xref: /dpdk/drivers/net/sfc/sfc_tx.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include "sfc.h"
11 #include "sfc_debug.h"
12 #include "sfc_log.h"
13 #include "sfc_ev.h"
14 #include "sfc_tx.h"
15 #include "sfc_tweak.h"
16 #include "sfc_kvargs.h"
17 
18 /*
19  * Maximum number of TX queue flush attempts in case of
20  * failure or flush timeout
21  */
22 #define SFC_TX_QFLUSH_ATTEMPTS		(3)
23 
24 /*
25  * Time to wait between event queue polling attempts when waiting for TX
26  * queue flush done or flush failed events
27  */
28 #define SFC_TX_QFLUSH_POLL_WAIT_MS	(1)
29 
30 /*
31  * Maximum number of event queue polling attempts when waiting for TX queue
32  * flush done or flush failed events; it defines TX queue flush attempt timeout
33  * together with SFC_TX_QFLUSH_POLL_WAIT_MS
34  */
35 #define SFC_TX_QFLUSH_POLL_ATTEMPTS	(2000)
36 
37 static uint64_t
38 sfc_tx_get_offload_mask(struct sfc_adapter *sa)
39 {
40 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
41 	uint64_t no_caps = 0;
42 
43 	if (!encp->enc_hw_tx_insert_vlan_enabled)
44 		no_caps |= DEV_TX_OFFLOAD_VLAN_INSERT;
45 
46 	if (!encp->enc_tunnel_encapsulations_supported)
47 		no_caps |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
48 
49 	if (!sa->tso)
50 		no_caps |= DEV_TX_OFFLOAD_TCP_TSO;
51 
52 	if (!sa->tso_encap ||
53 	    (encp->enc_tunnel_encapsulations_supported &
54 	     (1u << EFX_TUNNEL_PROTOCOL_VXLAN)) == 0)
55 		no_caps |= DEV_TX_OFFLOAD_VXLAN_TNL_TSO;
56 
57 	if (!sa->tso_encap ||
58 	    (encp->enc_tunnel_encapsulations_supported &
59 	     (1u << EFX_TUNNEL_PROTOCOL_GENEVE)) == 0)
60 		no_caps |= DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
61 
62 	return ~no_caps;
63 }
64 
65 uint64_t
66 sfc_tx_get_dev_offload_caps(struct sfc_adapter *sa)
67 {
68 	return sa->priv.dp_tx->dev_offload_capa & sfc_tx_get_offload_mask(sa);
69 }
70 
71 uint64_t
72 sfc_tx_get_queue_offload_caps(struct sfc_adapter *sa)
73 {
74 	return sa->priv.dp_tx->queue_offload_capa & sfc_tx_get_offload_mask(sa);
75 }
76 
77 static int
78 sfc_tx_qcheck_conf(struct sfc_adapter *sa, unsigned int txq_max_fill_level,
79 		   const struct rte_eth_txconf *tx_conf,
80 		   uint64_t offloads)
81 {
82 	int rc = 0;
83 
84 	if (tx_conf->tx_rs_thresh != 0) {
85 		sfc_err(sa, "RS bit in transmit descriptor is not supported");
86 		rc = EINVAL;
87 	}
88 
89 	if (tx_conf->tx_free_thresh > txq_max_fill_level) {
90 		sfc_err(sa,
91 			"TxQ free threshold too large: %u vs maximum %u",
92 			tx_conf->tx_free_thresh, txq_max_fill_level);
93 		rc = EINVAL;
94 	}
95 
96 	if (tx_conf->tx_thresh.pthresh != 0 ||
97 	    tx_conf->tx_thresh.hthresh != 0 ||
98 	    tx_conf->tx_thresh.wthresh != 0) {
99 		sfc_warn(sa,
100 			"prefetch/host/writeback thresholds are not supported");
101 	}
102 
103 	/* We either perform both TCP and UDP offload, or no offload at all */
104 	if (((offloads & DEV_TX_OFFLOAD_TCP_CKSUM) == 0) !=
105 	    ((offloads & DEV_TX_OFFLOAD_UDP_CKSUM) == 0)) {
106 		sfc_err(sa, "TCP and UDP offloads can't be set independently");
107 		rc = EINVAL;
108 	}
109 
110 	return rc;
111 }
112 
113 void
114 sfc_tx_qflush_done(struct sfc_txq_info *txq_info)
115 {
116 	txq_info->state |= SFC_TXQ_FLUSHED;
117 	txq_info->state &= ~SFC_TXQ_FLUSHING;
118 }
119 
120 int
121 sfc_tx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
122 	     uint16_t nb_tx_desc, unsigned int socket_id,
123 	     const struct rte_eth_txconf *tx_conf)
124 {
125 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
126 	unsigned int txq_entries;
127 	unsigned int evq_entries;
128 	unsigned int txq_max_fill_level;
129 	struct sfc_txq_info *txq_info;
130 	struct sfc_evq *evq;
131 	struct sfc_txq *txq;
132 	int rc = 0;
133 	struct sfc_dp_tx_qcreate_info info;
134 	uint64_t offloads;
135 	struct sfc_dp_tx_hw_limits hw_limits;
136 
137 	sfc_log_init(sa, "TxQ = %u", sw_index);
138 
139 	memset(&hw_limits, 0, sizeof(hw_limits));
140 	hw_limits.txq_max_entries = sa->txq_max_entries;
141 	hw_limits.txq_min_entries = sa->txq_min_entries;
142 
143 	rc = sa->priv.dp_tx->qsize_up_rings(nb_tx_desc, &hw_limits,
144 					    &txq_entries, &evq_entries,
145 					    &txq_max_fill_level);
146 	if (rc != 0)
147 		goto fail_size_up_rings;
148 	SFC_ASSERT(txq_entries >= sa->txq_min_entries);
149 	SFC_ASSERT(txq_entries <= sa->txq_max_entries);
150 	SFC_ASSERT(txq_entries >= nb_tx_desc);
151 	SFC_ASSERT(txq_max_fill_level <= nb_tx_desc);
152 
153 	offloads = tx_conf->offloads |
154 		sa->eth_dev->data->dev_conf.txmode.offloads;
