xref: /dpdk/drivers/net/sfc/sfc_tx.c (revision 24a491bb882a3269b9b4e2754e1d5b43d83b9821)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include "sfc.h"
11 #include "sfc_debug.h"
12 #include "sfc_log.h"
13 #include "sfc_ev.h"
14 #include "sfc_tx.h"
15 #include "sfc_tweak.h"
16 #include "sfc_kvargs.h"
17 
18 /*
19  * Maximum number of TX queue flush attempts in case of
20  * failure or flush timeout
21  */
22 #define SFC_TX_QFLUSH_ATTEMPTS		(3)
23 
24 /*
25  * Time to wait between event queue polling attempts when waiting for TX
26  * queue flush done or flush failed events
27  */
28 #define SFC_TX_QFLUSH_POLL_WAIT_MS	(1)
29 
30 /*
31  * Maximum number of event queue polling attempts when waiting for TX queue
32  * flush done or flush failed events; it defines TX queue flush attempt timeout
33  * together with SFC_TX_QFLUSH_POLL_WAIT_MS
34  */
35 #define SFC_TX_QFLUSH_POLL_ATTEMPTS	(2000)
36 
37 struct sfc_txq_info *
sfc_txq_info_by_ethdev_qid(struct sfc_adapter_shared * sas,sfc_ethdev_qid_t ethdev_qid)38 sfc_txq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
39 			   sfc_ethdev_qid_t ethdev_qid)
40 {
41 	sfc_sw_index_t sw_index;
42 
43 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_txq_count);
44 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
45 
46 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
47 	return &sas->txq_info[sw_index];
48 }
49 
50 static uint64_t
sfc_tx_get_offload_mask(struct sfc_adapter * sa)51 sfc_tx_get_offload_mask(struct sfc_adapter *sa)
52 {
53 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
54 	uint64_t no_caps = 0;
55 
56 	if (!encp->enc_hw_tx_insert_vlan_enabled)
57 		no_caps |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT;
58 
59 	if (!encp->enc_tunnel_encapsulations_supported)
60 		no_caps |= RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM;
61 
62 	if (!sa->tso)
63 		no_caps |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
64 
65 	if (!sa->tso_encap ||
66 	    (encp->enc_tunnel_encapsulations_supported &
67 	     (1u << EFX_TUNNEL_PROTOCOL_VXLAN)) == 0)
68 		no_caps |= RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO;
69 
70 	if (!sa->tso_encap ||
71 	    (encp->enc_tunnel_encapsulations_supported &
72 	     (1u << EFX_TUNNEL_PROTOCOL_GENEVE)) == 0)
73 		no_caps |= RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO;
74 
75 	return ~no_caps;
76 }
77 
78 uint64_t
sfc_tx_get_dev_offload_caps(struct sfc_adapter * sa)79 sfc_tx_get_dev_offload_caps(struct sfc_adapter *sa)
80 {
81 	return sa->priv.dp_tx->dev_offload_capa & sfc_tx_get_offload_mask(sa);
82 }
83 
84 uint64_t
sfc_tx_get_queue_offload_caps(struct sfc_adapter * sa)85 sfc_tx_get_queue_offload_caps(struct sfc_adapter *sa)
86 {
87 	return sa->priv.dp_tx->queue_offload_capa & sfc_tx_get_offload_mask(sa);
88 }
89 
90 static int
sfc_tx_qcheck_conf(struct sfc_adapter * sa,unsigned int txq_max_fill_level,const struct rte_eth_txconf * tx_conf,uint64_t offloads)91 sfc_tx_qcheck_conf(struct sfc_adapter *sa, unsigned int txq_max_fill_level,
92 		   const struct rte_eth_txconf *tx_conf,
93 		   uint64_t offloads)
94 {
95 	int rc = 0;
96 
97 	if (tx_conf->tx_rs_thresh != 0) {
98 		sfc_err(sa, "RS bit in transmit descriptor is not supported");
99 		rc = EINVAL;
100 	}
101 
102 	if (tx_conf->tx_free_thresh > txq_max_fill_level) {
103 		sfc_err(sa,
104 			"TxQ free threshold too large: %u vs maximum %u",
105 			tx_conf->tx_free_thresh, txq_max_fill_level);
106 		rc = EINVAL;
107 	}
108 
109 	if (tx_conf->tx_thresh.pthresh != 0 ||
110 	    tx_conf->tx_thresh.hthresh != 0 ||
111 	    tx_conf->tx_thresh.wthresh != 0) {
112 		sfc_warn(sa,
113 			"prefetch/host/writeback thresholds are not supported");
114 	}
115 
116 	/* We either perform both TCP and UDP offload, or no offload at all */
117 	if (((offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) == 0) !=
118 	    ((offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) == 0)) {
119 		sfc_err(sa, "TCP and UDP offloads can't be set independently");
120 		rc = EINVAL;
121 	}
122 
123 	return rc;
124 }
125 
126 void
sfc_tx_qflush_done(struct sfc_txq_info * txq_info)127 sfc_tx_qflush_done(struct sfc_txq_info *txq_info)
128 {
129 	txq_info->state |= SFC_TXQ_FLUSHED;
130 	txq_info->state &= ~SFC_TXQ_FLUSHING;
131 }
132 
133 int
sfc_tx_qinit(struct sfc_adapter * sa,sfc_sw_index_t sw_index,uint16_t nb_tx_desc,unsigned int socket_id,const struct rte_eth_txconf * tx_conf)134 sfc_tx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
135 	     uint16_t nb_tx_desc, unsigned int socket_id,
136 	     const struct rte_eth_txconf *tx_conf)
137 {
138 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
139 	sfc_ethdev_qid_t ethdev_qid;
140 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
141 	unsigned int txq_entries;
142 	unsigned int evq_entries;
143 	unsigned int txq_max_fill_level;
144 	struct sfc_txq_info *txq_info;
145 	struct sfc_evq *evq;
146 	struct sfc_txq *txq;
147 	int rc = 0;
148 	struct sfc_dp_tx_qcreate_info info;
149 	uint64_t offloads;
150 	struct sfc_dp_tx_hw_limits hw_limits;
151 
152 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
153 
154 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
155 
156 	memset(&hw_limits, 0, sizeof(hw_limits));
157 	hw_limits.txq_max_entries = sa->txq_max_entries;
158 	hw_limits.txq_min_entries = sa->txq_min_entries;
159 
160 	rc = sa->priv.dp_tx->qsize_up_rings(nb_tx_desc, &hw_limits,
161 					    &txq_entries, &evq_entries,
162 					    &txq_max_fill_level);
163 	if (rc != 0)
164 		goto fail_size_up_rings;
165 	SFC_ASSERT(txq_entries >= sa->txq_min_entries);
166 	SFC_ASSERT(txq_entries <= sa->txq_max_entries);
167 	SFC_ASSERT(txq_entries >= nb_tx_desc);
168 	SFC_ASSERT(txq_max_fill_level <= nb_tx_desc);
169 
170 	offloads = tx_conf->offloads;
171 	/* Add device level Tx offloads if the queue is an ethdev Tx queue */
