xref: /dpdk/drivers/net/sfc/sfc_tx.c (revision 081e42dab11d1add2d038fdf2bd4c86b20043d08)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include "sfc.h"
11 #include "sfc_debug.h"
12 #include "sfc_log.h"
13 #include "sfc_ev.h"
14 #include "sfc_tx.h"
15 #include "sfc_tweak.h"
16 #include "sfc_kvargs.h"
17 
18 /*
19  * Maximum number of TX queue flush attempts in case of
20  * failure or flush timeout
21  */
22 #define SFC_TX_QFLUSH_ATTEMPTS		(3)
23 
24 /*
25  * Time to wait between event queue polling attempts when waiting for TX
26  * queue flush done or flush failed events
27  */
28 #define SFC_TX_QFLUSH_POLL_WAIT_MS	(1)
29 
30 /*
31  * Maximum number of event queue polling attempts when waiting for TX queue
32  * flush done or flush failed events; it defines TX queue flush attempt timeout
33  * together with SFC_TX_QFLUSH_POLL_WAIT_MS
34  */
35 #define SFC_TX_QFLUSH_POLL_ATTEMPTS	(2000)
36 
37 struct sfc_txq_info *
38 sfc_txq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
39 			   sfc_ethdev_qid_t ethdev_qid)
40 {
41 	sfc_sw_index_t sw_index;
42 
43 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_txq_count);
44 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
45 
46 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
47 	return &sas->txq_info[sw_index];
48 }
49 
50 static uint64_t
51 sfc_tx_get_offload_mask(struct sfc_adapter *sa)
52 {
53 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
54 	uint64_t no_caps = 0;
55 
56 	if (!encp->enc_hw_tx_insert_vlan_enabled)
57 		no_caps |= DEV_TX_OFFLOAD_VLAN_INSERT;
58 
59 	if (!encp->enc_tunnel_encapsulations_supported)
60 		no_caps |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
61 
62 	if (!sa->tso)
63 		no_caps |= DEV_TX_OFFLOAD_TCP_TSO;
64 
65 	if (!sa->tso_encap ||
66 	    (encp->enc_tunnel_encapsulations_supported &
67 	     (1u << EFX_TUNNEL_PROTOCOL_VXLAN)) == 0)
68 		no_caps |= DEV_TX_OFFLOAD_VXLAN_TNL_TSO;
69 
70 	if (!sa->tso_encap ||
71 	    (encp->enc_tunnel_encapsulations_supported &
72 	     (1u << EFX_TUNNEL_PROTOCOL_GENEVE)) == 0)
73 		no_caps |= DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
74 
75 	return ~no_caps;
76 }
77 
78 uint64_t
79 sfc_tx_get_dev_offload_caps(struct sfc_adapter *sa)
80 {
81 	return sa->priv.dp_tx->dev_offload_capa & sfc_tx_get_offload_mask(sa);
82 }
83 
84 uint64_t
85 sfc_tx_get_queue_offload_caps(struct sfc_adapter *sa)
86 {
87 	return sa->priv.dp_tx->queue_offload_capa & sfc_tx_get_offload_mask(sa);
88 }
89 
90 static int
91 sfc_tx_qcheck_conf(struct sfc_adapter *sa, unsigned int txq_max_fill_level,
92 		   const struct rte_eth_txconf *tx_conf,
93 		   uint64_t offloads)
94 {
95 	int rc = 0;
96 
97 	if (tx_conf->tx_rs_thresh != 0) {
98 		sfc_err(sa, "RS bit in transmit descriptor is not supported");
99 		rc = EINVAL;
100 	}
101 
102 	if (tx_conf->tx_free_thresh > txq_max_fill_level) {
103 		sfc_err(sa,
104 			"TxQ free threshold too large: %u vs maximum %u",
105 			tx_conf->tx_free_thresh, txq_max_fill_level);
106 		rc = EINVAL;
107 	}
108 
109 	if (tx_conf->tx_thresh.pthresh != 0 ||
110 	    tx_conf->tx_thresh.hthresh != 0 ||
111 	    tx_conf->tx_thresh.wthresh != 0) {
112 		sfc_warn(sa,
113 			"prefetch/host/writeback thresholds are not supported");
114 	}
115 
116 	/* We either perform both TCP and UDP offload, or no offload at all */
117 	if (((offloads & DEV_TX_OFFLOAD_TCP_CKSUM) == 0) !=
118 	    ((offloads & DEV_TX_OFFLOAD_UDP_CKSUM) == 0)) {
119 		sfc_err(sa, "TCP and UDP offloads can't be set independently");
120 		rc = EINVAL;
121 	}
122 
123 	return rc;
124 }
125 
126 void
127 sfc_tx_qflush_done(struct sfc_txq_info *txq_info)
128 {
129 	txq_info->state |= SFC_TXQ_FLUSHED;
130 	txq_info->state &= ~SFC_TXQ_FLUSHING;
131 }
132 
133 int
134 sfc_tx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
135 	     uint16_t nb_tx_desc, unsigned int socket_id,
136 	     const struct rte_eth_txconf *tx_conf)
137 {
138 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
139 	sfc_ethdev_qid_t ethdev_qid;
140 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
141 	unsigned int txq_entries;
142 	unsigned int evq_entries;
143 	unsigned int txq_max_fill_level;
144 	struct sfc_txq_info *txq_info;
145 	struct sfc_evq *evq;
146 	struct sfc_txq *txq;
147 	int rc = 0;
148 	struct sfc_dp_tx_qcreate_info info;
149 	uint64_t offloads;
150 	struct sfc_dp_tx_hw_limits hw_limits;
151 
152 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
153 
154 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
155 
156 	memset(&hw_limits, 0, sizeof(hw_limits));
157 	hw_limits.txq_max_entries = sa->txq_max_entries;
158 	hw_limits.txq_min_entries = sa->txq_min_entries;
159 
160 	rc = sa->priv.dp_tx->qsize_up_rings(nb_tx_desc, &hw_limits,
161 					    &txq_entries, &evq_entries,
162 					    &txq_max_fill_level);
163 	if (rc != 0)
164 		goto fail_size_up_rings;
165 	SFC_ASSERT(txq_entries >= sa->txq_min_entries);
166 	SFC_ASSERT(txq_entries <= sa->txq_max_entries);
167 	SFC_ASSERT(txq_entries >= nb_tx_desc);
168 	SFC_ASSERT(txq_max_fill_level <= nb_tx_desc);
169 
170 	offloads = tx_conf->offloads;
171 	/* Add device level Tx offloads if the queue is an ethdev Tx queue */