155 	rc = sfc_tx_qcheck_conf(sa, txq_max_fill_level, tx_conf, offloads);
156 	if (rc != 0)
157 		goto fail_bad_conf;
158 
159 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
160 	txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
161 
162 	txq_info->entries = txq_entries;
163 
164 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index,
165 			  evq_entries, socket_id, &evq);
166 	if (rc != 0)
167 		goto fail_ev_qinit;
168 
169 	txq = &sa->txq_ctrl[sw_index];
170 	txq->hw_index = sw_index;
171 	txq->evq = evq;
172 	txq_info->free_thresh =
173 		(tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
174 		SFC_TX_DEFAULT_FREE_THRESH;
175 	txq_info->offloads = offloads;
176 
177 	rc = sfc_dma_alloc(sa, "txq", sw_index,
178 			   efx_txq_size(sa->nic, txq_info->entries),
179 			   socket_id, &txq->mem);
180 	if (rc != 0)
181 		goto fail_dma_alloc;
182 
183 	memset(&info, 0, sizeof(info));
184 	info.max_fill_level = txq_max_fill_level;
185 	info.free_thresh = txq_info->free_thresh;
186 	info.offloads = offloads;
187 	info.txq_entries = txq_info->entries;
188 	info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max;
189 	info.txq_hw_ring = txq->mem.esm_base;
190 	info.evq_entries = evq_entries;
191 	info.evq_hw_ring = evq->mem.esm_base;
192 	info.hw_index = txq->hw_index;
193 	info.mem_bar = sa->mem_bar.esb_base;
194 	info.vi_window_shift = encp->enc_vi_window_shift;
195 	info.tso_tcp_header_offset_limit =
196 		encp->enc_tx_tso_tcp_header_offset_limit;
197 	info.tso_max_nb_header_descs =
198 		RTE_MIN(encp->enc_tx_tso_max_header_ndescs,
199 			(uint32_t)UINT16_MAX);
200 	info.tso_max_header_len =
201 		RTE_MIN(encp->enc_tx_tso_max_header_length,
202 			(uint32_t)UINT16_MAX);
203 	info.tso_max_nb_payload_descs =
204 		RTE_MIN(encp->enc_tx_tso_max_payload_ndescs,
205 			(uint32_t)UINT16_MAX);
206 	info.tso_max_payload_len = encp->enc_tx_tso_max_payload_length;
207 	info.tso_max_nb_outgoing_frames = encp->enc_tx_tso_max_nframes;
208 
209 	rc = sa->priv.dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index,
210 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
211 				     socket_id, &info, &txq_info->dp);
212 	if (rc != 0)
213 		goto fail_dp_tx_qinit;
214 
215 	evq->dp_txq = txq_info->dp;
216 
217 	txq_info->state = SFC_TXQ_INITIALIZED;
218 
219 	txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);
220 
221 	return 0;
222 
223 fail_dp_tx_qinit:
224 	sfc_dma_free(sa, &txq->mem);
225 
226 fail_dma_alloc:
227 	sfc_ev_qfini(evq);
228 
229 fail_ev_qinit:
230 	txq_info->entries = 0;
231 
232 fail_bad_conf:
233 fail_size_up_rings:
234 	sfc_log_init(sa, "failed (TxQ = %u, rc = %d)", sw_index, rc);
235 	return rc;
236 }
237 
238 void
239 sfc_tx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
240 {
241 	struct sfc_txq_info *txq_info;
242 	struct sfc_txq *txq;
243 
244 	sfc_log_init(sa, "TxQ = %u", sw_index);
245 
246 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
247 	sa->eth_dev->data->tx_queues[sw_index] = NULL;
248 
249 	txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
250 
251 	SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
252 
253 	sa->priv.dp_tx->qdestroy(txq_info->dp);
254 	txq_info->dp = NULL;
255 
256 	txq_info->state &= ~SFC_TXQ_INITIALIZED;
257 	txq_info->entries = 0;
258 
259 	txq = &sa->txq_ctrl[sw_index];
260 
261 	sfc_dma_free(sa, &txq->mem);
262 
263 	sfc_ev_qfini(txq->evq);
264 	txq->evq = NULL;
265 }
266 
267 static int
268 sfc_tx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
269 {
270 	sfc_log_init(sa, "TxQ = %u", sw_index);
271 
272 	return 0;
273 }
274 
275 static int
276 sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
277 {
278 	int rc = 0;
279 
280 	switch (txmode->mq_mode) {
281 	case ETH_MQ_TX_NONE:
282 		break;
283 	default:
284 		sfc_err(sa, "Tx multi-queue mode %u not supported",
285 			txmode->mq_mode);
286 		rc = EINVAL;
287 	}
288 
289 	/*
290 	 * These features are claimed to be i40e-specific,
291 	 * but it does make sense to double-check their absence
292 	 */
293 	if (txmode->hw_vlan_reject_tagged) {
294 		sfc_err(sa, "Rejecting tagged packets not supported");
295 		rc = EINVAL;
296 	}
297 
298 	if (txmode->hw_vlan_reject_untagged) {
299 		sfc_err(sa, "Rejecting untagged packets not supported");
300 		rc = EINVAL;
301 	}
302 
303 	if (txmode->hw_vlan_insert_pvid) {
304 		sfc_err(sa, "Port-based VLAN insertion not supported");
305 		rc = EINVAL;
306 	}
307 
308 	return rc;
309 }
310 
311 /**
312  * Destroy excess queues that are no longer needed after reconfiguration
313  * or complete close.
