txq_info->deferred_start = (tx_conf->tx_deferred_start != 0); 240 241 return 0; 242 243 fail_dp_tx_qinit: 244 sfc_dma_free(sa, &txq->mem); 245 246 fail_dma_alloc: 247 sfc_ev_qfini(evq); 248 249 fail_ev_qinit: 250 txq_info->entries = 0; 251 252 fail_bad_conf: 253 fail_size_up_rings: 254 sfc_log_init(sa, "failed (TxQ = %d (internal %u), rc = %d)", ethdev_qid, 255 sw_index, rc); 256 return rc; 257 } 258 259 void 260 sfc_tx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index) 261 { 262 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 263 sfc_ethdev_qid_t ethdev_qid; 264 struct sfc_txq_info *txq_info; 265 struct sfc_txq *txq; 266 267 ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index); 268 269 sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index); 270 271 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count); 272 if (ethdev_qid != SFC_ETHDEV_QID_INVALID) 273 sa->eth_dev->data->tx_queues[ethdev_qid] = NULL; 274 275 txq_info = &sfc_sa2shared(sa)->txq_info[sw_index]; 276 277 SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED); 278 279 sa->priv.dp_tx->qdestroy(txq_info->dp); 280 txq_info->dp = NULL; 281 282 txq_info->state &= ~SFC_TXQ_INITIALIZED; 283 txq_info->entries = 0; 284 285 txq = &sa->txq_ctrl[sw_index]; 286 287 sfc_dma_free(sa, &txq->mem); 288 289 sfc_ev_qfini(txq->evq); 290 txq->evq = NULL; 291 } 292 293 static int 294 sfc_tx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index) 295 { 296 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 297 sfc_ethdev_qid_t ethdev_qid; 298 299 ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index); 300 301 sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index); 302 303 return 0; 304 } 305 306 static int 307 sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode) 308 { 309 int rc = 0; 310 311 switch (txmode->mq_mode) { 312 case ETH_MQ_TX_NONE: 313 break; 314 default: 315 sfc_err(sa, "Tx multi-queue mode %u not supported", 316 txmode->mq_mode); 317 rc = EINVAL; 318 } 319 320 /* 321 * These features are claimed to be i40e-specific, 322 * but it does make sense to double-check their absence 323 */ 324 if (txmode->hw_vlan_reject_tagged) { 325 sfc_err(sa, "Rejecting tagged packets not supported"); 326 rc = EINVAL; 327 } 328 329 if (txmode->hw_vlan_reject_untagged) { 330 sfc_err(sa, "Rejecting untagged packets not supported"); 331 rc = EINVAL; 332 } 333 334 if (txmode->hw_vlan_insert_pvid) { 335 sfc_err(sa, "Port-based VLAN insertion not supported"); 336 rc = EINVAL; 337 } 338 339 return rc; 340 } 341 342 /** 343 * Destroy excess queues that are no longer needed after reconfiguration 344 * or complete close. 345 */ 346 static void 347 sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues) 348 { 349 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 350 sfc_sw_index_t sw_index; 351 sfc_ethdev_qid_t ethdev_qid; 352 353 SFC_ASSERT(nb_tx_queues <= sas->ethdev_txq_count); 354 355 /* 356 * Finalize only ethdev queues since other ones are finalized only 357 * on device close and they may require additional deinitializaton. 