172 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
173 		offloads |= sa->eth_dev->data->dev_conf.txmode.offloads;
174 
175 	rc = sfc_tx_qcheck_conf(sa, txq_max_fill_level, tx_conf, offloads);
176 	if (rc != 0)
177 		goto fail_bad_conf;
178 
179 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
180 	txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
181 
182 	txq_info->entries = txq_entries;
183 
184 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index,
185 			  evq_entries, socket_id, &evq);
186 	if (rc != 0)
187 		goto fail_ev_qinit;
188 
189 	txq = &sa->txq_ctrl[sw_index];
190 	txq->hw_index = sw_index;
191 	txq->evq = evq;
192 	txq_info->free_thresh =
193 		(tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
194 		SFC_TX_DEFAULT_FREE_THRESH;
195 	txq_info->offloads = offloads;
196 
197 	rc = sfc_dma_alloc(sa, "txq", sw_index, EFX_NIC_DMA_ADDR_TX_RING,
198 			   efx_txq_size(sa->nic, txq_info->entries),
199 			   socket_id, &txq->mem);
200 	if (rc != 0)
201 		goto fail_dma_alloc;
202 
203 	memset(&info, 0, sizeof(info));
204 	info.max_fill_level = txq_max_fill_level;
205 	info.free_thresh = txq_info->free_thresh;
206 	info.offloads = offloads;
207 	info.txq_entries = txq_info->entries;
208 	info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max;
209 	info.txq_hw_ring = txq->mem.esm_base;
210 	info.evq_entries = evq_entries;
211 	info.evq_hw_ring = evq->mem.esm_base;
212 	info.hw_index = txq->hw_index;
213 	info.mem_bar = sa->mem_bar.esb_base;
214 	info.vi_window_shift = encp->enc_vi_window_shift;
215 	info.tso_tcp_header_offset_limit =
216 		encp->enc_tx_tso_tcp_header_offset_limit;
217 	info.tso_max_nb_header_descs =
218 		RTE_MIN(encp->enc_tx_tso_max_header_ndescs,
219 			(uint32_t)UINT16_MAX);
220 	info.tso_max_header_len =
221 		RTE_MIN(encp->enc_tx_tso_max_header_length,
222 			(uint32_t)UINT16_MAX);
223 	info.tso_max_nb_payload_descs =
224 		RTE_MIN(encp->enc_tx_tso_max_payload_ndescs,
225 			(uint32_t)UINT16_MAX);
226 	info.tso_max_payload_len = encp->enc_tx_tso_max_payload_length;
227 	info.tso_max_nb_outgoing_frames = encp->enc_tx_tso_max_nframes;
228 
229 	info.nic_dma_info = &sas->nic_dma_info;
230 
231 	rc = sa->priv.dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index,
232 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
233 				     socket_id, &info, &txq_info->dp);
234 	if (rc != 0)
235 		goto fail_dp_tx_qinit;
236 
237 	evq->dp_txq = txq_info->dp;
238 
239 	txq_info->state = SFC_TXQ_INITIALIZED;
240 
241 	txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);
242 
243 	return 0;
244 
245 fail_dp_tx_qinit:
246 	sfc_dma_free(sa, &txq->mem);
247 
248 fail_dma_alloc:
249 	sfc_ev_qfini(evq);
250 
251 fail_ev_qinit:
252 	txq_info->entries = 0;
253 
254 fail_bad_conf:
255 fail_size_up_rings:
256 	sfc_log_init(sa, "failed (TxQ = %d (internal %u), rc = %d)", ethdev_qid,
257 		     sw_index, rc);
258 	return rc;
259 }
260 
261 void
sfc_tx_qfini(struct sfc_adapter * sa,sfc_sw_index_t sw_index)262 sfc_tx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
263 {
264 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
265 	sfc_ethdev_qid_t ethdev_qid;
266 	struct sfc_txq_info *txq_info;
267 	struct sfc_txq *txq;
268 
269 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
270 
271 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
272 
273 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
274 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
275 		sa->eth_dev->data->tx_queues[ethdev_qid] = NULL;
276 
277 	txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
278 
279 	SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
280 
281 	sa->priv.dp_tx->qdestroy(txq_info->dp);
282 	txq_info->dp = NULL;
283 
284 	txq_info->state &= ~SFC_TXQ_INITIALIZED;
285 	txq_info->entries = 0;
286 
287 	txq = &sa->txq_ctrl[sw_index];
288 
289 	sfc_dma_free(sa, &txq->mem);
290 
291 	sfc_ev_qfini(txq->evq);
292 	txq->evq = NULL;
293 }
294 
295 int
sfc_tx_qinit_info(struct sfc_adapter * sa,sfc_sw_index_t sw_index)296 sfc_tx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
297 {
298 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
299 	sfc_ethdev_qid_t ethdev_qid;
300 
301 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
302 
303 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
304 
305 	return 0;
306 }
307 
308 static int
sfc_tx_check_mode(struct sfc_adapter * sa,const struct rte_eth_txmode * txmode)309 sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
310 {
311 	uint64_t dev_tx_offload_cap = sfc_tx_get_dev_offload_caps(sa);
312 	int rc = 0;
313 
314 	switch (txmode->mq_mode) {
315 	case RTE_ETH_MQ_TX_NONE:
316 		break;
317 	default:
318 		sfc_err(sa, "Tx multi-queue mode %u not supported",
319 			txmode->mq_mode);
320 		rc = EINVAL;
321 	}
322 
323 	if ((dev_tx_offload_cap & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) != 0 &&
324 	    (txmode->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) == 0) {
325 		sfc_err(sa, "There is no FAST_FREE flag in the attempted Tx mode configuration");
326 		sfc_err(sa, "FAST_FREE is always active as per the current Tx datapath variant");
327 		rc = EINVAL;
328 	}
329 
330 	/*
331 	 * These features are claimed to be i40e-specific,
332 	 * but it does make sense to double-check their absence
333 	 */
334 	if (txmode->hw_vlan_reject_tagged) {
335 		sfc_err(sa, "Rejecting tagged packets not supported");
336 		rc = EINVAL;
337 	}
338 
339 	if (txmode->hw_vlan_reject_untagged) {
340 		sfc_err(sa, "Rejecting untagged packets not supported");
341 		rc = EINVAL;
342 	}
343 
344 	if (txmode->hw_vlan_insert_pvid) {
345 		sfc_err(sa, "Port-based VLAN insertion not supported");
346 		rc = EINVAL;
347 	}
348 
349 	return rc;
350 }
351 
352 /**
353  * Destroy excess queues that are no longer needed after reconfiguration
354  * or complete close.