314  */
315 static void
316 sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues)
317 {
318 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
319 	int sw_index;
320 
321 	SFC_ASSERT(nb_tx_queues <= sas->txq_count);
322 
323 	sw_index = sas->txq_count;
324 	while (--sw_index >= (int)nb_tx_queues) {
325 		if (sas->txq_info[sw_index].state & SFC_TXQ_INITIALIZED)
326 			sfc_tx_qfini(sa, sw_index);
327 	}
328 
329 	sas->txq_count = nb_tx_queues;
330 }
331 
332 int
333 sfc_tx_configure(struct sfc_adapter *sa)
334 {
335 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
336 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
337 	const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
338 	const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues;
339 	int rc = 0;
340 
341 	sfc_log_init(sa, "nb_tx_queues=%u (old %u)",
342 		     nb_tx_queues, sas->txq_count);
343 
344 	/*
345 	 * The datapath implementation assumes absence of boundary
346 	 * limits on Tx DMA descriptors. Addition of these checks on
347 	 * datapath would simply make the datapath slower.
348 	 */
349 	if (encp->enc_tx_dma_desc_boundary != 0) {
350 		rc = ENOTSUP;
351 		goto fail_tx_dma_desc_boundary;
352 	}
353 
354 	rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
355 	if (rc != 0)
356 		goto fail_check_mode;
357 
358 	if (nb_tx_queues == sas->txq_count)
359 		goto done;
360 
361 	if (sas->txq_info == NULL) {
362 		sas->txq_info = rte_calloc_socket("sfc-txqs", nb_tx_queues,
363 						  sizeof(sas->txq_info[0]), 0,
364 						  sa->socket_id);
365 		if (sas->txq_info == NULL)
366 			goto fail_txqs_alloc;
367 
368 		/*
369 		 * Allocate primary process only TxQ control from heap
370 		 * since it should not be shared.
371 		 */
372 		rc = ENOMEM;
373 		sa->txq_ctrl = calloc(nb_tx_queues, sizeof(sa->txq_ctrl[0]));
374 		if (sa->txq_ctrl == NULL)
375 			goto fail_txqs_ctrl_alloc;
376 	} else {
377 		struct sfc_txq_info *new_txq_info;
378 		struct sfc_txq *new_txq_ctrl;
379 
380 		if (nb_tx_queues < sas->txq_count)
381 			sfc_tx_fini_queues(sa, nb_tx_queues);
382 
383 		new_txq_info =
384 			rte_realloc(sas->txq_info,
385 				    nb_tx_queues * sizeof(sas->txq_info[0]), 0);
386 		if (new_txq_info == NULL && nb_tx_queues > 0)
387 			goto fail_txqs_realloc;
388 
389 		new_txq_ctrl = realloc(sa->txq_ctrl,
390 				       nb_tx_queues * sizeof(sa->txq_ctrl[0]));
391 		if (new_txq_ctrl == NULL && nb_tx_queues > 0)
392 			goto fail_txqs_ctrl_realloc;
393 
394 		sas->txq_info = new_txq_info;
395 		sa->txq_ctrl = new_txq_ctrl;
396 		if (nb_tx_queues > sas->txq_count) {
397 			memset(&sas->txq_info[sas->txq_count], 0,
398 			       (nb_tx_queues - sas->txq_count) *
399 			       sizeof(sas->txq_info[0]));
400 			memset(&sa->txq_ctrl[sas->txq_count], 0,
401 			       (nb_tx_queues - sas->txq_count) *
402 			       sizeof(sa->txq_ctrl[0]));
403 		}
404 	}
405 
406 	while (sas->txq_count < nb_tx_queues) {
407 		rc = sfc_tx_qinit_info(sa, sas->txq_count);
408 		if (rc != 0)
409 			goto fail_tx_qinit_info;
410 
411 		sas->txq_count++;
412 	}
413 
414 done:
415 	return 0;
416 
417 fail_tx_qinit_info:
418 fail_txqs_ctrl_realloc:
419 fail_txqs_realloc:
420 fail_txqs_ctrl_alloc:
421 fail_txqs_alloc:
422 	sfc_tx_close(sa);
423 
424 fail_check_mode:
425 fail_tx_dma_desc_boundary:
426 	sfc_log_init(sa, "failed (rc = %d)", rc);
427 	return rc;
428 }
429 
430 void
431 sfc_tx_close(struct sfc_adapter *sa)
432 {
433 	sfc_tx_fini_queues(sa, 0);
434 
435 	free(sa->txq_ctrl);
436 	sa->txq_ctrl = NULL;
437 
438 	rte_free(sfc_sa2shared(sa)->txq_info);
439 	sfc_sa2shared(sa)->txq_info = NULL;
440 }
441 
442 int