172 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
173 		offloads |= sa->eth_dev->data->dev_conf.txmode.offloads;
174 
175 	rc = sfc_tx_qcheck_conf(sa, txq_max_fill_level, tx_conf, offloads);
176 	if (rc != 0)
177 		goto fail_bad_conf;
178 
179 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
180 	txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
181 
182 	txq_info->entries = txq_entries;
183 
184 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index,
185 			  evq_entries, socket_id, &evq);
186 	if (rc != 0)
187 		goto fail_ev_qinit;
188 
189 	txq = &sa->txq_ctrl[sw_index];
190 	txq->hw_index = sw_index;
191 	txq->evq = evq;
192 	txq_info->free_thresh =
193 		(tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
194 		SFC_TX_DEFAULT_FREE_THRESH;
195 	txq_info->offloads = offloads;
196 
197 	rc = sfc_dma_alloc(sa, "txq", sw_index,
198 			   efx_txq_size(sa->nic, txq_info->entries),
199 			   socket_id, &txq->mem);
200 	if (rc != 0)
201 		goto fail_dma_alloc;
202 
203 	memset(&info, 0, sizeof(info));
204 	info.max_fill_level = txq_max_fill_level;
205 	info.free_thresh = txq_info->free_thresh;
206 	info.offloads = offloads;
207 	info.txq_entries = txq_info->entries;
208 	info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max;
209 	info.txq_hw_ring = txq->mem.esm_base;
210 	info.evq_entries = evq_entries;
211 	info.evq_hw_ring = evq->mem.esm_base;
212 	info.hw_index = txq->hw_index;
213 	info.mem_bar = sa->mem_bar.esb_base;
214 	info.vi_window_shift = encp->enc_vi_window_shift;
215 	info.tso_tcp_header_offset_limit =
216 		encp->enc_tx_tso_tcp_header_offset_limit;
217 	info.tso_max_nb_header_descs =
218 		RTE_MIN(encp->enc_tx_tso_max_header_ndescs,
219 			(uint32_t)UINT16_MAX);
220 	info.tso_max_header_len =
221 		RTE_MIN(encp->enc_tx_tso_max_header_length,
222 			(uint32_t)UINT16_MAX);
223 	info.tso_max_nb_payload_descs =
224 		RTE_MIN(encp->enc_tx_tso_max_payload_ndescs,
225 			(uint32_t)UINT16_MAX);
226 	info.tso_max_payload_len = encp->enc_tx_tso_max_payload_length;
227 	info.tso_max_nb_outgoing_frames = encp->enc_tx_tso_max_nframes;
228 
229 	rc = sa->priv.dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index,
230 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
231 				     socket_id, &info, &txq_info->dp);
232 	if (rc != 0)
233 		goto fail_dp_tx_qinit;
234 
235 	evq->dp_txq = txq_info->dp;
236 
237 	txq_info->state = SFC_TXQ_INITIALIZED;
238 
239 	txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);
240 
241 	return 0;
242 
243 fail_dp_tx_qinit:
244 	sfc_dma_free(sa, &txq->mem);
245 
246 fail_dma_alloc:
247 	sfc_ev_qfini(evq);
248 
249 fail_ev_qinit:
250 	txq_info->entries = 0;
251 
252 fail_bad_conf:
253 fail_size_up_rings:
254 	sfc_log_init(sa, "failed (TxQ = %d (internal %u), rc = %d)", ethdev_qid,
255 		     sw_index, rc);
256 	return rc;
257 }
258 
259 void
260 sfc_tx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
261 {
262 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
263 	sfc_ethdev_qid_t ethdev_qid;
264 	struct sfc_txq_info *txq_info;
265 	struct sfc_txq *txq;
266 
267 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
268 
269 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
270 
271 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
272 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
273 		sa->eth_dev->data->tx_queues[ethdev_qid] = NULL;
274 
275 	txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
276 
277 	SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
278 
279 	sa->priv.dp_tx->qdestroy(txq_info->dp);
280 	txq_info->dp = NULL;
281 
282 	txq_info->state &= ~SFC_TXQ_INITIALIZED;
283 	txq_info->entries = 0;
284 
285 	txq = &sa->txq_ctrl[sw_index];
286 
287 	sfc_dma_free(sa, &txq->mem);
288 
289 	sfc_ev_qfini(txq->evq);
290 	txq->evq = NULL;
291 }
292 
293 int
294 sfc_tx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
295 {
296 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
297 	sfc_ethdev_qid_t ethdev_qid;
298 
299 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
300 
301 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
302 
303 	return 0;
304 }
305 
306 static int
307 sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
308 {
309 	int rc = 0;
310 
311 	switch (txmode->mq_mode) {
312 	case ETH_MQ_TX_NONE:
313 		break;
314 	default:
315 		sfc_err(sa, "Tx multi-queue mode %u not supported",
316 			txmode->mq_mode);
317 		rc = EINVAL;
318 	}
319 
320 	/*
321 	 * These features are claimed to be i40e-specific,
322 	 * but it does make sense to double-check their absence
323 	 */
324 	if (txmode->hw_vlan_reject_tagged) {
325 		sfc_err(sa, "Rejecting tagged packets not supported");
326 		rc = EINVAL;
327 	}
328 
329 	if (txmode->hw_vlan_reject_untagged) {
330 		sfc_err(sa, "Rejecting untagged packets not supported");
331 		rc = EINVAL;
332 	}
333 
334 	if (txmode->hw_vlan_insert_pvid) {
335 		sfc_err(sa, "Port-based VLAN insertion not supported");
336 		rc = EINVAL;
337 	}
338 
339 	return rc;
340 }
341 
342 /**
343  * Destroy excess queues that are no longer needed after reconfiguration
344  * or complete close.