358 */ 359 ethdev_qid = sas->ethdev_txq_count; 360 while (--ethdev_qid >= (int)nb_tx_queues) { 361 struct sfc_txq_info *txq_info; 362 363 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid); 364 txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid); 365 if (txq_info->state & SFC_TXQ_INITIALIZED) 366 sfc_tx_qfini(sa, sw_index); 367 } 368 369 sas->ethdev_txq_count = nb_tx_queues; 370 } 371 372 int 373 sfc_tx_configure(struct sfc_adapter *sa) 374 { 375 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 376 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 377 const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf; 378 const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues; 379 int rc = 0; 380 381 sfc_log_init(sa, "nb_tx_queues=%u (old %u)", 382 nb_tx_queues, sas->ethdev_txq_count); 383 384 /* 385 * The datapath implementation assumes absence of boundary 386 * limits on Tx DMA descriptors. Addition of these checks on 387 * datapath would simply make the datapath slower. 388 */ 389 if (encp->enc_tx_dma_desc_boundary != 0) { 390 rc = ENOTSUP; 391 goto fail_tx_dma_desc_boundary; 392 } 393 394 rc = sfc_tx_check_mode(sa, &dev_conf->txmode); 395 if (rc != 0) 396 goto fail_check_mode; 397 398 if (nb_tx_queues == sas->txq_count) 399 goto done; 400 401 if (sas->txq_info == NULL) { 402 sas->txq_info = rte_calloc_socket("sfc-txqs", nb_tx_queues, 403 sizeof(sas->txq_info[0]), 0, 404 sa->socket_id); 405 if (sas->txq_info == NULL) 406 goto fail_txqs_alloc; 407 408 /* 409 * Allocate primary process only TxQ control from heap 410 * since it should not be shared. 411 */ 412 rc = ENOMEM; 413 sa->txq_ctrl = calloc(nb_tx_queues, sizeof(sa->txq_ctrl[0])); 414 if (sa->txq_ctrl == NULL) 415 goto fail_txqs_ctrl_alloc; 416 } else { 417 struct sfc_txq_info *new_txq_info; 418 struct sfc_txq *new_txq_ctrl; 419 420 if (nb_tx_queues < sas->ethdev_txq_count) 421 sfc_tx_fini_queues(sa, nb_tx_queues); 422 423 new_txq_info = 424 rte_realloc(sas->txq_info, 425 nb_tx_queues * sizeof(sas->txq_info[0]), 0); 426 if (new_txq_info == NULL && nb_tx_queues > 0) 427 goto fail_txqs_realloc; 428 429 new_txq_ctrl = realloc(sa->txq_ctrl, 430 nb_tx_queues * sizeof(sa->txq_ctrl[0])); 431 if (new_txq_ctrl == NULL && nb_tx_queues > 0) 432 goto fail_txqs_ctrl_realloc; 433 434 sas->txq_info = new_txq_info; 435 sa->txq_ctrl = new_txq_ctrl; 436 if (nb_tx_queues > sas->ethdev_txq_count) { 437 memset(&sas->txq_info[sas->ethdev_txq_count], 0, 438 (nb_tx_queues - sas->ethdev_txq_count) * 439 sizeof(sas->txq_info[0])); 440 memset(&sa->txq_ctrl[sas->ethdev_txq_count], 0, 441 (nb_tx_queues - sas->ethdev_txq_count) * 442 sizeof(sa->txq_ctrl[0])); 443 } 444 } 445 446 while (sas->ethdev_txq_count < nb_tx_queues) { 447 sfc_sw_index_t sw_index; 448 449 sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, 450 sas->ethdev_txq_count); 451 rc = sfc_tx_qinit_info(sa, sw_index); 452 if (rc != 0) 453 goto fail_tx_qinit_info; 454 455 sas->ethdev_txq_count++; 456 } 457 458 sas->txq_count = sas->ethdev_txq_count; 459 460 done: 461 return 0; 462 463 fail_tx_qinit_info: 464 fail_txqs_ctrl_realloc: 465 fail_txqs_realloc: 466 fail_txqs_ctrl_alloc: 467 fail_txqs_alloc: 468 sfc_tx_close(sa); 469 470 fail_check_mode: 471 fail_tx_dma_desc_boundary: 472 sfc_log_init(sa, "failed (rc = %d)", rc); 473 return rc; 474 } 475 476 void 477 sfc_tx_close(struct sfc_adapter *sa) 478 { 479 sfc_tx_fini_queues(sa, 0); 480 481 free(sa->txq_ctrl); 482 sa->txq_ctrl = NULL; 483 484 rte_free(sfc_sa2shared(sa)->txq_info); 485 sfc_sa2shared(sa)->txq_info = NULL; 486 } 487 488 int 489 sfc_tx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index) 490 { 491 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 492 sfc_ethdev_qid_t ethdev_qid; 493 uint64_t offloads_supported = sfc_tx_get_dev_offload_caps(sa) | 494 sfc_tx_get_queue_offload_caps(sa); 495 struct sfc_txq_info *txq_info; 496 struct sfc_txq *txq; 497 struct sfc_evq *evq; 498 uint16_t flags = 0; 499 unsigned int desc_index; 500 int rc = 0; 501 502 ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index); 