443 sfc_tx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
444 {
445 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
446 	uint64_t offloads_supported = sfc_tx_get_dev_offload_caps(sa) |
447 				      sfc_tx_get_queue_offload_caps(sa);
448 	struct rte_eth_dev_data *dev_data;
449 	struct sfc_txq_info *txq_info;
450 	struct sfc_txq *txq;
451 	struct sfc_evq *evq;
452 	uint16_t flags = 0;
453 	unsigned int desc_index;
454 	int rc = 0;
455 
456 	sfc_log_init(sa, "TxQ = %u", sw_index);
457 
458 	SFC_ASSERT(sw_index < sas->txq_count);
459 	txq_info = &sas->txq_info[sw_index];
460 
461 	SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
462 
463 	txq = &sa->txq_ctrl[sw_index];
464 	evq = txq->evq;
465 
466 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_txq_sw_index(sa, sw_index));
467 	if (rc != 0)
468 		goto fail_ev_qstart;
469 
470 	if (txq_info->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
471 		flags |= EFX_TXQ_CKSUM_IPV4;
472 
473 	if (txq_info->offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
474 		flags |= EFX_TXQ_CKSUM_INNER_IPV4;
475 
476 	if ((txq_info->offloads & DEV_TX_OFFLOAD_TCP_CKSUM) ||
477 	    (txq_info->offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
478 		flags |= EFX_TXQ_CKSUM_TCPUDP;
479 
480 		if (offloads_supported & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
481 			flags |= EFX_TXQ_CKSUM_INNER_TCPUDP;
482 	}
483 
484 	if (txq_info->offloads & (DEV_TX_OFFLOAD_TCP_TSO |
485 				  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
486 				  DEV_TX_OFFLOAD_GENEVE_TNL_TSO))
487 		flags |= EFX_TXQ_FATSOV2;
488 
489 	rc = efx_tx_qcreate(sa->nic, txq->hw_index, 0, &txq->mem,
490 			    txq_info->entries, 0 /* not used on EF10 */,
491 			    flags, evq->common,
492 			    &txq->common, &desc_index);
493 	if (rc != 0) {
494 		if (sa->tso && (rc == ENOSPC))
495 			sfc_err(sa, "ran out of TSO contexts");
496 
497 		goto fail_tx_qcreate;
498 	}
499 
500 	efx_tx_qenable(txq->common);
501 
502 	txq_info->state |= SFC_TXQ_STARTED;
503 
504 	rc = sa->priv.dp_tx->qstart(txq_info->dp, evq->read_ptr, desc_index);
505 	if (rc != 0)
506 		goto fail_dp_qstart;
507 
508 	/*
509 	 * It seems to be used by DPDK for debug purposes only ('rte_ether')
510 	 */
511 	dev_data = sa->eth_dev->data;
512 	dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STARTED;
513 
514 	return 0;
515 
516 fail_dp_qstart:
517 	txq_info->state = SFC_TXQ_INITIALIZED;
518 	efx_tx_qdestroy(txq->common);
519 
520 fail_tx_qcreate:
521 	sfc_ev_qstop(evq);
522 
523 fail_ev_qstart:
524 	return rc;
525 }
526 
527 void
528 sfc_tx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
529 {
530 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
531 	struct rte_eth_dev_data *dev_data;
532 	struct sfc_txq_info *txq_info;
533 	struct sfc_txq *txq;
534 	unsigned int retry_count;
535 	unsigned int wait_count;
536 	int rc;
537 
538 	sfc_log_init(sa, "TxQ = %u", sw_index);
539 
540 	SFC_ASSERT(sw_index < sas->txq_count);
541 	txq_info = &sas->txq_info[sw_index];
542 
543 	if (txq_info->state == SFC_TXQ_INITIALIZED)
544 		return;
545 
546 	SFC_ASSERT(txq_info->state & SFC_TXQ_STARTED);
547 
548 	txq = &sa->txq_ctrl[sw_index];
549 	sa->priv.dp_tx->qstop(txq_info->dp, &txq->evq->read_ptr);
550 
551 	/*
552 	 * Retry TX queue flushing in case of flush failed or
553 	 * timeout; in the worst case it can delay for 6 seconds
554 	 */
555 	for (retry_count = 0;
556 	     ((txq_info->state & SFC_TXQ_FLUSHED) == 0) &&
557 	     (retry_count < SFC_TX_QFLUSH_ATTEMPTS);
558 	     ++retry_count) {
559 		rc = efx_tx_qflush(txq->common);
560 		if (rc != 0) {
561 			txq_info->state |= (rc == EALREADY) ?