355  */
356 static void
sfc_tx_fini_queues(struct sfc_adapter * sa,unsigned int nb_tx_queues)357 sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues)
358 {
359 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
360 	sfc_sw_index_t sw_index;
361 	sfc_ethdev_qid_t ethdev_qid;
362 
363 	SFC_ASSERT(nb_tx_queues <= sas->ethdev_txq_count);
364 
365 	/*
366 	 * Finalize only ethdev queues since other ones are finalized only
367 	 * on device close and they may require additional deinitialization.
368 	 */
369 	ethdev_qid = sas->ethdev_txq_count;
370 	while (--ethdev_qid >= (int)nb_tx_queues) {
371 		struct sfc_txq_info *txq_info;
372 
373 		sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
374 		txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
375 		if (txq_info->state & SFC_TXQ_INITIALIZED)
376 			sfc_tx_qfini(sa, sw_index);
377 	}
378 
379 	sas->ethdev_txq_count = nb_tx_queues;
380 }
381 
382 int
sfc_tx_configure(struct sfc_adapter * sa)383 sfc_tx_configure(struct sfc_adapter *sa)
384 {
385 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
386 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
387 	const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
388 	const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues;
389 	const unsigned int nb_rsvd_tx_queues = sfc_nb_txq_reserved(sas);
390 	const unsigned int nb_txq_total = nb_tx_queues + nb_rsvd_tx_queues;
391 	bool reconfigure;
392 	int rc = 0;
393 
394 	sfc_log_init(sa, "nb_tx_queues=%u (old %u)",
395 		     nb_tx_queues, sas->ethdev_txq_count);
396 
397 	/*
398 	 * The datapath implementation assumes absence of boundary
399 	 * limits on Tx DMA descriptors. Addition of these checks on
400 	 * datapath would simply make the datapath slower.
401 	 */
402 	if (encp->enc_tx_dma_desc_boundary != 0) {
403 		rc = ENOTSUP;
404 		goto fail_tx_dma_desc_boundary;
405 	}
406 
407 	rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
408 	if (rc != 0)
409 		goto fail_check_mode;
410 
411 	if (nb_txq_total == sas->txq_count)
412 		goto done;
413 
414 	if (sas->txq_info == NULL) {
415 		reconfigure = false;
416 		sas->txq_info = rte_calloc_socket("sfc-txqs", nb_txq_total,
417 						  sizeof(sas->txq_info[0]), 0,
418 						  sa->socket_id);
419 		if (sas->txq_info == NULL)
420 			goto fail_txqs_alloc;
421 
422 		/*
423 		 * Allocate primary process only TxQ control from heap
424 		 * since it should not be shared.