503 504 sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index); 505 506 SFC_ASSERT(sw_index < sas->txq_count); 507 txq_info = &sas->txq_info[sw_index]; 508 509 SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED); 510 511 txq = &sa->txq_ctrl[sw_index]; 512 evq = txq->evq; 513 514 rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_txq_sw_index(sa, sw_index)); 515 if (rc != 0) 516 goto fail_ev_qstart; 517 518 if (txq_info->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) 519 flags |= EFX_TXQ_CKSUM_IPV4; 520 521 if (txq_info->offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 522 flags |= EFX_TXQ_CKSUM_INNER_IPV4; 523 524 if ((txq_info->offloads & DEV_TX_OFFLOAD_TCP_CKSUM) || 525 (txq_info->offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) { 526 flags |= EFX_TXQ_CKSUM_TCPUDP; 527 528 if (offloads_supported & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 529 flags |= EFX_TXQ_CKSUM_INNER_TCPUDP; 530 } 531 532 if (txq_info->offloads & (DEV_TX_OFFLOAD_TCP_TSO | 533 DEV_TX_OFFLOAD_VXLAN_TNL_TSO | 534 DEV_TX_OFFLOAD_GENEVE_TNL_TSO)) 535 flags |= EFX_TXQ_FATSOV2; 536 537 rc = efx_tx_qcreate(sa->nic, txq->hw_index, 0, &txq->mem, 538 txq_info->entries, 0 /* not used on EF10 */, 539 flags, evq->common, 540 &txq->common, &desc_index); 541 if (rc != 0) { 542 if (sa->tso && (rc == ENOSPC)) 543 sfc_err(sa, "ran out of TSO contexts"); 544 545 goto fail_tx_qcreate; 546 } 547 548 efx_tx_qenable(txq->common); 549 550 txq_info->state |= SFC_TXQ_STARTED; 551 552 rc = sa->priv.dp_tx->qstart(txq_info->dp, evq->read_ptr, desc_index); 553 if (rc != 0) 554 goto fail_dp_qstart; 555 556 if (ethdev_qid != SFC_ETHDEV_QID_INVALID) { 557 struct rte_eth_dev_data *dev_data; 558 559 /* 560 * It sems to be used by DPDK for debug purposes only 561 * ('rte_ether'). 562 */ 563 dev_data = sa->eth_dev->data; 564 dev_data->tx_queue_state[ethdev_qid] = 565 RTE_ETH_QUEUE_STATE_STARTED; 566 } 567 568 return 0; 569 570 fail_dp_qstart: 571 txq_info->state = SFC_TXQ_INITIALIZED; 572 efx_tx_qdestroy(txq->common); 573 574 fail_tx_qcreate: 575 sfc_ev_qstop(evq); 576 577 fail_ev_qstart: 578 return rc; 579 } 580 581 void 582 sfc_tx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index) 583 { 584 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 585 sfc_ethdev_qid_t ethdev_qid; 586 struct sfc_txq_info *txq_info; 587 struct sfc_txq *txq; 588 unsigned int retry_count; 589 unsigned int wait_count; 590 int rc; 591 592 ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index); 593 594 sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index); 595 596 SFC_ASSERT(sw_index < sas->txq_count); 597 txq_info = &sas->txq_info[sw_index]; 598 599 if (txq_info->state == SFC_TXQ_INITIALIZED) 600 return; 601 602 SFC_ASSERT(txq_info->state & SFC_TXQ_STARTED); 603 604 txq = &sa->txq_ctrl[sw_index]; 605 sa->priv.dp_tx->qstop(txq_info->dp, &txq->evq->read_ptr); 606 607 /* 608 * Retry TX queue flushing in case of flush failed or 609 * timeout; in the worst case it can delay for 6 seconds 610 */ 611 for (retry_count = 0; 612 ((txq_info->state & SFC_TXQ_FLUSHED) == 0) && 613 (retry_count < SFC_TX_QFLUSH_ATTEMPTS); 614 ++retry_count) { 615 rc = efx_tx_qflush(txq->common); 616 if (rc != 0) { 617 txq_info->state |= (rc == EALREADY) ? 