345  */
346 static void
347 sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues)
348 {
349 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
350 	sfc_sw_index_t sw_index;
351 	sfc_ethdev_qid_t ethdev_qid;
352 
353 	SFC_ASSERT(nb_tx_queues <= sas->ethdev_txq_count);
354 
355 	/*
356 	 * Finalize only ethdev queues since other ones are finalized only
357 	 * on device close and they may require additional deinitializaton.
358 	 */
359 	ethdev_qid = sas->ethdev_txq_count;
360 	while (--ethdev_qid >= (int)nb_tx_queues) {
361 		struct sfc_txq_info *txq_info;
362 
363 		sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
364 		txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
365 		if (txq_info->state & SFC_TXQ_INITIALIZED)
366 			sfc_tx_qfini(sa, sw_index);
367 	}
368 
369 	sas->ethdev_txq_count = nb_tx_queues;
370 }
371 
372 int
373 sfc_tx_configure(struct sfc_adapter *sa)
374 {
375 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
376 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
377 	const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
378 	const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues;
379 	const unsigned int nb_rsvd_tx_queues = sfc_nb_txq_reserved(sas);
380 	const unsigned int nb_txq_total = nb_tx_queues + nb_rsvd_tx_queues;
381 	bool reconfigure;
382 	int rc = 0;
383 
384 	sfc_log_init(sa, "nb_tx_queues=%u (old %u)",
385 		     nb_tx_queues, sas->ethdev_txq_count);
386 
387 	/*
388 	 * The datapath implementation assumes absence of boundary
389 	 * limits on Tx DMA descriptors. Addition of these checks on
390 	 * datapath would simply make the datapath slower.
391 	 */
392 	if (encp->enc_tx_dma_desc_boundary != 0) {
393 		rc = ENOTSUP;
394 		goto fail_tx_dma_desc_boundary;
395 	}
396 
397 	rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
398 	if (rc != 0)
399 		goto fail_check_mode;
400 
401 	if (nb_txq_total == sas->txq_count)
402 		goto done;
403 
404 	if (sas->txq_info == NULL) {
405 		reconfigure = false;
406 		sas->txq_info = rte_calloc_socket("sfc-txqs", nb_txq_total,
407 						  sizeof(sas->txq_info[0]), 0,
408 						  sa->socket_id);
409 		if (sas->txq_info == NULL)
410 			goto fail_txqs_alloc;
411 
412 		/*
413 		 * Allocate primary process only TxQ control from heap
414 		 * since it should not be shared.
415 		 */
416 		rc = ENOMEM;
417 		sa->txq_ctrl = calloc(nb_txq_total, sizeof(sa->txq_ctrl[0]));
418 		if (sa->txq_ctrl == NULL)
419 			goto fail_txqs_ctrl_alloc;
420 	} else {
421 		struct sfc_txq_info *new_txq_info;
422 		struct sfc_txq *new_txq_ctrl;
423 
424 		reconfigure = true;
425 
426 		if (nb_tx_queues < sas->ethdev_txq_count)
427 			sfc_tx_fini_queues(sa, nb_tx_queues);
428 
429 		new_txq_info =
430 			rte_realloc(sas->txq_info,
431 				    nb_txq_total * sizeof(sas->txq_info[0]), 0);
432 		if (new_txq_info == NULL && nb_txq_total > 0)
433 			goto fail_txqs_realloc;
434 
435 		new_txq_ctrl = realloc(sa->txq_ctrl,
436 				       nb_txq_total * sizeof(sa->txq_ctrl[0]));
437 		if (new_txq_ctrl == NULL && nb_txq_total > 0)
438 			goto fail_txqs_ctrl_realloc;
439 
440 		sas->txq_info = new_txq_info;
441 		sa->txq_ctrl = new_txq_ctrl;
442 		if (nb_txq_total > sas->txq_count) {
443 			memset(&sas->txq_info[sas->txq_count], 0,
444 			       (nb_txq_total - sas->txq_count) *
445 			       sizeof(sas->txq_info[0]));
446 			memset(&sa->txq_ctrl[sas->txq_count], 0,
447 			       (nb_txq_total - sas->txq_count) *
448 			       sizeof(sa->txq_ctrl[0]));
449 		}
450 	}
451 
452 	while (sas->ethdev_txq_count < nb_tx_queues) {
453 		sfc_sw_index_t sw_index;
454 
455 		sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas,
456 				sas->ethdev_txq_count);
457 		rc = sfc_tx_qinit_info(sa, sw_index);
458 		if (rc != 0)
459 			goto fail_tx_qinit_info;
460 
461 		sas->ethdev_txq_count++;
462 	}
463 
464 	sas->txq_count = sas->ethdev_txq_count + nb_rsvd_tx_queues;
465 
466 	if (!reconfigure) {
467 		rc = sfc_repr_proxy_txq_init(sa);
468 		if (rc != 0)
469 			goto fail_repr_proxy_txq_init;
470 	}
471 
472 done:
473 	return 0;
474 
475 fail_repr_proxy_txq_init:
476 fail_tx_qinit_info:
477 fail_txqs_ctrl_realloc:
478 fail_txqs_realloc:
479 fail_txqs_ctrl_alloc:
480 fail_txqs_alloc:
481 	sfc_tx_close(sa);
482 
483 fail_check_mode:
484 fail_tx_dma_desc_boundary:
485 	sfc_log_init(sa, "failed (rc = %d)", rc);
486 	return rc;
487 }
488 
489 void
490 sfc_tx_close(struct sfc_adapter *sa)
491 {
492 	sfc_tx_fini_queues(sa, 0);
493 	sfc_repr_proxy_txq_fini(sa);
494 
495 	free(sa->txq_ctrl);
496 	sa->txq_ctrl = NULL;
497 
498 	rte_free(sfc_sa2shared(sa)->txq_info);
499 	sfc_sa2shared(sa)->txq_info = NULL;
500 }
501 
502 int
503 sfc_tx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
504 {
505 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
506 	sfc_ethdev_qid_t ethdev_qid;
507 	uint64_t offloads_supported = sfc_tx_get_dev_offload_caps(sa) |
508 				      sfc_tx_get_queue_offload_caps(sa);
509 	struct sfc_txq_info *txq_info;
510 	struct sfc_txq *txq;
511 	struct sfc_evq *evq;
512 	uint16_t flags = 0;
513 	unsigned int desc_index;
514 	int rc = 0;
515 
516 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
517 
518 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
519 
520 	SFC_ASSERT(sw_index < sas->txq_count);
521 	txq_info = &sas->txq_info[sw_index];
522 
523 	SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
524 
525 	txq = &sa->txq_ctrl[sw_index];
526 	evq = txq->evq;
527 
528 	rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_txq_sw_index(sa, sw_index));
529 	if (rc != 0)
530 		goto fail_ev_qstart;
531 
532 	if (txq_info->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
533 		flags |= EFX_TXQ_CKSUM_IPV4;
534 
535 	if (txq_info->offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
536 		flags |= EFX_TXQ_CKSUM_INNER_IPV4;
537 
538 	if ((txq_info->offloads & DEV_TX_OFFLOAD_TCP_CKSUM) ||
539 	    (txq_info->offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
540 		flags |= EFX_TXQ_CKSUM_TCPUDP;
541 
542 		if (offloads_supported & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
543 			flags |= EFX_TXQ_CKSUM_INNER_TCPUDP;
544 	}
545 
546 	if (txq_info->offloads & (DEV_TX_OFFLOAD_TCP_TSO |
547 				  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
548 				  DEV_TX_OFFLOAD_GENEVE_TNL_TSO))
549 		flags |= EFX_TXQ_FATSOV2;
550 
551 	rc = efx_tx_qcreate(sa->nic, txq->hw_index, 0, &txq->mem,
552 			    txq_info->entries, 0 /* not used on EF10 */,
553 			    flags, evq->common,
554 			    &txq->common, &desc_index);
555 	if (rc != 0) {
556 		if (sa->tso && (rc == ENOSPC))
557 			sfc_err(sa, "ran out of TSO contexts");
558 
559 		goto fail_tx_qcreate;
560 	}
561 
562 	efx_tx_qenable(txq->common);
563 
564 	txq_info->state |= SFC_TXQ_STARTED;
565 
566 	rc = sa->priv.dp_tx->qstart(txq_info->dp, evq->read_ptr, desc_index);
567 	if (rc != 0)
568 		goto fail_dp_qstart;
569 
570 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID) {
571 		struct rte_eth_dev_data *dev_data;
572 
573 		/*
574 		 * It sems to be used by DPDK for debug purposes only
575 		 * ('rte_ether').
576 		 */
577 		dev_data = sa->eth_dev->data;
578 		dev_data->tx_queue_state[ethdev_qid] =
579 			RTE_ETH_QUEUE_STATE_STARTED;
580 	}
581 
582 	return 0;
583 
584 fail_dp_qstart:
585 	txq_info->state = SFC_TXQ_INITIALIZED;
586 	efx_tx_qdestroy(txq->common);
587 
588 fail_tx_qcreate:
589 	sfc_ev_qstop(evq);
590 
591 fail_ev_qstart:
592 	return rc;
593 }
594 
595 void
596 sfc_tx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
597 {
598 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
599 	sfc_ethdev_qid_t ethdev_qid;
600 	struct sfc_txq_info *txq_info;
601 	struct sfc_txq *txq;
602 	unsigned int retry_count;
603 	unsigned int wait_count;
604 	int rc;
605 
606 	ethdev_qid = sfc_ethdev_tx_qid_by_txq_sw_index(sas, sw_index);
607 
608 	sfc_log_init(sa, "TxQ = %d (internal %u)", ethdev_qid, sw_index);
609 
610 	SFC_ASSERT(sw_index < sas->txq_count);
611 	txq_info = &sas->txq_info[sw_index];
612 
613 	if (txq_info->state == SFC_TXQ_INITIALIZED)
614 		return;
615 
616 	SFC_ASSERT(txq_info->state & SFC_TXQ_STARTED);
617 
618 	txq = &sa->txq_ctrl[sw_index];
619 	sa->priv.dp_tx->qstop(txq_info->dp, &txq->evq->read_ptr);
620 
621 	/*
622 	 * Retry TX queue flushing in case of flush failed or
623 	 * timeout; in the worst case it can delay for 6 seconds
624 	 */
625 	for (retry_count = 0;
626 	     ((txq_info->state & SFC_TXQ_FLUSHED) == 0) &&
627 	     (retry_count < SFC_TX_QFLUSH_ATTEMPTS);
628 	     ++retry_count) {
629 		rc = efx_tx_qflush(txq->common);
630 		if (rc != 0) {
631 			txq_info->state |= (rc == EALREADY) ?