562 				SFC_TXQ_FLUSHED : SFC_TXQ_FLUSH_FAILED;
563 			break;
564 		}
565 
566 		/*
567 		 * Wait for TX queue flush done or flush failed event at least
568 		 * SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
569 		 * than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
570 		 * by SFC_TX_QFLUSH_POLL_ATTEMPTS)
571 		 */
572 		wait_count = 0;
573 		do {
574 			rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
575 			sfc_ev_qpoll(txq->evq);
576 		} while ((txq_info->state & SFC_TXQ_FLUSHING) &&
577 			 wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);
578 
579 		if (txq_info->state & SFC_TXQ_FLUSHING)
580 			sfc_err(sa, "TxQ %u flush timed out", sw_index);
581 
582 		if (txq_info->state & SFC_TXQ_FLUSHED)
583 			sfc_notice(sa, "TxQ %u flushed", sw_index);
584 	}
585 
586 	sa->priv.dp_tx->qreap(txq_info->dp);
587 
588 	txq_info->state = SFC_TXQ_INITIALIZED;
589 
590 	efx_tx_qdestroy(txq->common);
591 
592 	sfc_ev_qstop(txq->evq);
593 
594 	/*
595 	 * It seems to be used by DPDK for debug purposes only ('rte_ether')
596 	 */
597 	dev_data = sa->eth_dev->data;
598 	dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STOPPED;
599 }
600 
601 int
602 sfc_tx_start(struct sfc_adapter *sa)
603 {
604 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
605 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
606 	unsigned int sw_index;
607 	int rc = 0;
608 
609 	sfc_log_init(sa, "txq_count = %u", sas->txq_count);
610 
611 	if (sa->tso) {
612 		if (!encp->enc_fw_assisted_tso_v2_enabled &&
613 		    !encp->enc_tso_v3_enabled) {
614 			sfc_warn(sa, "TSO support was unable to be restored");
615 			sa->tso = B_FALSE;
616 			sa->tso_encap = B_FALSE;
617 		}
618 	}
619 
620 	if (sa->tso_encap && !encp->enc_fw_assisted_tso_v2_encap_enabled &&
621 	    !encp->enc_tso_v3_enabled) {
622 		sfc_warn(sa, "Encapsulated TSO support was unable to be restored");
623 		sa->tso_encap = B_FALSE;
624 	}
625 
626 	rc = efx_tx_init(sa->nic);
627 	if (rc != 0)
628 		goto fail_efx_tx_init;
629 
630 	for (sw_index = 0; sw_index < sas->txq_count; ++sw_index) {
631 		if (sas->txq_info[sw_index].state == SFC_TXQ_INITIALIZED &&
632 		    (!(sas->txq_info[sw_index].deferred_start) ||
633 		     sas->txq_info[sw_index].deferred_started)) {
634 			rc = sfc_tx_qstart(sa, sw_index);
635 			if (rc != 0)
636 				goto fail_tx_qstart;
637 		}
638 	}
639 
640 	return 0;
641 
642 fail_tx_qstart:
643 	while (sw_index-- > 0)
644 		sfc_tx_qstop(sa, sw_index);
645 
646 	efx_tx_fini(sa->nic);
647 
648 fail_efx_tx_init:
649 	sfc_log_init(sa, "failed (rc = %d)", rc);
650 	return rc;
651 }
652 
653 void
654 sfc_tx_stop(struct sfc_adapter *sa)
655 {
656 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
657 	unsigned int sw_index;
658 
659 	sfc_log_init(sa, "txq_count = %u", sas->txq_count);
660 
661 	sw_index = sas->txq_count;
662 	while (sw_index-- > 0) {
663 		if (sas->txq_info[sw_index].state & SFC_TXQ_STARTED)
664 			sfc_tx_qstop(sa, sw_index);
665 	}
666 
667 	efx_tx_fini(sa->nic);
668 }
669 
670 static void
671 sfc_efx_tx_reap(struct sfc_efx_txq *txq)
672 {
673 	unsigned int completed;
674 
675 	sfc_ev_qpoll(txq->evq);
676 
677 	for (completed = txq->completed;
678 	     completed != txq->pending; completed++) {
679 		struct sfc_efx_tx_sw_desc *txd;
680 
681 		txd = &txq->sw_ring[completed & txq->ptr_mask];
682 
683 		if (txd->mbuf != NULL) {
684 			rte_pktmbuf_free(txd->mbuf);
685 			txd->mbuf = NULL;
686 		}
687 	}
688 
689 	txq->completed = completed;
690 }
691 
692 /*
693  * The function is used to insert or update VLAN tag;
694  * the firmware has state of the firmware tag to insert per TxQ
695  * (controlled by option descriptors), hence, if the tag of the
696  * packet to be sent is different from one remembered by the firmware,
697  * the function will update it
698  */
699 static unsigned int
700 sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m,
701 			    efx_desc_t **pend)
702 {
703 	uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ?
704 			     m->vlan_tci : 0);
705 
706 	if (this_tag == txq->hw_vlan_tci)
707 		return 0;
708 
709 	/*
710 	 * The expression inside SFC_ASSERT() is not desired to be checked in
711 	 * a non-debug build because it might be too expensive on the data path
712 	 */
713 	SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);
714 
715 	efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
716 				    *pend);
717 	(*pend)++;
718 	txq->hw_vlan_tci = this_tag;
719 
720 	return 1;
721 }
722 
723 static uint16_t
724 sfc_efx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
725 		     uint16_t nb_pkts)
726 {
727 	struct sfc_dp_txq *dp_txq = tx_queue;
728 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
729 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->evq->sa->nic);
730 	uint16_t i;
731 
732 	for (i = 0; i < nb_pkts; i++) {
733 		int ret;
734 
735 		/*
736 		 * EFX Tx datapath may require extra VLAN descriptor if VLAN
737 		 * insertion offload is requested regardless the offload
738 		 * requested/supported.