618 SFC_TXQ_FLUSHED : SFC_TXQ_FLUSH_FAILED; 619 break; 620 } 621 622 /* 623 * Wait for TX queue flush done or flush failed event at least 624 * SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more 625 * than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied 626 * by SFC_TX_QFLUSH_POLL_ATTEMPTS) 627 */ 628 wait_count = 0; 629 do { 630 rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS); 631 sfc_ev_qpoll(txq->evq); 632 } while ((txq_info->state & SFC_TXQ_FLUSHING) && 633 wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS); 634 635 if (txq_info->state & SFC_TXQ_FLUSHING) 636 sfc_err(sa, "TxQ %d (internal %u) flush timed out", 637 ethdev_qid, sw_index); 638 639 if (txq_info->state & SFC_TXQ_FLUSHED) 640 sfc_notice(sa, "TxQ %d (internal %u) flushed", 641 ethdev_qid, sw_index); 642 } 643 644 sa->priv.dp_tx->qreap(txq_info->dp); 645 646 txq_info->state = SFC_TXQ_INITIALIZED; 647 648 efx_tx_qdestroy(txq->common); 649 650 sfc_ev_qstop(txq->evq); 651 652 if (ethdev_qid != SFC_ETHDEV_QID_INVALID) { 653 struct rte_eth_dev_data *dev_data; 654 655 /* 656 * It seems to be used by DPDK for debug purposes only 657 * ('rte_ether') 658 */ 659 dev_data = sa->eth_dev->data; 660 dev_data->tx_queue_state[ethdev_qid] = 661 RTE_ETH_QUEUE_STATE_STOPPED; 662 } 663 } 664 665 int 666 sfc_tx_start(struct sfc_adapter *sa) 667 { 668 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 669 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 670 sfc_sw_index_t sw_index; 671 int rc = 0; 672 673 sfc_log_init(sa, "txq_count = %u (internal %u)", 674 sas->ethdev_txq_count, sas->txq_count); 675 676 if (sa->tso) { 677 if (!encp->enc_fw_assisted_tso_v2_enabled && 678 !encp->enc_tso_v3_enabled) { 679 sfc_warn(sa, "TSO support was unable to be restored"); 680 sa->tso = B_FALSE; 681 sa->tso_encap = B_FALSE; 682 } 683 } 684 685 if (sa->tso_encap && !encp->enc_fw_assisted_tso_v2_encap_enabled && 686 !encp->enc_tso_v3_enabled) { 687 sfc_warn(sa, "Encapsulated TSO support was unable to be restored"); 688 sa->tso_encap = B_FALSE; 689 } 690 691 rc = efx_tx_init(sa->nic); 692 if (rc != 0) 693 goto fail_efx_tx_init; 694 695 for (sw_index = 0; sw_index < sas->txq_count; ++sw_index) { 696 if (sas->txq_info[sw_index].state == SFC_TXQ_INITIALIZED && 697 (!(sas->txq_info[sw_index].deferred_start) || 698 sas->txq_info[sw_index].deferred_started)) { 699 rc = sfc_tx_qstart(sa, sw_index); 700 if (rc != 0) 701 goto fail_tx_qstart; 702 } 703 } 704 705 return 0; 706 707 fail_tx_qstart: 708 while (sw_index-- > 0) 709 sfc_tx_qstop(sa, sw_index); 710 711 efx_tx_fini(sa->nic); 712 713 fail_efx_tx_init: 714 sfc_log_init(sa, "failed (rc = %d)", rc); 715 return rc; 716 } 717 718 void 719 sfc_tx_stop(struct sfc_adapter *sa) 720 { 721 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 722 sfc_sw_index_t sw_index; 723 724 sfc_log_init(sa, "txq_count = %u (internal %u)", 725 sas->ethdev_txq_count, sas->txq_count); 726 727 sw_index = sas->txq_count; 728 while (sw_index-- > 0) { 729 if (sas->txq_info[sw_index].state & SFC_TXQ_STARTED) 730 sfc_tx_qstop(sa, sw_index); 731 } 732 733 efx_tx_fini(sa->nic); 734 } 735 736 static void 737 sfc_efx_tx_reap(struct sfc_efx_txq *txq) 738 { 739 unsigned int completed; 740 741 sfc_ev_qpoll(txq->evq); 742 743 for (completed = txq->completed; 744 completed != txq->pending; completed++) { 745 struct sfc_efx_tx_sw_desc *txd; 746 747 txd = &txq->sw_ring[completed & txq->ptr_mask]; 748 749 if (txd->mbuf != NULL) { 750 rte_pktmbuf_free(txd->mbuf); 751 txd->mbuf = NULL; 752 } 753 } 754 755 txq->completed = completed; 756 } 757 758 /* 759 * The function is used to insert or update VLAN tag; 760 * the firmware has state of the firmware tag to insert per TxQ 761 * (controlled by option descriptors), hence, if the tag of the 762 * packet to be sent is different from one remembered by the firmware, 763 * the function will update it 764 */ 765 static unsigned int 766 sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m, 767 efx_desc_t **pend) 768 { 769 uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ? 