425 		 */
426 		rc = ENOMEM;
427 		sa->txq_ctrl = calloc(nb_txq_total, sizeof(sa->txq_ctrl[0]));
428 		if (sa->txq_ctrl == NULL)
429 			goto fail_txqs_ctrl_alloc;
430 	} else {
431 		struct sfc_txq_info *new_txq_info;
432 		struct sfc_txq *new_txq_ctrl;
433 
434 		reconfigure = true;
435 
436 		if (nb_tx_queues < sas->ethdev_txq_count)
437 			sfc_tx_fini_queues(sa, nb_tx_queues);
438 
439 		new_txq_info =
440 			rte_realloc(sas->txq_info,
441 				    nb_txq_total * sizeof(sas->txq_info[0]), 0);
442 		if (new_txq_info == NULL && nb_txq_total > 0)
443 			goto fail_txqs_realloc;
444 
445 		new_txq_ctrl = realloc(sa->txq_ctrl,
446 				       nb_txq_total * sizeof(sa->txq_ctrl[0]));
447 		if (new_txq_ctrl == NULL && nb_txq_total > 0)
448 			goto fail_txqs_ctrl_realloc;
449 
450 		sas->txq_info = new_txq_info;
451 		sa->txq_ctrl = new_txq_ctrl;
452 		if (nb_txq_total > sas->txq_count) {
453 			memset(&sas->txq_info[sas->txq_count], 0,
454 			       (nb_txq_total - sas->txq_count) *
455 			       sizeof(sas->txq_info[0]));
456 			memset(&sa->txq_ctrl[sas->txq_count], 0,
457 			       (nb_txq_total - sas->txq_count) *
458 			       sizeof(sa->txq_ctrl[0]));
459 		}
460 	}
461 
462 	while (sas->ethdev_txq_count < nb_tx_queues) {
463 		sfc_sw_index_t sw_index;
464 
465 		sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas,
466 				sas->ethdev_txq_count);
467 		rc = sfc_tx_qinit_info(sa, sw_index);
468 		if (rc != 0)
469 			goto fail_tx_qinit_info;
470 
471 		sas->ethdev_txq_count++;
472 	}
473 
474 	sas->txq_count = sas->ethdev_txq_count + nb_rsvd_tx_queues;
475 
476 	if (!reconfigure) {
477 		rc = sfc_repr_proxy_txq_init(sa);
478 		if (rc != 0)
479 			goto fail_repr_proxy_txq_init;
480 	}
481 
482 done:
483 	return 0;
484 
485 fail_repr_proxy_txq_init:
486 fail_tx_qinit_info:
487 fail_txqs_ctrl_realloc:
488 fail_txqs_realloc:
489 fail_txqs_ctrl_alloc:
490 fail_txqs_alloc:
491 	sfc_tx_close(sa);
492 
493 fail_check_mode:
494 fail_tx_dma_desc_boundary:
495 	sfc_log_init(sa, "failed (rc = %d)", rc);
496 	return rc;
497 }
498 
499 void
sfc_tx_close(struct sfc_adapter * sa)500 sfc_tx_close(struct sfc_adapter *sa)
501 {
502 	sfc_tx_fini_queues(sa, 0);
503 	sfc_repr_proxy_txq_fini(sa);
504 
505 	free(sa->txq_ctrl);
506 	sa->txq_ctrl = NULL;
507 
508 	rte_free(sfc_sa2shared(sa)->txq_info);
509 	sfc_sa2shared(sa)->txq_info = NULL;
510 }
511 
512 int
sfc_tx_qstart(struct sfc_adapter * sa,sfc_sw_index_t sw_index)513 sfc_tx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
514 {
515 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
516 	sfc_ethdev_qid_t ethdev_qid;
517 	uint64_t offloads_supported = sfc_tx_get_dev_offload_caps(sa) |
518 				      sfc_tx_get_queue_offload_caps(sa);
519 	struct sfc_txq_info *txq_info;
520 	struct sfc_txq *txq;
521 	struct sfc_evq *evq;
522 	uint16_t flags = 0;
523 	unsigned int desc_index;
524 	int rc = 0;
525 
526 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
527 
528 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
529 
530 	SFC_ASSERT(sw_index < sas->txq_count);
531 	txq_info = &sas->txq_info[sw_index];
532 
533 	SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
534 
535 	txq = &sa->txq_ctrl[sw_index];
536 	evq = txq->evq;
537 
538 	rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_txq_sw_index(sa, sw_index));
539 	if (rc != 0)
540 		goto fail_ev_qstart;
541 
542 	if (txq_info->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)
543 		flags |= EFX_TXQ_CKSUM_IPV4;
544 
545 	if (txq_info->offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM)
546 		flags |= EFX_TXQ_CKSUM_INNER_IPV4;
547 
548 	if ((txq_info->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) ||
549 	    (txq_info->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
550 		flags |= EFX_TXQ_CKSUM_TCPUDP;
551 
552 		if (offloads_supported & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM)
553 			flags |= EFX_TXQ_CKSUM_INNER_TCPUDP;
554 	}
555 
556 	if (txq_info->offloads & (RTE_ETH_TX_OFFLOAD_TCP_TSO |
557 				  RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
558 				  RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO))
559 		flags |= EFX_TXQ_FATSOV2;
560 
561 	rc = efx_tx_qcreate(sa->nic, txq->hw_index, 0, &txq->mem,
562 			    txq_info->entries, 0 /* not used on EF10 */,
563 			    flags, evq->common,
564 			    &txq->common, &desc_index);
565 	if (rc != 0) {
566 		if (sa->tso && (rc == ENOSPC))
567 			sfc_err(sa, "ran out of TSO contexts");
568 
569 		goto fail_tx_qcreate;
570 	}
571 
572 	efx_tx_qenable(txq->common);
573 
574 	txq_info->state |= SFC_TXQ_STARTED;
575 
576 	rc = sa->priv.dp_tx->qstart(txq_info->dp, evq->read_ptr, desc_index);
577 	if (rc != 0)
578 		goto fail_dp_qstart;
579 
580 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID) {
581 		struct rte_eth_dev_data *dev_data;
582 
583 		/*
584 		 * It sems to be used by DPDK for debug purposes only
585 		 * ('rte_ether').
586 		 */
587 		dev_data = sa->eth_dev->data;
588 		dev_data->tx_queue_state[ethdev_qid] =
589 			RTE_ETH_QUEUE_STATE_STARTED;
590 	}
591 
592 	return 0;
593 
594 fail_dp_qstart:
595 	txq_info->state = SFC_TXQ_INITIALIZED;
596 	efx_tx_qdestroy(txq->common);
597 
598 fail_tx_qcreate:
599 	sfc_ev_qstop(evq);
600 
601 fail_ev_qstart:
602 	return rc;
603 }
604 
605 void
sfc_tx_qstop(struct sfc_adapter * sa,sfc_sw_index_t sw_index)606 sfc_tx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
607 {
608 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
609 	sfc_ethdev_qid_t ethdev_qid;
610 	struct sfc_txq_info *txq_info;
611 	struct sfc_txq *txq;
612 	unsigned int retry_count;
613 	unsigned int wait_count;
614 	int rc;
615 
616 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
617 
618 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
619 
620 	SFC_ASSERT(sw_index < sas->txq_count);
621 	txq_info = &sas->txq_info[sw_index];
622 
623 	if (txq_info->state == SFC_TXQ_INITIALIZED)
624 		return;
625 
626 	SFC_ASSERT(txq_info->state & SFC_TXQ_STARTED);
627 
628 	txq = &sa->txq_ctrl[sw_index];
629 	sa->priv.dp_tx->qstop(txq_info->dp, &txq->evq->read_ptr);
630 
631 	/*
632 	 * Retry TX queue flushing in case of flush failed or
633 	 * timeout; in the worst case it can delay for 6 seconds
634 	 */
635 	for (retry_count = 0;
636 	     ((txq_info->state & SFC_TXQ_FLUSHED) == 0) &&
637 	     (retry_count < SFC_TX_QFLUSH_ATTEMPTS);
638 	     ++retry_count) {
639 		rc = efx_tx_qflush(txq->common);
640 		if (rc != 0) {
641 			txq_info->state |= (rc == EALREADY) ?