739 		 */
740 		ret = sfc_dp_tx_prepare_pkt(tx_pkts[i], 0, SFC_TSOH_STD_LEN,
741 				encp->enc_tx_tso_tcp_header_offset_limit,
742 				txq->max_fill_level, EFX_TX_FATSOV2_OPT_NDESCS,
743 				1);
744 		if (unlikely(ret != 0)) {
745 			rte_errno = ret;
746 			break;
747 		}
748 	}
749 
750 	return i;
751 }
752 
753 static uint16_t
754 sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
755 {
756 	struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue;
757 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
758 	unsigned int added = txq->added;
759 	unsigned int pushed = added;
760 	unsigned int pkts_sent = 0;
761 	efx_desc_t *pend = &txq->pend_desc[0];
762 	const unsigned int hard_max_fill = txq->max_fill_level;
763 	const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
764 	unsigned int fill_level = added - txq->completed;
765 	boolean_t reap_done;
766 	int rc __rte_unused;
767 	struct rte_mbuf **pktp;
768 
769 	if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0))
770 		goto done;
771 
772 	/*
773 	 * If insufficient space for a single packet is present,
774 	 * we should reap; otherwise, we shouldn't do that all the time
775 	 * to avoid latency increase
776 	 */
777 	reap_done = (fill_level > soft_max_fill);
778 
779 	if (reap_done) {
780 		sfc_efx_tx_reap(txq);
781 		/*
782 		 * Recalculate fill level since 'txq->completed'
783 		 * might have changed on reap
784 		 */
785 		fill_level = added - txq->completed;
786 	}
787 
788 	for (pkts_sent = 0, pktp = &tx_pkts[0];
789 	     (pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
790 	     pkts_sent++, pktp++) {
791 		uint16_t		hw_vlan_tci_prev = txq->hw_vlan_tci;
792 		struct rte_mbuf		*m_seg = *pktp;
793 		size_t			pkt_len = m_seg->pkt_len;
794 		unsigned int		pkt_descs = 0;
795 		size_t			in_off = 0;
796 
797 		/*
798 		 * Here VLAN TCI is expected to be zero in case if no
799 		 * DEV_TX_OFFLOAD_VLAN_INSERT capability is advertised;
800 		 * if the calling app ignores the absence of
801 		 * DEV_TX_OFFLOAD_VLAN_INSERT and pushes VLAN TCI, then
802 		 * TX_ERROR will occur
803 		 */
804 		pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend);
805 
806 		if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
807 			/*
808 			 * We expect correct 'pkt->l[2, 3, 4]_len' values
809 			 * to be set correctly by the caller
810 			 */
811 			if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend,
812 					   &pkt_descs, &pkt_len) != 0) {
813 				/* We may have reached this place if packet
814 				 * header linearization is needed but the
815 				 * header length is greater than
816 				 * SFC_TSOH_STD_LEN
817 				 *
818 				 * We will deceive RTE saying that we have sent
819 				 * the packet, but we will actually drop it.
820 				 * Hence, we should revert 'pend' to the
821 				 * previous state (in case we have added
822 				 * VLAN descriptor) and start processing
823 				 * another one packet. But the original
824 				 * mbuf shouldn't be orphaned
825 				 */
826 				pend -= pkt_descs;
827 				txq->hw_vlan_tci = hw_vlan_tci_prev;
828 
829 				rte_pktmbuf_free(*pktp);
830 
831 				continue;
832 			}
833 
834 			/*
835 			 * We've only added 2 FATSOv2 option descriptors
836 			 * and 1 descriptor for the linearized packet header.
837 			 * The outstanding work will be done in the same manner
838 			 * as for the usual non-TSO path
839 			 */
840 		}
841 
842 		for (; m_seg != NULL; m_seg = m_seg->next) {
843 			efsys_dma_addr_t	next_frag;
844 			size_t			seg_len;
845 
846 			seg_len = m_seg->data_len;
847 			next_frag = rte_mbuf_data_iova(m_seg);
848 
849 			/*
850 			 * If we've started TSO transaction few steps earlier,
851 			 * we'll skip packet header using an offset in the
852 			 * current segment (which has been set to the
853 			 * first one containing payload)
854 			 */
855 			seg_len -= in_off;
856 			next_frag += in_off;
857 			in_off = 0;
858 
859 			do {
860 				efsys_dma_addr_t	frag_addr = next_frag;
861 				size_t			frag_len;
862 
863 				/*
864 				 * It is assumed here that there is no
865 				 * limitation on address boundary
866 				 * crossing by DMA descriptor.
867 				 */
868 				frag_len = MIN(seg_len, txq->dma_desc_size_max);
869 				next_frag += frag_len;
870 				seg_len -= frag_len;
871 				pkt_len -= frag_len;
872 
873 				efx_tx_qdesc_dma_create(txq->common,
874 							frag_addr, frag_len,
875 							(pkt_len == 0),
876 							pend++);
877 
878 				pkt_descs++;
879 			} while (seg_len != 0);
880 		}
881 
882 		added += pkt_descs;
883 
884 		fill_level += pkt_descs;
885 		if (unlikely(fill_level > hard_max_fill)) {
886 			/*
887 			 * Our estimation for maximum number of descriptors
888 			 * required to send a packet seems to be wrong.