770 m->vlan_tci : 0); 771 772 if (this_tag == txq->hw_vlan_tci) 773 return 0; 774 775 /* 776 * The expression inside SFC_ASSERT() is not desired to be checked in 777 * a non-debug build because it might be too expensive on the data path 778 */ 779 SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled); 780 781 efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag), 782 *pend); 783 (*pend)++; 784 txq->hw_vlan_tci = this_tag; 785 786 return 1; 787 } 788 789 static uint16_t 790 sfc_efx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 791 uint16_t nb_pkts) 792 { 793 struct sfc_dp_txq *dp_txq = tx_queue; 794 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); 795 const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->evq->sa->nic); 796 uint16_t i; 797 798 for (i = 0; i < nb_pkts; i++) { 799 int ret; 800 801 /* 802 * EFX Tx datapath may require extra VLAN descriptor if VLAN 803 * insertion offload is requested regardless the offload 804 * requested/supported. 805 */ 806 ret = sfc_dp_tx_prepare_pkt(tx_pkts[i], 0, SFC_TSOH_STD_LEN, 807 encp->enc_tx_tso_tcp_header_offset_limit, 808 txq->max_fill_level, EFX_TX_FATSOV2_OPT_NDESCS, 809 1); 810 if (unlikely(ret != 0)) { 811 rte_errno = ret; 812 break; 813 } 814 } 815 816 return i; 817 } 818 819 static uint16_t 820 sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 821 { 822 struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue; 823 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); 824 unsigned int added = txq->added; 825 unsigned int pushed = added; 826 unsigned int pkts_sent = 0; 827 efx_desc_t *pend = &txq->pend_desc[0]; 828 const unsigned int hard_max_fill = txq->max_fill_level; 829 const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh; 830 unsigned int fill_level = added - txq->completed; 831 boolean_t reap_done; 832 int rc __rte_unused; 833 struct rte_mbuf **pktp; 834 835 if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0)) 836 goto done; 837 838 /* 839 * If insufficient space for a single packet is present, 840 * we should reap; otherwise, we shouldn't do that all the time 841 * to avoid latency increase 842 */ 843 reap_done = (fill_level > soft_max_fill); 844 845 if (reap_done) { 846 sfc_efx_tx_reap(txq); 847 /* 848 * Recalculate fill level since 'txq->completed' 849 * might have changed on reap 850 */ 851 fill_level = added - txq->completed; 852 } 853 854 for (pkts_sent = 0, pktp = &tx_pkts[0]; 855 (pkts_sent < nb_pkts) && (fill_level <= soft_max_fill); 856 pkts_sent++, pktp++) { 857 uint16_t hw_vlan_tci_prev = txq->hw_vlan_tci; 858 struct rte_mbuf *m_seg = *pktp; 859 size_t pkt_len = m_seg->pkt_len; 860 unsigned int pkt_descs = 0; 861 size_t in_off = 0; 862 863 /* 864 * Here VLAN TCI is expected to be zero in case if no 865 * DEV_TX_OFFLOAD_VLAN_INSERT capability is advertised; 866 * if the calling app ignores the absence of 867 * DEV_TX_OFFLOAD_VLAN_INSERT and pushes VLAN TCI, then 868 * TX_ERROR will occur 869 */ 870 pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend); 871 872 if (m_seg->ol_flags & PKT_TX_TCP_SEG) { 873 /* 874 * We expect correct 'pkt->l[2, 3, 4]_len' values 875 * to be set correctly by the caller 876 */ 877 if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend, 878 &pkt_descs, &pkt_len) != 0) { 879 /* We may have reached this place if packet 880 * header linearization