642 				SFC_TXQ_FLUSHED : SFC_TXQ_FLUSH_FAILED;
643 			break;
644 		}
645 
646 		/*
647 		 * Wait for TX queue flush done or flush failed event at least
648 		 * SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
649 		 * than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
650 		 * by SFC_TX_QFLUSH_POLL_ATTEMPTS)
651 		 */
652 		wait_count = 0;
653 		do {
654 			rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
655 			sfc_ev_qpoll(txq->evq);
656 		} while ((txq_info->state & SFC_TXQ_FLUSHING) &&
657 			 wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);
658 
659 		if (txq_info->state & SFC_TXQ_FLUSHING)
660 			sfc_err(sa, "TxQ %d (internal %u) flush timed out",
661 				ethdev_qid, sw_index);
662 
663 		if (txq_info->state & SFC_TXQ_FLUSHED)
664 			sfc_notice(sa, "TxQ %d (internal %u) flushed",
665 				   ethdev_qid, sw_index);
666 	}
667 
668 	sa->priv.dp_tx->qreap(txq_info->dp);
669 
670 	txq_info->state = SFC_TXQ_INITIALIZED;
671 
672 	efx_tx_qdestroy(txq->common);
673 
674 	sfc_ev_qstop(txq->evq);
675 
676 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID) {
677 		struct rte_eth_dev_data *dev_data;
678 
679 		/*
680 		 * It seems to be used by DPDK for debug purposes only
681 		 * ('rte_ether')
682 		 */
683 		dev_data = sa->eth_dev->data;
684 		dev_data->tx_queue_state[ethdev_qid] =
685 			RTE_ETH_QUEUE_STATE_STOPPED;
686 	}
687 }
688 
689 int
sfc_tx_start(struct sfc_adapter * sa)690 sfc_tx_start(struct sfc_adapter *sa)
691 {
692 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
693 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
694 	sfc_sw_index_t sw_index;
695 	int rc = 0;
696 
697 	sfc_log_init(sa, "txq_count = %u (internal %u)",
698 		     sas->ethdev_txq_count, sas->txq_count);
699 
700 	if (sa->tso) {
701 		if (!encp->enc_fw_assisted_tso_v2_enabled &&
702 		    !encp->enc_tso_v3_enabled) {
703 			sfc_warn(sa, "TSO support was unable to be restored");
704 			sa->tso = B_FALSE;
705 			sa->tso_encap = B_FALSE;
706 		}
707 	}
708 
709 	if (sa->tso_encap && !encp->enc_fw_assisted_tso_v2_encap_enabled &&
710 	    !encp->enc_tso_v3_enabled) {
711 		sfc_warn(sa, "Encapsulated TSO support was unable to be restored");
712 		sa->tso_encap = B_FALSE;
713 	}
714 
715 	rc = efx_tx_init(sa->nic);
716 	if (rc != 0)
717 		goto fail_efx_tx_init;
718 
719 	for (sw_index = 0; sw_index < sas->txq_count; ++sw_index) {
720 		if (sas->txq_info[sw_index].state == SFC_TXQ_INITIALIZED &&
721 		    (!(sas->txq_info[sw_index].deferred_start) ||
722 		     sas->txq_info[sw_index].deferred_started)) {
723 			rc = sfc_tx_qstart(sa, sw_index);
724 			if (rc != 0)
725 				goto fail_tx_qstart;
726 		}
727 	}
728 
729 	return 0;
730 
731 fail_tx_qstart:
732 	while (sw_index-- > 0)
733 		sfc_tx_qstop(sa, sw_index);
734 
735 	efx_tx_fini(sa->nic);
736 
737 fail_efx_tx_init:
738 	sfc_log_init(sa, "failed (rc = %d)", rc);
739 	return rc;
740 }
741 
742 void
sfc_tx_stop(struct sfc_adapter * sa)743 sfc_tx_stop(struct sfc_adapter *sa)
744 {
745 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
746 	sfc_sw_index_t sw_index;
747 
748 	sfc_log_init(sa, "txq_count = %u (internal %u)",
749 		     sas->ethdev_txq_count, sas->txq_count);
750 
751 	sw_index = sas->txq_count;
752 	while (sw_index-- > 0) {
753 		if (sas->txq_info[sw_index].state & SFC_TXQ_STARTED)
754 			sfc_tx_qstop(sa, sw_index);
755 	}
756 
757 	efx_tx_fini(sa->nic);
758 }
759 
760 static void
sfc_efx_tx_reap(struct sfc_efx_txq * txq)761 sfc_efx_tx_reap(struct sfc_efx_txq *txq)
762 {
763 	unsigned int completed;
764 
765 	sfc_ev_qpoll(txq->evq);
766 
767 	for (completed = txq->completed;
768 	     completed != txq->pending; completed++) {
769 		struct sfc_efx_tx_sw_desc *txd;
770 
771 		txd = &txq->sw_ring[completed & txq->ptr_mask];
772 
773 		if (txd->mbuf != NULL) {
774 			rte_pktmbuf_free(txd->mbuf);
775 			txd->mbuf = NULL;
776 		}
777 	}
778 
779 	txq->completed = completed;
780 }
781 
782 /*
783  * The function is used to insert or update VLAN tag;
784  * the firmware has state of the firmware tag to insert per TxQ
785  * (controlled by option descriptors), hence, if the tag of the
786  * packet to be sent is different from one remembered by the firmware,
787  * the function will update it
788  */
789 static unsigned int
sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq * txq,struct rte_mbuf * m,efx_desc_t ** pend)790 sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m,
791 			    efx_desc_t **pend)
792 {
793 	uint16_t this_tag = ((m->ol_flags & RTE_MBUF_F_TX_VLAN) ?