889 			 * Try to reap (if we haven't yet).
890 			 */
891 			if (!reap_done) {
892 				sfc_efx_tx_reap(txq);
893 				reap_done = B_TRUE;
894 				fill_level = added - txq->completed;
895 				if (fill_level > hard_max_fill) {
896 					pend -= pkt_descs;
897 					txq->hw_vlan_tci = hw_vlan_tci_prev;
898 					break;
899 				}
900 			} else {
901 				pend -= pkt_descs;
902 				txq->hw_vlan_tci = hw_vlan_tci_prev;
903 				break;
904 			}
905 		}
906 
907 		/* Assign mbuf to the last used desc */
908 		txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
909 	}
910 
911 	if (likely(pkts_sent > 0)) {
912 		rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
913 				       pend - &txq->pend_desc[0],
914 				       txq->completed, &txq->added);
915 		SFC_ASSERT(rc == 0);
916 
917 		if (likely(pushed != txq->added))
918 			efx_tx_qpush(txq->common, txq->added, pushed);
919 	}
920 
921 #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
922 	if (!reap_done)
923 		sfc_efx_tx_reap(txq);
924 #endif
925 
926 done:
927 	return pkts_sent;
928 }
929 
930 const struct sfc_dp_tx *
931 sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq)
932 {
933 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
934 	struct rte_eth_dev *eth_dev;
935 	struct sfc_adapter_priv *sap;
936 
937 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
938 	eth_dev = &rte_eth_devices[dpq->port_id];
939 
940 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
941 
942 	return sap->dp_tx;
943 }
944 
945 struct sfc_txq_info *
946 sfc_txq_info_by_dp_txq(const struct sfc_dp_txq *dp_txq)
947 {
948 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
949 	struct rte_eth_dev *eth_dev;
950 	struct sfc_adapter_shared *sas;
951 
952 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
953 	eth_dev = &rte_eth_devices[dpq->port_id];
954 
955 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
956 
957 	SFC_ASSERT(dpq->queue_id < sas->txq_count);
958 	return &sas->txq_info[dpq->queue_id];
959 }
960 
961 struct sfc_txq *
962 sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq)
963 {
964 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
965 	struct rte_eth_dev *eth_dev;
966 	struct sfc_adapter *sa;
967 
968 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
969 	eth_dev = &rte_eth_devices[dpq->port_id];
970 
971 	sa = sfc_adapter_by_eth_dev(eth_dev);
972 
973 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->txq_count);
974 	return &sa->txq_ctrl[dpq->queue_id];
975 }
976 
977 static sfc_dp_tx_qsize_up_rings_t sfc_efx_tx_qsize_up_rings;
978 static int
979 sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc,
980 			  __rte_unused struct sfc_dp_tx_hw_limits *limits,
981 			  unsigned int *txq_entries,
982 			  unsigned int *evq_entries,
983 			  unsigned int *txq_max_fill_level)
984 {
985 	*txq_entries = nb_tx_desc;
986 	*evq_entries = nb_tx_desc;
987 	*txq_max_fill_level = EFX_TXQ_LIMIT(*txq_entries);
988 	return 0;
989 }
990 
991 static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate;
992 static int
993 sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id,
994 		   const struct rte_pci_addr *pci_addr,
995 		   int socket_id,
996 		   const struct sfc_dp_tx_qcreate_info *info,
997 		   struct sfc_dp_txq **dp_txqp)
998 {
999 	struct sfc_efx_txq *txq;
1000 	struct sfc_txq *ctrl_txq;
1001 	int rc;
1002 
1003 	rc = ENOMEM;
1004 	txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq),
1005 				 RTE_CACHE_LINE_SIZE, socket_id);
1006 	if (txq == NULL)
1007 		goto fail_txq_alloc;
1008 
1009 	sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
1010 
1011 	rc = ENOMEM;
1012 	txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc",
1013 					   EFX_TXQ_LIMIT(info->txq_entries),
1014 					   sizeof(*txq->pend_desc), 0,
1015 					   socket_id);
1016 	if (txq->pend_desc == NULL)
1017 		goto fail_pend_desc_alloc;
1018 
1019 	rc = ENOMEM;
1020 	txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring",
1021 					 info->txq_entries,
1022 					 sizeof(*txq->sw_ring),
1023 					 RTE_CACHE_LINE_SIZE, socket_id);
1024 	if (txq->sw_ring == NULL)
1025 		goto fail_sw_ring_alloc;
1026 
1027 	ctrl_txq = sfc_txq_by_dp_txq(&txq->dp);
1028 	if (ctrl_txq->evq->sa->tso) {
1029 		rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring,
1030 						 info->txq_entries, socket_id);
1031 		if (rc != 0)
1032 			goto fail_alloc_tsoh_objs;
1033 	}
1034 
1035 	txq->evq = ctrl_txq->evq;
1036 	txq->ptr_mask = info->txq_entries - 1;
1037 	txq->max_fill_level = info->max_fill_level;
1038 	txq->free_thresh = info->free_thresh;