is needed but the 881 * header length is greater than 882 * SFC_TSOH_STD_LEN 883 * 884 * We will deceive RTE saying that we have sent 885 * the packet, but we will actually drop it. 886 * Hence, we should revert 'pend' to the 887 * previous state (in case we have added 888 * VLAN descriptor) and start processing 889 * another one packet. But the original 890 * mbuf shouldn't be orphaned 891 */ 892 pend -= pkt_descs; 893 txq->hw_vlan_tci = hw_vlan_tci_prev; 894 895 rte_pktmbuf_free(*pktp); 896 897 continue; 898 } 899 900 /* 901 * We've only added 2 FATSOv2 option descriptors 902 * and 1 descriptor for the linearized packet header. 903 * The outstanding work will be done in the same manner 904 * as for the usual non-TSO path 905 */ 906 } 907 908 for (; m_seg != NULL; m_seg = m_seg->next) { 909 efsys_dma_addr_t next_frag; 910 size_t seg_len; 911 912 seg_len = m_seg->data_len; 913 next_frag = rte_mbuf_data_iova(m_seg); 914 915 /* 916 * If we've started TSO transaction few steps earlier, 917 * we'll skip packet header using an offset in the 918 * current segment (which has been set to the 919 * first one containing payload) 920 */ 921 seg_len -= in_off; 922 next_frag += in_off; 923 in_off = 0; 924 925 do { 926 efsys_dma_addr_t frag_addr = next_frag; 927 size_t frag_len; 928 929 /* 930 * It is assumed here that there is no 931 * limitation on address boundary 932 * crossing by DMA descriptor. 933 */ 934 frag_len = MIN(seg_len, txq->dma_desc_size_max); 935 next_frag += frag_len; 936 seg_len -= frag_len; 937 pkt_len -= frag_len; 938 939 efx_tx_qdesc_dma_create(txq->common, 940 frag_addr, frag_len, 941 (pkt_len == 0), 942 pend++); 943 944 pkt_descs++; 945 } while (seg_len != 0); 946 } 947 948 added += pkt_descs; 949 950 fill_level += pkt_descs; 951 if (unlikely(fill_level > hard_max_fill)) { 952 /* 953 * Our estimation for maximum number of descriptors 954 * required to send a packet seems to be wrong. 955 * Try to reap (if we haven't yet). 956 */ 957 if (!reap_done) { 958 sfc_efx_tx_reap(txq); 959 reap_done = B_TRUE; 960 fill_level = added - txq->completed; 961 if (fill_level > hard_max_fill) { 962 pend -= pkt_descs; 963 txq->hw_vlan_tci = hw_vlan_tci_prev; 964 break; 965 } 966 } else { 967 pend -= pkt_descs; 968 txq->hw_vlan_tci = hw_vlan_tci_prev; 969 break; 970 } 971 } 972 973 /* Assign mbuf to the last used desc */ 974 txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp; 975 } 976 977 if (likely(pkts_sent > 0)) { 978 rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, 979 pend - &txq->pend_desc[0], 980 txq->completed, &txq->added); 981 SFC_ASSERT(rc == 0); 982 983 if (likely(pushed != txq->added)) { 984 efx_tx_qpush(txq->common, txq->added, pushed); 985 txq->dp.dpq.tx_dbells++; 986 } 987 } 988 989 #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE 990 if (!reap_done) 991 sfc_efx_tx_reap(txq); 992 #endif 993 994 done: 995 return pkts_sent; 996 } 997 998 const struct sfc_dp_tx * 999 sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq) 1000 { 1001 const struct sfc_dp_queue *dpq = &dp_txq->dpq; 1002 struct rte_eth_dev *eth_dev; 1003 struct sfc_adapter_priv *sap; 1004 1005 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); 1006 eth_dev = &rte_eth_devices[dpq->port_id]; 1007 1008 sap = sfc_adapter_priv_by_eth_dev(eth_dev); 1009 1010 return sap->dp_tx; 1011 } 1012 1013 struct sfc_txq_info * 1014 sfc_txq_info_by_dp_txq(const struct sfc_dp_txq *dp_txq) 1015 { 1016 const struct sfc_dp_queue *dpq = &dp_txq->dpq; 1017 struct rte_eth_dev *eth_dev; 1018 struct sfc_adapter_shared *sas; 