794 			     m->vlan_tci : 0);
795 
796 	if (this_tag == txq->hw_vlan_tci)
797 		return 0;
798 
799 	/*
800 	 * The expression inside SFC_ASSERT() is not desired to be checked in
801 	 * a non-debug build because it might be too expensive on the data path
802 	 */
803 	SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);
804 
805 	efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
806 				    *pend);
807 	(*pend)++;
808 	txq->hw_vlan_tci = this_tag;
809 
810 	return 1;
811 }
812 
813 static uint16_t
sfc_efx_prepare_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)814 sfc_efx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
815 		     uint16_t nb_pkts)
816 {
817 	struct sfc_dp_txq *dp_txq = tx_queue;
818 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
819 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->evq->sa->nic);
820 	uint16_t i;
821 
822 	for (i = 0; i < nb_pkts; i++) {
823 		int ret;
824 
825 		/*
826 		 * EFX Tx datapath may require extra VLAN descriptor if VLAN
827 		 * insertion offload is requested regardless the offload
828 		 * requested/supported.
829 		 */
830 		ret = sfc_dp_tx_prepare_pkt(tx_pkts[i], 0, SFC_TSOH_STD_LEN,
831 				encp->enc_tx_tso_tcp_header_offset_limit,
832 				txq->max_fill_level, EFX_TX_FATSOV2_OPT_NDESCS,
833 				1);
834 		if (unlikely(ret != 0)) {
835 			rte_errno = ret;
836 			break;
837 		}
838 	}
839 
840 	return i;
841 }
842 
843 static uint16_t
sfc_efx_xmit_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)844 sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
845 {
846 	struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue;
847 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
848 	unsigned int added = txq->added;
849 	unsigned int pushed = added;
850 	unsigned int pkts_sent = 0;
851 	efx_desc_t *pend = &txq->pend_desc[0];
852 	const unsigned int hard_max_fill = txq->max_fill_level;
853 	const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
854 	unsigned int fill_level = added - txq->completed;
855 	boolean_t reap_done;
856 	int rc __rte_unused;
857 	struct rte_mbuf **pktp;
858 
859 	if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0))
860 		goto done;
861 
862 	/*
863 	 * If insufficient space for a single packet is present,
864 	 * we should reap; otherwise, we shouldn't do that all the time
865 	 * to avoid latency increase
866 	 */
867 	reap_done = (fill_level > soft_max_fill);
868 
869 	if (reap_done) {
870 		sfc_efx_tx_reap(txq);
871 		/*
872 		 * Recalculate fill level since 'txq->completed'
873 		 * might have changed on reap
874 		 */
875 		fill_level = added - txq->completed;
876 	}
877 
878 	for (pkts_sent = 0, pktp = &tx_pkts[0];
879 	     (pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
880 	     pkts_sent++, pktp++) {
881 		uint16_t		hw_vlan_tci_prev = txq->hw_vlan_tci;
882 		struct rte_mbuf		*m_seg = *pktp;
883 		size_t			pkt_len = m_seg->pkt_len;
884 		unsigned int		pkt_descs = 0;
885 		size_t			in_off = 0;
886 
887 		/*
888 		 * Here VLAN TCI is expected to be zero in case if no
889 		 * RTE_ETH_TX_OFFLOAD_VLAN_INSERT capability is advertised;
890 		 * if the calling app ignores the absence of
891 		 * RTE_ETH_TX_OFFLOAD_VLAN_INSERT and pushes VLAN TCI, then
892 		 * TX_ERROR will occur
893 		 */
894 		pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend);
895 
896 		if (m_seg->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
897 			/*
898 			 * We expect correct 'pkt->l[2, 3, 4]_len' values
899 			 * to be set correctly by the caller
900 			 */
901 			if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend,
902 					   &pkt_descs, &pkt_len) != 0) {
903 				/* We may have reached this place if packet
904 				 * header linearization is needed but the
905 				 * header length is greater than
906 				 * SFC_TSOH_STD_LEN
907 				 *
908 				 * We will deceive RTE saying that we have sent
909 				 * the packet, but we will actually drop it.
910 				 * Hence, we should revert 'pend' to the
911 				 * previous state (in case we have added
912 				 * VLAN descriptor) and start processing
913 				 * another one packet. But the original
914 				 * mbuf shouldn't be orphaned
915 				 */
916 				pend -= pkt_descs;
917 				txq->hw_vlan_tci = hw_vlan_tci_prev;
918 
919 				rte_pktmbuf_free(*pktp);
920 
921 				continue;
922 			}
923 
924 			/*
925 			 * We've only added 2 FATSOv2 option descriptors
926 			 * and 1 descriptor for the linearized packet header.
927 			 * The outstanding work will be done in the same manner
928 			 * as for the usual non-TSO path
929 			 */
930 		}
931 
932 		for (; m_seg != NULL; m_seg = m_seg->next) {
933 			efsys_dma_addr_t	next_frag;
934 			size_t			seg_len;
935 
936 			seg_len = m_seg->data_len;
937 			next_frag = rte_mbuf_data_iova(m_seg);
938 
939 			/*
940 			 * If we've started TSO transaction few steps earlier,
941 			 * we'll skip packet header using an offset in the
942 			 * current segment (which has been set to the
943 			 * first one containing payload)
944 			 */
945 			seg_len -= in_off;
946 			next_frag += in_off;
947 			in_off = 0;
948 
949 			do {
950 				efsys_dma_addr_t	frag_addr = next_frag;
951 				size_t			frag_len;
952 
953 				/*
954 				 * It is assumed here that there is no
955 				 * limitation on address boundary
956 				 * crossing by DMA descriptor.