1039 	txq->dma_desc_size_max = info->dma_desc_size_max;
1040 
1041 	*dp_txqp = &txq->dp;
1042 	return 0;
1043 
1044 fail_alloc_tsoh_objs:
1045 	rte_free(txq->sw_ring);
1046 
1047 fail_sw_ring_alloc:
1048 	rte_free(txq->pend_desc);
1049 
1050 fail_pend_desc_alloc:
1051 	rte_free(txq);
1052 
1053 fail_txq_alloc:
1054 	return rc;
1055 }
1056 
1057 static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy;
1058 static void
1059 sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq)
1060 {
1061 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1062 
1063 	sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1);
1064 	rte_free(txq->sw_ring);
1065 	rte_free(txq->pend_desc);
1066 	rte_free(txq);
1067 }
1068 
1069 static sfc_dp_tx_qstart_t sfc_efx_tx_qstart;
1070 static int
1071 sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq,
1072 		  __rte_unused unsigned int evq_read_ptr,
1073 		  unsigned int txq_desc_index)
1074 {
1075 	/* libefx-based datapath is specific to libefx-based PMD */
1076 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1077 	struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq);
1078 
1079 	txq->common = ctrl_txq->common;
1080 
1081 	txq->pending = txq->completed = txq->added = txq_desc_index;
1082 	txq->hw_vlan_tci = 0;
1083 
1084 	txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING);
1085 
1086 	return 0;
1087 }
1088 
1089 static sfc_dp_tx_qstop_t sfc_efx_tx_qstop;
1090 static void
1091 sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq,
1092 		 __rte_unused unsigned int *evq_read_ptr)
1093 {
1094 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1095 
1096 	txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING;
1097 }
1098 
1099 static sfc_dp_tx_qreap_t sfc_efx_tx_qreap;
1100 static void
1101 sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq)
1102 {
1103 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1104 	unsigned int txds;
1105 
1106 	sfc_efx_tx_reap(txq);
1107 
1108 	for (txds = 0; txds <= txq->ptr_mask; txds++) {
1109 		if (txq->sw_ring[txds].mbuf != NULL) {
1110 			rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
1111 			txq->sw_ring[txds].mbuf = NULL;
1112 		}
1113 	}
1114 
1115 	txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED;
1116 }
1117 
1118 static sfc_dp_tx_qdesc_status_t sfc_efx_tx_qdesc_status;
1119 static int
1120 sfc_efx_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
1121 {
1122 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1123 
1124 	if (unlikely(offset > txq->ptr_mask))
1125 		return -EINVAL;
1126 
1127 	if (unlikely(offset >= txq->max_fill_level))
1128 		return RTE_ETH_TX_DESC_UNAVAIL;
1129 
1130 	/*
1131 	 * Poll EvQ to derive up-to-date 'txq->pending' figure;
1132 	 * it is required for the queue to be running, but the
1133 	 * check is omitted because API design assumes that it
1134 	 * is the duty of the caller to satisfy all conditions
1135 	 */
1136 	SFC_ASSERT((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) ==
1137 		   SFC_EFX_TXQ_FLAG_RUNNING);
1138 	sfc_ev_qpoll(txq->evq);
1139 
1140 	/*
1141 	 * Ring tail is 'txq->pending', and although descriptors
1142 	 * between 'txq->completed' and 'txq->pending' are still
1143 	 * in use by the driver, they should be reported as DONE
1144 	 */
1145 	if (unlikely(offset < (txq->added - txq->pending)))
1146 		return RTE_ETH_TX_DESC_FULL;
1147 
1148 	/*
1149 	 * There is no separate return value for unused descriptors;
1150 	 * the latter will be reported as DONE because genuine DONE
1151 	 * descriptors will be freed anyway in SW on the next burst
1152 	 */
1153 	return RTE_ETH_TX_DESC_DONE;
1154 }
1155 
1156 struct sfc_dp_tx sfc_efx_tx = {
1157 	.dp = {
1158 		.name		= SFC_KVARG_DATAPATH_EFX,
1159 		.type		= SFC_DP_TX,
1160 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_TX_EFX,
1161 	},
1162 	.features		= 0,
1163 	.dev_offload_capa	= DEV_TX_OFFLOAD_VLAN_INSERT |
1164 				  DEV_TX_OFFLOAD_MULTI_SEGS,
1165 	.queue_offload_capa	= DEV_TX_OFFLOAD_IPV4_CKSUM |
1166 				  DEV_TX_OFFLOAD_UDP_CKSUM |
1167 				  DEV_TX_OFFLOAD_TCP_CKSUM |
1168 				  DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
1169 				  DEV_TX_OFFLOAD_TCP_TSO,
1170 	.qsize_up_rings		= sfc_efx_tx_qsize_up_rings,
1171 	.qcreate		= sfc_efx_tx_qcreate,
1172 	.qdestroy		= sfc_efx_tx_qdestroy,
1173 	.qstart			= sfc_efx_tx_qstart,
1174 	.qstop			= sfc_efx_tx_qstop,
1175 	.qreap			= sfc_efx_tx_qreap,
1176 	.qdesc_status		= sfc_efx_tx_qdesc_status,
1177 	.pkt_prepare		= sfc_efx_prepare_pkts,
1178 	.pkt_burst		= sfc_efx_xmit_pkts,
1179 };
1180