1019 1020 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); 1021 eth_dev = &rte_eth_devices[dpq->port_id]; 1022 1023 sas = sfc_adapter_shared_by_eth_dev(eth_dev); 1024 1025 SFC_ASSERT(dpq->queue_id < sas->txq_count); 1026 return &sas->txq_info[dpq->queue_id]; 1027 } 1028 1029 struct sfc_txq * 1030 sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq) 1031 { 1032 const struct sfc_dp_queue *dpq = &dp_txq->dpq; 1033 struct rte_eth_dev *eth_dev; 1034 struct sfc_adapter *sa; 1035 1036 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); 1037 eth_dev = &rte_eth_devices[dpq->port_id]; 1038 1039 sa = sfc_adapter_by_eth_dev(eth_dev); 1040 1041 SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->txq_count); 1042 return &sa->txq_ctrl[dpq->queue_id]; 1043 } 1044 1045 static sfc_dp_tx_qsize_up_rings_t sfc_efx_tx_qsize_up_rings; 1046 static int 1047 sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc, 1048 __rte_unused struct sfc_dp_tx_hw_limits *limits, 1049 unsigned int *txq_entries, 1050 unsigned int *evq_entries, 1051 unsigned int *txq_max_fill_level) 1052 { 1053 *txq_entries = nb_tx_desc; 1054 *evq_entries = nb_tx_desc; 1055 *txq_max_fill_level = EFX_TXQ_LIMIT(*txq_entries); 1056 return 0; 1057 } 1058 1059 static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate; 1060 static int 1061 sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id, 1062 const struct rte_pci_addr *pci_addr, 1063 int socket_id, 1064 const struct sfc_dp_tx_qcreate_info *info, 1065 struct sfc_dp_txq **dp_txqp) 1066 { 1067 struct sfc_efx_txq *txq; 1068 struct sfc_txq *ctrl_txq; 1069 int rc; 1070 1071 rc = ENOMEM; 1072 txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq), 1073 RTE_CACHE_LINE_SIZE, socket_id); 1074 if (txq == NULL) 1075 goto fail_txq_alloc; 1076 1077 sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr); 1078 1079 rc = ENOMEM; 1080 txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc", 1081 EFX_TXQ_LIMIT(info->txq_entries), 1082 sizeof(*txq->pend_desc), 0, 1083 socket_id); 1084 if (txq->pend_desc == NULL) 1085 goto fail_pend_desc_alloc; 1086 1087 rc = ENOMEM; 1088 txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring", 1089 info->txq_entries, 1090 sizeof(*txq->sw_ring), 1091 RTE_CACHE_LINE_SIZE, socket_id); 1092 if (txq->sw_ring == NULL) 1093 goto fail_sw_ring_alloc; 1094 1095 ctrl_txq = sfc_txq_by_dp_txq(&txq->dp); 1096 if (ctrl_txq->evq->sa->tso) { 1097 rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring, 1098 info->txq_entries, socket_id); 1099 if (rc != 0) 1100 goto fail_alloc_tsoh_objs; 1101 } 1102 1103 txq->evq = ctrl_txq->evq; 1104 txq->ptr_mask = info->txq_entries - 1; 1105 txq->max_fill_level = info->max_fill_level; 1106 txq->free_thresh = info->free_thresh; 1107 txq->dma_desc_size_max = info->dma_desc_size_max; 1108 1109 *dp_txqp = &txq->dp; 1110 return 0; 1111 1112 fail_alloc_tsoh_objs: 1113 rte_free(txq->sw_ring); 1114 1115 fail_sw_ring_alloc: 1116 rte_free(txq->pend_desc); 1117 1118 fail_pend_desc_alloc: 1119 rte_free(txq); 1120 1121 fail_txq_alloc: 1122 return rc; 1123 } 1124 1125 static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy; 1126 static void 1127 sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq) 1128 { 1129 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); 1130 1131 sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1); 1132 rte_free(txq->sw_ring); 1133 rte_free(txq->pend_desc); 1134 rte_free(txq); 1135 } 1136 1137 static sfc_dp_tx_qstart_t sfc_efx_tx_qstart; 1138 static int 1139 sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq, 