632 				SFC_TXQ_FLUSHED : SFC_TXQ_FLUSH_FAILED;
633 			break;
634 		}
635 
636 		/*
637 		 * Wait for TX queue flush done or flush failed event at least
638 		 * SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
639 		 * than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
640 		 * by SFC_TX_QFLUSH_POLL_ATTEMPTS)
641 		 */
642 		wait_count = 0;
643 		do {
644 			rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
645 			sfc_ev_qpoll(txq->evq);
646 		} while ((txq_info->state & SFC_TXQ_FLUSHING) &&
647 			 wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);
648 
649 		if (txq_info->state & SFC_TXQ_FLUSHING)
650 			sfc_err(sa, "TxQ %d (internal %u) flush timed out",
651 				ethdev_qid, sw_index);
652 
653 		if (txq_info->state & SFC_TXQ_FLUSHED)
654 			sfc_notice(sa, "TxQ %d (internal %u) flushed",
655 				   ethdev_qid, sw_index);
656 	}
657 
658 	sa->priv.dp_tx->qreap(txq_info->dp);
659 
660 	txq_info->state = SFC_TXQ_INITIALIZED;
661 
662 	efx_tx_qdestroy(txq->common);
663 
664 	sfc_ev_qstop(txq->evq);
665 
666 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID) {
667 		struct rte_eth_dev_data *dev_data;
668 
669 		/*
670 		 * It seems to be used by DPDK for debug purposes only
671 		 * ('rte_ether')
672 		 */
673 		dev_data = sa->eth_dev->data;
674 		dev_data->tx_queue_state[ethdev_qid] =
675 			RTE_ETH_QUEUE_STATE_STOPPED;
676 	}
677 }
678 
679 int
680 sfc_tx_start(struct sfc_adapter *sa)
681 {
682 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
683 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
684 	sfc_sw_index_t sw_index;
685 	int rc = 0;
686 
687 	sfc_log_init(sa, "txq_count = %u (internal %u)",
688 		     sas->ethdev_txq_count, sas->txq_count);
689 
690 	if (sa->tso) {
691 		if (!encp->enc_fw_assisted_tso_v2_enabled &&
692 		    !encp->enc_tso_v3_enabled) {
693 			sfc_warn(sa, "TSO support was unable to be restored");
694 			sa->tso = B_FALSE;
695 			sa->tso_encap = B_FALSE;
696 		}
697 	}
698 
699 	if (sa->tso_encap && !encp->enc_fw_assisted_tso_v2_encap_enabled &&
700 	    !encp->enc_tso_v3_enabled) {
701 		sfc_warn(sa, "Encapsulated TSO support was unable to be restored");
702 		sa->tso_encap = B_FALSE;
703 	}
704 
705 	rc = efx_tx_init(sa->nic);
706 	if (rc != 0)
707 		goto fail_efx_tx_init;
708 
709 	for (sw_index = 0; sw_index < sas->txq_count; ++sw_index) {
710 		if (sas->txq_info[sw_index].state == SFC_TXQ_INITIALIZED &&
711 		    (!(sas->txq_info[sw_index].deferred_start) ||
712 		     sas->txq_info[sw_index].deferred_started)) {
713 			rc = sfc_tx_qstart(sa, sw_index);
714 			if (rc != 0)
715 				goto fail_tx_qstart;
716 		}
717 	}
718 
719 	return 0;
720 
721 fail_tx_qstart:
722 	while (sw_index-- > 0)
723 		sfc_tx_qstop(sa, sw_index);
724 
725 	efx_tx_fini(sa->nic);
726 
727 fail_efx_tx_init:
728 	sfc_log_init(sa, "failed (rc = %d)", rc);
729 	return rc;
730 }
731 
732 void
733 sfc_tx_stop(struct sfc_adapter *sa)
734 {
735 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
736 	sfc_sw_index_t sw_index;
737 
738 	sfc_log_init(sa, "txq_count = %u (internal %u)",
739 		     sas->ethdev_txq_count, sas->txq_count);
740 
741 	sw_index = sas->txq_count;
742 	while (sw_index-- > 0) {
743 		if (sas->txq_info[sw_index].state & SFC_TXQ_STARTED)
744 			sfc_tx_qstop(sa, sw_index);
745 	}
746 
747 	efx_tx_fini(sa->nic);
748 }
749 
750 static void
751 sfc_efx_tx_reap(struct sfc_efx_txq *txq)
752 {
753 	unsigned int completed;
754 
755 	sfc_ev_qpoll(txq->evq);
756 
757 	for (completed = txq->completed;
758 	     completed != txq->pending; completed++) {
759 		struct sfc_efx_tx_sw_desc *txd;
760 
761 		txd = &txq->sw_ring[completed & txq->ptr_mask];
762 
763 		if (txd->mbuf != NULL) {
764 			rte_pktmbuf_free(txd->mbuf);
765 			txd->mbuf = NULL;
766 		}
767 	}
768 
769 	txq->completed = completed;
770 }
771 
772 /*
773  * The function is used to insert or update VLAN tag;
774  * the firmware has state of the firmware tag to insert per TxQ
775  * (controlled by option descriptors), hence, if the tag of the
776  * packet to be sent is different from one remembered by the firmware,
777  * the function will update it
778  */
779 static unsigned int
780 sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m,
781 			    efx_desc_t **pend)
782 {
783 	uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ?