957 				 */
958 				frag_len = MIN(seg_len, txq->dma_desc_size_max);
959 				next_frag += frag_len;
960 				seg_len -= frag_len;
961 				pkt_len -= frag_len;
962 
963 				efx_tx_qdesc_dma_create(txq->common,
964 							frag_addr, frag_len,
965 							(pkt_len == 0),
966 							pend++);
967 
968 				pkt_descs++;
969 			} while (seg_len != 0);
970 		}
971 
972 		added += pkt_descs;
973 
974 		fill_level += pkt_descs;
975 		if (unlikely(fill_level > hard_max_fill)) {
976 			/*
977 			 * Our estimation for maximum number of descriptors
978 			 * required to send a packet seems to be wrong.
979 			 * Try to reap (if we haven't yet).
980 			 */
981 			if (!reap_done) {
982 				sfc_efx_tx_reap(txq);
983 				reap_done = B_TRUE;
984 				fill_level = added - txq->completed;
985 				if (fill_level > hard_max_fill) {
986 					pend -= pkt_descs;
987 					txq->hw_vlan_tci = hw_vlan_tci_prev;
988 					break;
989 				}
990 			} else {
991 				pend -= pkt_descs;
992 				txq->hw_vlan_tci = hw_vlan_tci_prev;
993 				break;
994 			}
995 		}
996 
997 		/* Assign mbuf to the last used desc */
998 		txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
999 	}
1000 
1001 	if (likely(pkts_sent > 0)) {
1002 		rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
1003 				       pend - &txq->pend_desc[0],
1004 				       txq->completed, &txq->added);
1005 		SFC_ASSERT(rc == 0);
1006 
1007 		if (likely(pushed != txq->added)) {
1008 			efx_tx_qpush(txq->common, txq->added, pushed);
1009 			txq->dp.dpq.dbells++;
1010 		}
1011 	}
1012 
1013 #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
1014 	if (!reap_done)
1015 		sfc_efx_tx_reap(txq);
1016 #endif
1017 
1018 done:
1019 	return pkts_sent;
1020 }
1021 
1022 const struct sfc_dp_tx *
sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq * dp_txq)1023 sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1024 {
1025 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1026 	struct rte_eth_dev *eth_dev;
1027 	struct sfc_adapter_priv *sap;
1028 
1029 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1030 	eth_dev = &rte_eth_devices[dpq->port_id];
1031 
1032 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
1033 
1034 	return sap->dp_tx;
1035 }
1036 
1037 struct sfc_txq_info *
sfc_txq_info_by_dp_txq(const struct sfc_dp_txq * dp_txq)1038 sfc_txq_info_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1039 {
1040 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1041 	struct rte_eth_dev *eth_dev;
1042 	struct sfc_adapter_shared *sas;
1043 
1044 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1045 	eth_dev = &rte_eth_devices[dpq->port_id];
1046 
1047 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
1048 
1049 	SFC_ASSERT(dpq->queue_id < sas->txq_count);
1050 	return &sas->txq_info[dpq->queue_id];
1051 }
1052 
1053 struct sfc_txq *
sfc_txq_by_dp_txq(const struct sfc_dp_txq * dp_txq)1054 sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1055 {
1056 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1057 	struct rte_eth_dev *eth_dev;
1058 	struct sfc_adapter *sa;
1059 
1060 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1061 	eth_dev = &rte_eth_devices[dpq->port_id];
1062 
1063 	sa = sfc_adapter_by_eth_dev(eth_dev);
1064 
1065 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->txq_count);
1066 	return &sa->txq_ctrl[dpq->queue_id];
1067 }
1068 
1069 static sfc_dp_tx_qsize_up_rings_t sfc_efx_tx_qsize_up_rings;
1070 static int
sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc,__rte_unused struct sfc_dp_tx_hw_limits * limits,unsigned int * txq_entries,unsigned int * evq_entries,unsigned int * txq_max_fill_level)1071 sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc,
1072 			  __rte_unused struct sfc_dp_tx_hw_limits *limits,
1073 			  unsigned int *txq_entries,
1074 			  unsigned int *evq_entries,
1075 			  unsigned int *txq_max_fill_level)
1076 {
1077 	*txq_entries = nb_tx_desc;
1078 	*evq_entries = nb_tx_desc;
1079 	*txq_max_fill_level = EFX_TXQ_LIMIT(*txq_entries);
1080 	return 0;
1081 }
1082 
1083 static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate;
1084 static int
sfc_efx_tx_qcreate(uint16_t port_id,uint16_t queue_id,const struct rte_pci_addr * pci_addr,int socket_id,const struct sfc_dp_tx_qcreate_info * info,struct sfc_dp_txq ** dp_txqp)1085 sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id,
1086 		   const struct rte_pci_addr *pci_addr,
1087 		   int socket_id,
1088 		   const struct sfc_dp_tx_qcreate_info *info,
1089 		   struct sfc_dp_txq **dp_txqp)
1090 {
1091 	struct sfc_efx_txq *txq;
1092 	struct sfc_txq *ctrl_txq;
1093 	int rc;
1094 
1095 	rc = ENOTSUP;
1096 	if (info->nic_dma_info->nb_regions > 0)
1097 		goto fail_nic_dma;
1098 
1099 	rc = ENOMEM;
1100 	txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq),
1101 				 RTE_CACHE_LINE_SIZE, socket_id);
1102 	if (txq == NULL)
1103 		goto fail_txq_alloc;
1104 
1105 	sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
1106 
1107 	rc = ENOMEM;
1108 	txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc",
1109 					   EFX_TXQ_LIMIT(info->txq_entries),
1110 					   sizeof(*txq->pend_desc), 0,
1111 					   socket_id);
1112 	if (txq->pend_desc == NULL)
1113 		goto fail_pend_desc_alloc;
1114 
1115 	rc = ENOMEM;
1116 	txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring",
1117 					 info->txq_entries,
1118 					 sizeof(*txq->sw_ring),
1119 					 RTE_CACHE_LINE_SIZE, socket_id);
1120 	if (txq->sw_ring == NULL)
1121 		goto fail_sw_ring_alloc;