1140 __rte_unused unsigned int evq_read_ptr, 1141 unsigned int txq_desc_index) 1142 { 1143 /* libefx-based datapath is specific to libefx-based PMD */ 1144 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); 1145 struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq); 1146 1147 txq->common = ctrl_txq->common; 1148 1149 txq->pending = txq->completed = txq->added = txq_desc_index; 1150 txq->hw_vlan_tci = 0; 1151 1152 txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING); 1153 1154 return 0; 1155 } 1156 1157 static sfc_dp_tx_qstop_t sfc_efx_tx_qstop; 1158 static void 1159 sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq, 1160 __rte_unused unsigned int *evq_read_ptr) 1161 { 1162 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); 1163 1164 txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING; 1165 } 1166 1167 static sfc_dp_tx_qreap_t sfc_efx_tx_qreap; 1168 static void 1169 sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq) 1170 { 1171 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); 1172 unsigned int txds; 1173 1174 sfc_efx_tx_reap(txq); 1175 1176 for (txds = 0; txds <= txq->ptr_mask; txds++) { 1177 if (txq->sw_ring[txds].mbuf != NULL) { 1178 rte_pktmbuf_free(txq->sw_ring[txds].mbuf); 1179 txq->sw_ring[txds].mbuf = NULL; 1180 } 1181 } 1182 1183 txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED; 1184 } 1185 1186 static sfc_dp_tx_qdesc_status_t sfc_efx_tx_qdesc_status; 1187 static int 1188 sfc_efx_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset) 1189 { 1190 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq); 1191 1192 if (unlikely(offset > txq->ptr_mask)) 1193 return -EINVAL; 1194 1195 if (unlikely(offset >= txq->max_fill_level)) 1196 return RTE_ETH_TX_DESC_UNAVAIL; 1197 1198 /* 1199 * Poll EvQ to derive up-to-date 'txq->pending' figure; 1200 * it is required for the queue to be running, but the 1201 * check is omitted because API design assumes that it 1202 * is the duty of the caller to satisfy all conditions 1203 */ 1204 SFC_ASSERT((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 1205 SFC_EFX_TXQ_FLAG_RUNNING); 1206 sfc_ev_qpoll(txq->evq); 1207 1208 /* 1209 * Ring tail is 'txq->pending', and although descriptors 1210 * between 'txq->completed' and 'txq->pending' are still 1211 * in use by the driver, they should be reported as DONE 1212 */ 1213 if (unlikely(offset < (txq->added - txq->pending))) 1214 return RTE_ETH_TX_DESC_FULL; 1215 1216 /* 1217 * There is no separate return value for unused descriptors; 1218 * the latter will be reported as DONE because genuine DONE 1219 * descriptors will be freed anyway in SW on the next burst 1220 */ 1221 return RTE_ETH_TX_DESC_DONE; 1222 } 1223 1224 struct sfc_dp_tx sfc_efx_tx = { 1225 .dp = { 1226 .name = SFC_KVARG_DATAPATH_EFX, 1227 .type = SFC_DP_TX, 1228 .hw_fw_caps = SFC_DP_HW_FW_CAP_TX_EFX, 1229 }, 1230 .features = 0, 1231 .dev_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | 1232 DEV_TX_OFFLOAD_MULTI_SEGS, 1233 .queue_offload_capa = DEV_TX_OFFLOAD_IPV4_CKSUM | 1234 DEV_TX_OFFLOAD_UDP_CKSUM | 1235 DEV_TX_OFFLOAD_TCP_CKSUM | 1236 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | 1237 DEV_TX_OFFLOAD_TCP_TSO, 1238 .qsize_up_rings = sfc_efx_tx_qsize_up_rings, 1239 .qcreate = sfc_efx_tx_qcreate, 1240 .qdestroy = sfc_efx_tx_qdestroy, 1241 .qstart = sfc_efx_tx_qstart, 1242 .qstop = sfc_efx_tx_qstop, 1243 .qreap = sfc_efx_tx_qreap, 1244 .qdesc_status = sfc_efx_tx_qdesc_status, 1245 .pkt_prepare = sfc_efx_prepare_pkts, 1246 .pkt_burst = sfc_efx_xmit_pkts, 1247 }; 1248