784 			     m->vlan_tci : 0);
785 
786 	if (this_tag == txq->hw_vlan_tci)
787 		return 0;
788 
789 	/*
790 	 * The expression inside SFC_ASSERT() is not desired to be checked in
791 	 * a non-debug build because it might be too expensive on the data path
792 	 */
793 	SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);
794 
795 	efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
796 				    *pend);
797 	(*pend)++;
798 	txq->hw_vlan_tci = this_tag;
799 
800 	return 1;
801 }
802 
803 static uint16_t
804 sfc_efx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
805 		     uint16_t nb_pkts)
806 {
807 	struct sfc_dp_txq *dp_txq = tx_queue;
808 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
809 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->evq->sa->nic);
810 	uint16_t i;
811 
812 	for (i = 0; i < nb_pkts; i++) {
813 		int ret;
814 
815 		/*
816 		 * EFX Tx datapath may require extra VLAN descriptor if VLAN
817 		 * insertion offload is requested regardless the offload
818 		 * requested/supported.
819 		 */
820 		ret = sfc_dp_tx_prepare_pkt(tx_pkts[i], 0, SFC_TSOH_STD_LEN,
821 				encp->enc_tx_tso_tcp_header_offset_limit,
822 				txq->max_fill_level, EFX_TX_FATSOV2_OPT_NDESCS,
823 				1);
824 		if (unlikely(ret != 0)) {
825 			rte_errno = ret;
826 			break;
827 		}
828 	}
829 
830 	return i;
831 }
832 
833 static uint16_t
834 sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
835 {
836 	struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue;
837 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
838 	unsigned int added = txq->added;
839 	unsigned int pushed = added;
840 	unsigned int pkts_sent = 0;
841 	efx_desc_t *pend = &txq->pend_desc[0];
842 	const unsigned int hard_max_fill = txq->max_fill_level;
843 	const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
844 	unsigned int fill_level = added - txq->completed;
845 	boolean_t reap_done;
846 	int rc __rte_unused;
847 	struct rte_mbuf **pktp;
848 
849 	if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0))
850 		goto done;
851 
852 	/*
853 	 * If insufficient space for a single packet is present,
854 	 * we should reap; otherwise, we shouldn't do that all the time
855 	 * to avoid latency increase
856 	 */
857 	reap_done = (fill_level > soft_max_fill);
858 
859 	if (reap_done) {
860 		sfc_efx_tx_reap(txq);
861 		/*
862 		 * Recalculate fill level since 'txq->completed'
863 		 * might have changed on reap
864 		 */
865 		fill_level = added - txq->completed;
866 	}
867 
868 	for (pkts_sent = 0, pktp = &tx_pkts[0];
869 	     (pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
870 	     pkts_sent++, pktp++) {
871 		uint16_t		hw_vlan_tci_prev = txq->hw_vlan_tci;
872 		struct rte_mbuf		*m_seg = *pktp;
873 		size_t			pkt_len = m_seg->pkt_len;
874 		unsigned int		pkt_descs = 0;
875 		size_t			in_off = 0;
876 
877 		/*
878 		 * Here VLAN TCI is expected to be zero in case if no
879 		 * DEV_TX_OFFLOAD_VLAN_INSERT capability is advertised;
880 		 * if the calling app ignores the absence of
881 		 * DEV_TX_OFFLOAD_VLAN_INSERT and pushes VLAN TCI, then
882 		 * TX_ERROR will occur
883 		 */
884 		pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend);
885 
886 		if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
887 			/*
888 			 * We expect correct 'pkt->l[2, 3, 4]_len' values
889 			 * to be set correctly by the caller
890 			 */
891 			if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend,
892 					   &pkt_descs, &pkt_len) != 0) {
893 				/* We may have reached this place if packet
894 				 * header linearization is needed but the
895 				 * header length is greater than
896 				 * SFC_TSOH_STD_LEN
897 				 *
898 				 * We will deceive RTE saying that we have sent
899 				 * the packet, but we will actually drop it.
900 				 * Hence, we should revert 'pend' to the
901 				 * previous state (in case we have added
902 				 * VLAN descriptor) and start processing
903 				 * another one packet. But the original
904 				 * mbuf shouldn't be orphaned
905 				 */
906 				pend -= pkt_descs;
907 				txq->hw_vlan_tci = hw_vlan_tci_prev;
908 
909 				rte_pktmbuf_free(*pktp);
910 
911 				continue;
912 			}
913 
914 			/*
915 			 * We've only added 2 FATSOv2 option descriptors
916 			 * and 1 descriptor for the linearized packet header.
917 			 * The outstanding work will be done in the same manner
918 			 * as for the usual non-TSO path
919 			 */
920 		}
921 
922 		for (; m_seg != NULL; m_seg = m_seg->next) {
923 			efsys_dma_addr_t	next_frag;
924 			size_t			seg_len;
925 
926 			seg_len = m_seg->data_len;
927 			next_frag = rte_mbuf_data_iova(m_seg);
928 
929 			/*
930 			 * If we've started TSO transaction few steps earlier,
931 			 * we'll skip packet header using an offset in the
932 			 * current segment (which has been set to the
933 			 * first one containing payload)
934 			 */
935 			seg_len -= in_off;
936 			next_frag += in_off;
937 			in_off = 0;
938 
939 			do {
940 				efsys_dma_addr_t	frag_addr = next_frag;
941 				size_t			frag_len;
942 
943 				/*
944 				 * It is assumed here that there is no
945 				 * limitation on address boundary
946 				 * crossing by DMA descriptor.