1122 
1123 	ctrl_txq = sfc_txq_by_dp_txq(&txq->dp);
1124 	if (ctrl_txq->evq->sa->tso) {
1125 		rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring,
1126 						 info->txq_entries, socket_id);
1127 		if (rc != 0)
1128 			goto fail_alloc_tsoh_objs;
1129 	}
1130 
1131 	txq->evq = ctrl_txq->evq;
1132 	txq->ptr_mask = info->txq_entries - 1;
1133 	txq->max_fill_level = info->max_fill_level;
1134 	txq->free_thresh = info->free_thresh;
1135 	txq->dma_desc_size_max = info->dma_desc_size_max;
1136 
1137 	*dp_txqp = &txq->dp;
1138 	return 0;
1139 
1140 fail_alloc_tsoh_objs:
1141 	rte_free(txq->sw_ring);
1142 
1143 fail_sw_ring_alloc:
1144 	rte_free(txq->pend_desc);
1145 
1146 fail_pend_desc_alloc:
1147 	rte_free(txq);
1148 
1149 fail_txq_alloc:
1150 fail_nic_dma:
1151 	return rc;
1152 }
1153 
1154 static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy;
1155 static void
sfc_efx_tx_qdestroy(struct sfc_dp_txq * dp_txq)1156 sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq)
1157 {
1158 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1159 
1160 	sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1);
1161 	rte_free(txq->sw_ring);
1162 	rte_free(txq->pend_desc);
1163 	rte_free(txq);
1164 }
1165 
1166 static sfc_dp_tx_qstart_t sfc_efx_tx_qstart;
1167 static int
sfc_efx_tx_qstart(struct sfc_dp_txq * dp_txq,__rte_unused unsigned int evq_read_ptr,unsigned int txq_desc_index)1168 sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq,
1169 		  __rte_unused unsigned int evq_read_ptr,
1170 		  unsigned int txq_desc_index)
1171 {
1172 	/* libefx-based datapath is specific to libefx-based PMD */
1173 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1174 	struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq);
1175 
1176 	txq->common = ctrl_txq->common;
1177 
1178 	txq->pending = txq->completed = txq->added = txq_desc_index;
1179 	txq->hw_vlan_tci = 0;
1180 
1181 	txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING);
1182 
1183 	return 0;
1184 }
1185 
1186 static sfc_dp_tx_qstop_t sfc_efx_tx_qstop;
1187 static void
sfc_efx_tx_qstop(struct sfc_dp_txq * dp_txq,__rte_unused unsigned int * evq_read_ptr)1188 sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq,
1189 		 __rte_unused unsigned int *evq_read_ptr)
1190 {
1191 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1192 
1193 	txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING;
1194 }
1195 
1196 static sfc_dp_tx_qreap_t sfc_efx_tx_qreap;
1197 static void
sfc_efx_tx_qreap(struct sfc_dp_txq * dp_txq)1198 sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq)
1199 {
1200 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1201 	unsigned int txds;
1202 
1203 	sfc_efx_tx_reap(txq);
1204 
1205 	for (txds = 0; txds <= txq->ptr_mask; txds++) {
1206 		if (txq->sw_ring[txds].mbuf != NULL) {
1207 			rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
1208 			txq->sw_ring[txds].mbuf = NULL;
1209 		}
1210 	}
1211 
1212 	txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED;
1213 }
1214 
1215 static sfc_dp_tx_qdesc_status_t sfc_efx_tx_qdesc_status;
1216 static int
sfc_efx_tx_qdesc_status(struct sfc_dp_txq * dp_txq,uint16_t offset)1217 sfc_efx_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
1218 {
1219 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1220 
1221 	if (unlikely(offset > txq->ptr_mask))
1222 		return -EINVAL;
1223 
1224 	if (unlikely(offset >= txq->max_fill_level))
1225 		return RTE_ETH_TX_DESC_UNAVAIL;
1226 
1227 	/*
1228 	 * Poll EvQ to derive up-to-date 'txq->pending' figure;
1229 	 * it is required for the queue to be running, but the
1230 	 * check is omitted because API design assumes that it
1231 	 * is the duty of the caller to satisfy all conditions
1232 	 */
1233 	SFC_ASSERT((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) ==
1234 		   SFC_EFX_TXQ_FLAG_RUNNING);
1235 	sfc_ev_qpoll(txq->evq);
1236 
1237 	/*
1238 	 * Ring tail is 'txq->pending', and although descriptors
1239 	 * between 'txq->completed' and 'txq->pending' are still
1240 	 * in use by the driver, they should be reported as DONE
1241 	 */
1242 	if (unlikely(offset < (txq->added - txq->pending)))
1243 		return RTE_ETH_TX_DESC_FULL;
1244 
1245 	/*
1246 	 * There is no separate return value for unused descriptors;
1247 	 * the latter will be reported as DONE because genuine DONE
1248 	 * descriptors will be freed anyway in SW on the next burst
1249 	 */
1250 	return RTE_ETH_TX_DESC_DONE;
1251 }
1252 
1253 struct sfc_dp_tx sfc_efx_tx = {
1254 	.dp = {
1255 		.name		= SFC_KVARG_DATAPATH_EFX,
1256 		.type		= SFC_DP_TX,
1257 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_TX_EFX,
1258 	},
1259 	.features		= 0,
1260 	.dev_offload_capa	= RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
1261 				  RTE_ETH_TX_OFFLOAD_MULTI_SEGS,
1262 	.queue_offload_capa	= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1263 				  RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1264 				  RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1265 				  RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
1266 				  RTE_ETH_TX_OFFLOAD_TCP_TSO,
1267 	.qsize_up_rings		= sfc_efx_tx_qsize_up_rings,
1268 	.qcreate		= sfc_efx_tx_qcreate,
1269 	.qdestroy		= sfc_efx_tx_qdestroy,
1270 	.qstart			= sfc_efx_tx_qstart,
1271 	.qstop			= sfc_efx_tx_qstop,
1272 	.qreap			= sfc_efx_tx_qreap,
1273 	.qdesc_status		= sfc_efx_tx_qdesc_status,
1274 	.pkt_prepare		= sfc_efx_prepare_pkts,
1275 	.pkt_burst		= sfc_efx_xmit_pkts,
1276 };
1277