xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision d38febb08d57fec29fed27a2d12a507fc6fcdfa1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_mae_counter.h"
20 #include "sfc_kvargs.h"
21 #include "sfc_tweak.h"
22 
23 /*
24  * Maximum number of Rx queue flush attempt in the case of failure or
25  * flush timeout
26  */
27 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
28 
29 /*
30  * Time to wait between event queue polling attempts when waiting for Rx
31  * queue flush done or failed events.
32  */
33 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
34 
35 /*
36  * Maximum number of event queue polling attempts when waiting for Rx queue
37  * flush done or failed events. It defines Rx queue flush attempt timeout
38  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
39  */
40 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
41 
42 void
43 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
44 {
45 	rxq_info->state |= SFC_RXQ_FLUSHED;
46 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
47 }
48 
49 void
50 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
51 {
52 	rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
53 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
54 }
55 
56 /* This returns the running counter, which is not bounded by ring size */
57 unsigned int
58 sfc_rx_get_pushed(struct sfc_adapter *sa, struct sfc_dp_rxq *dp_rxq)
59 {
60 	SFC_ASSERT(sa->priv.dp_rx->get_pushed != NULL);
61 
62 	return sa->priv.dp_rx->get_pushed(dp_rxq);
63 }
64 
65 static int
66 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
67 {
68 	int rc = 0;
69 
70 	if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
71 		rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
72 		if (rc == 0)
73 			rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
74 	}
75 	return rc;
76 }
77 
78 static void
79 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
80 {
81 	unsigned int free_space;
82 	unsigned int bulks;
83 	void *objs[SFC_RX_REFILL_BULK];
84 	efsys_dma_addr_t addr[RTE_DIM(objs)];
85 	unsigned int added = rxq->added;
86 	unsigned int id;
87 	unsigned int i;
88 	struct sfc_efx_rx_sw_desc *rxd;
89 	struct rte_mbuf *m;
90 	uint16_t port_id = rxq->dp.dpq.port_id;
91 
92 	free_space = rxq->max_fill_level - (added - rxq->completed);
93 
94 	if (free_space < rxq->refill_threshold)
95 		return;
96 
97 	bulks = free_space / RTE_DIM(objs);
98 	/* refill_threshold guarantees that bulks is positive */
99 	SFC_ASSERT(bulks > 0);
100 
101 	id = added & rxq->ptr_mask;
102 	do {
103 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
104 						  RTE_DIM(objs)) < 0)) {
105 			/*
106 			 * It is hardly a safe way to increment counter
107 			 * from different contexts, but all PMDs do it.
108 			 */
109 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
110 				RTE_DIM(objs);
111 			/* Return if we have posted nothing yet */
112 			if (added == rxq->added)
113 				return;
114 			/* Push posted */
115 			break;
116 		}
117 
118 		for (i = 0; i < RTE_DIM(objs);
119 		     ++i, id = (id + 1) & rxq->ptr_mask) {
120 			m = objs[i];
121 
122 			__rte_mbuf_raw_sanity_check(m);
123 
124 			rxd = &rxq->sw_desc[id];
125 			rxd->mbuf = m;
126 
127 			m->data_off = RTE_PKTMBUF_HEADROOM;
128 			m->port = port_id;
129 
130 			addr[i] = rte_pktmbuf_iova(m);
131 		}
132 
133 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
134 			     RTE_DIM(objs), rxq->completed, added);
135 		added += RTE_DIM(objs);
136 	} while (--bulks > 0);
137 
138 	SFC_ASSERT(added != rxq->added);
139 	rxq->added = added;
140 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
141 	rxq->dp.dpq.rx_dbells++;
142 }
143 
144 static uint64_t
145 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
146 {
147 	uint64_t mbuf_flags = 0;
148 
149 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
150 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
151 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
152 		break;
153 	case EFX_PKT_IPV4:
154 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
155 		break;
156 	default:
157 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
158 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
159 			   PKT_RX_IP_CKSUM_UNKNOWN);
160 		break;
161 	}
162 
163 	switch ((desc_flags &
164 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
165 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
166 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
167 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
168 		break;
169 	case EFX_PKT_TCP:
170 	case EFX_PKT_UDP:
171 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
172 		break;
173 	default:
174 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
175 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
176 			   PKT_RX_L4_CKSUM_UNKNOWN);
177 		break;
178 	}
179 
180 	return mbuf_flags;
181 }
182 
183 static uint32_t
184 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
185 {
186 	return RTE_PTYPE_L2_ETHER |
187 		((desc_flags & EFX_PKT_IPV4) ?
188 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
189 		((desc_flags & EFX_PKT_IPV6) ?