947 				 */
948 				frag_len = MIN(seg_len, txq->dma_desc_size_max);
949 				next_frag += frag_len;
950 				seg_len -= frag_len;
951 				pkt_len -= frag_len;
952 
953 				efx_tx_qdesc_dma_create(txq->common,
954 							frag_addr, frag_len,
955 							(pkt_len == 0),
956 							pend++);
957 
958 				pkt_descs++;
959 			} while (seg_len != 0);
960 		}
961 
962 		added += pkt_descs;
963 
964 		fill_level += pkt_descs;
965 		if (unlikely(fill_level > hard_max_fill)) {
966 			/*
967 			 * Our estimation for maximum number of descriptors
968 			 * required to send a packet seems to be wrong.
969 			 * Try to reap (if we haven't yet).
970 			 */
971 			if (!reap_done) {
972 				sfc_efx_tx_reap(txq);
973 				reap_done = B_TRUE;
974 				fill_level = added - txq->completed;
975 				if (fill_level > hard_max_fill) {
976 					pend -= pkt_descs;
977 					txq->hw_vlan_tci = hw_vlan_tci_prev;
978 					break;
979 				}
980 			} else {
981 				pend -= pkt_descs;
982 				txq->hw_vlan_tci = hw_vlan_tci_prev;
983 				break;
984 			}
985 		}
986 
987 		/* Assign mbuf to the last used desc */
988 		txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
989 	}
990 
991 	if (likely(pkts_sent > 0)) {
992 		rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
993 				       pend - &txq->pend_desc[0],
994 				       txq->completed, &txq->added);
995 		SFC_ASSERT(rc == 0);
996 
997 		if (likely(pushed != txq->added)) {
998 			efx_tx_qpush(txq->common, txq->added, pushed);
999 			txq->dp.dpq.tx_dbells++;
1000 		}
1001 	}
1002 
1003 #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
1004 	if (!reap_done)
1005 		sfc_efx_tx_reap(txq);
1006 #endif
1007 
1008 done:
1009 	return pkts_sent;
1010 }
1011 
1012 const struct sfc_dp_tx *
1013 sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1014 {
1015 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1016 	struct rte_eth_dev *eth_dev;
1017 	struct sfc_adapter_priv *sap;
1018 
1019 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1020 	eth_dev = &rte_eth_devices[dpq->port_id];
1021 
1022 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
1023 
1024 	return sap->dp_tx;
1025 }
1026 
1027 struct sfc_txq_info *
1028 sfc_txq_info_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1029 {
1030 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1031 	struct rte_eth_dev *eth_dev;
1032 	struct sfc_adapter_shared *sas;
1033 
1034 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1035 	eth_dev = &rte_eth_devices[dpq->port_id];
1036 
1037 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
1038 
1039 	SFC_ASSERT(dpq->queue_id < sas->txq_count);
1040 	return &sas->txq_info[dpq->queue_id];
1041 }
1042 
1043 struct sfc_txq *
1044 sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq)
1045 {
1046 	const struct sfc_dp_queue *dpq = &dp_txq->dpq;
1047 	struct rte_eth_dev *eth_dev;
1048 	struct sfc_adapter *sa;
1049 
1050 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
1051 	eth_dev = &rte_eth_devices[dpq->port_id];
1052 
1053 	sa = sfc_adapter_by_eth_dev(eth_dev);
1054 
1055 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->txq_count);
1056 	return &sa->txq_ctrl[dpq->queue_id];
1057 }
1058 
1059 static sfc_dp_tx_qsize_up_rings_t sfc_efx_tx_qsize_up_rings;
1060 static int
1061 sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc,
1062 			  __rte_unused struct sfc_dp_tx_hw_limits *limits,
1063 			  unsigned int *txq_entries,
1064 			  unsigned int *evq_entries,
1065 			  unsigned int *txq_max_fill_level)
1066 {
1067 	*txq_entries = nb_tx_desc;
1068 	*evq_entries = nb_tx_desc;
1069 	*txq_max_fill_level = EFX_TXQ_LIMIT(*txq_entries);
1070 	return 0;
1071 }
1072 
1073 static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate;
1074 static int
1075 sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id,
1076 		   const struct rte_pci_addr *pci_addr,
1077 		   int socket_id,
1078 		   const struct sfc_dp_tx_qcreate_info *info,
1079 		   struct sfc_dp_txq **dp_txqp)
1080 {
1081 	struct sfc_efx_txq *txq;
1082 	struct sfc_txq *ctrl_txq;
1083 	int rc;
1084 
1085 	rc = ENOMEM;
1086 	txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq),
1087 				 RTE_CACHE_LINE_SIZE, socket_id);
1088 	if (txq == NULL)
1089 		goto fail_txq_alloc;
1090 
1091 	sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
1092 
1093 	rc = ENOMEM;
1094 	txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc",
1095 					   EFX_TXQ_LIMIT(info->txq_entries),
1096 					   sizeof(*txq->pend_desc), 0,
1097 					   socket_id);
1098 	if (txq->pend_desc == NULL)
1099 		goto fail_pend_desc_alloc;
1100 
1101 	rc = ENOMEM;
1102 	txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring",
1103 					 info->txq_entries,
1104 					 sizeof(*txq->sw_ring),
1105 					 RTE_CACHE_LINE_SIZE, socket_id);
1106 	if (txq->sw_ring == NULL)
1107 		goto fail_sw_ring_alloc;
1108 
1109 	ctrl_txq = sfc_txq_by_dp_txq(&txq->dp);
1110 	if (ctrl_txq->evq->sa->tso) {
1111 		rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring,
1112 						 info->txq_entries, socket_id);
1113 		if (rc != 0)
1114 			goto fail_alloc_tsoh_objs;
1115 	}
1116 
1117 	txq->evq = ctrl_txq->evq;
1118 	txq->ptr_mask = info->txq_entries - 1;
1119 	txq->max_fill_level = info->max_fill_level;
1120 	txq->free_thresh = info->free_thresh;
1121 	txq->dma_desc_size_max = info->dma_desc_size_max;
1122 
1123 	*dp_txqp = &txq->dp;
1124 	return 0;
1125 
1126 fail_alloc_tsoh_objs:
1127 	rte_free(txq->sw_ring);
1128 
1129 fail_sw_ring_alloc:
1130 	rte_free(txq->pend_desc);
1131 
1132 fail_pend_desc_alloc:
1133 	rte_free(txq);
1134 
1135 fail_txq_alloc:
1136 	return rc;
1137 }
1138 
1139 static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy;
1140 static void
1141 sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq)
1142 {
1143 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1144 
1145 	sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1);
1146 	rte_free(txq->sw_ring);
1147 	rte_free(txq->pend_desc);
1148 	rte_free(txq);
1149 }
1150 
1151 static sfc_dp_tx_qstart_t sfc_efx_tx_qstart;
1152 static int
1153 sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq,
1154 		  __rte_unused unsigned int evq_read_ptr,
1155 		  unsigned int txq_desc_index)
1156 {
1157 	/* libefx-based datapath is specific to libefx-based PMD */
1158 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1159 	struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq);
1160 
1161 	txq->common = ctrl_txq->common;
1162 
1163 	txq->pending = txq->completed = txq->added = txq_desc_index;
1164 	txq->hw_vlan_tci = 0;
1165 
1166 	txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING);
1167 
1168 	return 0;
1169 }
1170 
1171 static sfc_dp_tx_qstop_t sfc_efx_tx_qstop;
1172 static void
1173 sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq,
1174 		 __rte_unused unsigned int *evq_read_ptr)
1175 {
1176 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1177 
1178 	txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING;
1179 }
1180 
1181 static sfc_dp_tx_qreap_t sfc_efx_tx_qreap;
1182 static void
1183 sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq)
1184 {
1185 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1186 	unsigned int txds;
1187 
1188 	sfc_efx_tx_reap(txq);
1189 
1190 	for (txds = 0; txds <= txq->ptr_mask; txds++) {
1191 		if (txq->sw_ring[txds].mbuf != NULL) {
1192 			rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
1193 			txq->sw_ring[txds].mbuf = NULL;
1194 		}
1195 	}
1196 
1197 	txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED;
1198 }
1199 
1200 static sfc_dp_tx_qdesc_status_t sfc_efx_tx_qdesc_status;
1201 static int
1202 sfc_efx_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
1203 {
1204 	struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
1205 
1206 	if (unlikely(offset > txq->ptr_mask))
1207 		return -EINVAL;
1208 
1209 	if (unlikely(offset >= txq->max_fill_level))
1210 		return RTE_ETH_TX_DESC_UNAVAIL;
1211 
1212 	/*
1213 	 * Poll EvQ to derive up-to-date 'txq->pending' figure;
1214 	 * it is required for the queue to be running, but the
1215 	 * check is omitted because API design assumes that it
1216 	 * is the duty of the caller to satisfy all conditions
1217 	 */
1218 	SFC_ASSERT((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) ==
1219 		   SFC_EFX_TXQ_FLAG_RUNNING);
1220 	sfc_ev_qpoll(txq->evq);
1221 
1222 	/*
1223 	 * Ring tail is 'txq->pending', and although descriptors
1224 	 * between 'txq->completed' and 'txq->pending' are still
1225 	 * in use by the driver, they should be reported as DONE
1226 	 */
1227 	if (unlikely(offset < (txq->added - txq->pending)))
1228 		return RTE_ETH_TX_DESC_FULL;
1229 
1230 	/*
1231 	 * There is no separate return value for unused descriptors;
1232 	 * the latter will be reported as DONE because genuine DONE
1233 	 * descriptors will be freed anyway in SW on the next burst
1234 	 */
1235 	return RTE_ETH_TX_DESC_DONE;
1236 }
1237 
1238 struct sfc_dp_tx sfc_efx_tx = {
1239 	.dp = {
1240 		.name		= SFC_KVARG_DATAPATH_EFX,
1241 		.type		= SFC_DP_TX,
1242 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_TX_EFX,
1243 	},
1244 	.features		= 0,
1245 	.dev_offload_capa	= DEV_TX_OFFLOAD_VLAN_INSERT |
1246 				  DEV_TX_OFFLOAD_MULTI_SEGS,
1247 	.queue_offload_capa	= DEV_TX_OFFLOAD_IPV4_CKSUM |
1248 				  DEV_TX_OFFLOAD_UDP_CKSUM |
1249 				  DEV_TX_OFFLOAD_TCP_CKSUM |
1250 				  DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
1251 				  DEV_TX_OFFLOAD_TCP_TSO,
1252 	.qsize_up_rings		= sfc_efx_tx_qsize_up_rings,
1253 	.qcreate		= sfc_efx_tx_qcreate,
1254 	.qdestroy		= sfc_efx_tx_qdestroy,
1255 	.qstart			= sfc_efx_tx_qstart,
1256 	.qstop			= sfc_efx_tx_qstop,
1257 	.qreap			= sfc_efx_tx_qreap,
1258 	.qdesc_status		= sfc_efx_tx_qdesc_status,
1259 	.pkt_prepare		= sfc_efx_prepare_pkts,
1260 	.pkt_burst		= sfc_efx_xmit_pkts,
1261 };
1262