190 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
191 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
192 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
193 }
194 
195 static const uint32_t *
196 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
197 {
198 	static const uint32_t ptypes[] = {
199 		RTE_PTYPE_L2_ETHER,
200 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
201 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
202 		RTE_PTYPE_L4_TCP,
203 		RTE_PTYPE_L4_UDP,
204 		RTE_PTYPE_UNKNOWN
205 	};
206 
207 	return ptypes;
208 }
209 
210 static void
211 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
212 			struct rte_mbuf *m)
213 {
214 	uint8_t *mbuf_data;
215 
216 
217 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
218 		return;
219 
220 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
221 
222 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
223 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
224 						      EFX_RX_HASHALG_TOEPLITZ,
225 						      mbuf_data);
226 
227 		m->ol_flags |= PKT_RX_RSS_HASH;
228 	}
229 }
230 
231 static uint16_t
232 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
233 {
234 	struct sfc_dp_rxq *dp_rxq = rx_queue;
235 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
236 	unsigned int completed;
237 	unsigned int prefix_size = rxq->prefix_size;
238 	unsigned int done_pkts = 0;
239 	boolean_t discard_next = B_FALSE;
240 	struct rte_mbuf *scatter_pkt = NULL;
241 
242 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
243 		return 0;
244 
245 	sfc_ev_qpoll(rxq->evq);
246 
247 	completed = rxq->completed;
248 	while (completed != rxq->pending && done_pkts < nb_pkts) {
249 		unsigned int id;
250 		struct sfc_efx_rx_sw_desc *rxd;
251 		struct rte_mbuf *m;
252 		unsigned int seg_len;
253 		unsigned int desc_flags;
254 
255 		id = completed++ & rxq->ptr_mask;
256 		rxd = &rxq->sw_desc[id];
257 		m = rxd->mbuf;
258 		desc_flags = rxd->flags;
259 
260 		if (discard_next)
261 			goto discard;
262 
263 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
264 			goto discard;
265 
266 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
267 			uint16_t tmp_size;
268 			int rc __rte_unused;
269 
270 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
271 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
272 			SFC_ASSERT(rc == 0);
273 			seg_len = tmp_size;
274 		} else {
275 			seg_len = rxd->size - prefix_size;
276 		}
277 
278 		rte_pktmbuf_data_len(m) = seg_len;
279 		rte_pktmbuf_pkt_len(m) = seg_len;
280 
281 		if (scatter_pkt != NULL) {
282 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
283 				rte_pktmbuf_free(scatter_pkt);
284 				goto discard;
285 			}
286 			/* The packet to deliver */
287 			m = scatter_pkt;
288 		}
289 
290 		if (desc_flags & EFX_PKT_CONT) {
291 			/* The packet is scattered, more fragments to come */
292 			scatter_pkt = m;
293 			/* Further fragments have no prefix */
294 			prefix_size = 0;
295 			continue;
296 		}
297 
298 		/* Scattered packet is done */
299 		scatter_pkt = NULL;
300 		/* The first fragment of the packet has prefix */
301 		prefix_size = rxq->prefix_size;
302 
303 		m->ol_flags =
304 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
305 		m->packet_type =
306 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
307 
308 		/*
309 		 * Extract RSS hash from the packet prefix and
310 		 * set the corresponding field (if needed and possible)
311 		 */
312 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
313 
314 		m->data_off += prefix_size;
315 
316 		*rx_pkts++ = m;
317 		done_pkts++;
318 		continue;
319 
320 discard:
321 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
322 		rte_mbuf_raw_free(m);
323 		rxd->mbuf = NULL;
324 	}
325 
326 	/* pending is only moved when entire packet is received */
327 	SFC_ASSERT(scatter_pkt == NULL);
328 
329 	rxq->completed = completed;
330 
331 	sfc_efx_rx_qrefill(rxq);
332 
333 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
334 		sfc_efx_rx_qprime(rxq);
335 
336 	return done_pkts;
337 }
338 
339 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
340 static unsigned int
341 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
342 {
343 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
344 
345 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
346 		return 0;
347 
348 	sfc_ev_qpoll(rxq->evq);
349 
350 	return rxq->pending - rxq->completed;
351 }
352 
353 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
354 static int
355 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
356 {
357 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
358 
359 	if (unlikely(offset > rxq->ptr_mask))
360 		return -EINVAL;
361 
362 	/*
363 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
364 	 * it is required for the queue to be running, but the
365 	 * check is omitted because API design assumes that it
366 	 * is the duty of the caller to satisfy all conditions
367 	 */
368 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
369 		   SFC_EFX_RXQ_FLAG_RUNNING);
370 	sfc_ev_qpoll(rxq->evq);
371 
372 	/*
373 	 * There is a handful of reserved entries in the ring,
374 	 * but an explicit check whether the offset points to
375 	 * a reserved entry is neglected since the two checks
376 	 * below rely on the figures which take the HW limits
377 	 * into account and thus if an entry is reserved, the
378 	 * checks will fail and UNAVAIL code will be returned
379 	 */
380 
381 	if (offset < (rxq->pending - rxq->completed))
382 		return RTE_ETH_RX_DESC_DONE;
383 
384 	if (offset < (rxq->added - rxq->completed))
385 		return RTE_ETH_RX_DESC_AVAIL;
386 
387 	return RTE_ETH_RX_DESC_UNAVAIL;
388 }
389 
390 boolean_t
391 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
392 		     boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
393 		     const char **error)
394 {
395 	uint32_t effective_rx_scatter_max;
396 	uint32_t rx_scatter_bufs;
397 
398 	effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
399 	rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
400 
401 	if (rx_scatter_bufs > effective_rx_scatter_max) {
402 		if (rx_scatter_enabled)
403 			*error = "Possible number of Rx scatter buffers exceeds maximum number";
404 		else
405 			*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
406 		return B_FALSE;
407 	}
408 
409 	return B_TRUE;
410 }
411 
412 /** Get Rx datapath ops by the datapath RxQ handle */
413 const struct sfc_dp_rx *
414 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
415 {
416 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
417 	struct rte_eth_dev *eth_dev;
418 	struct sfc_adapter_priv *sap;
419 
420 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
421 	eth_dev = &rte_eth_devices[dpq->port_id];
422 
423 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
424 
425 	return sap->dp_rx;
426 }
427 
428 struct sfc_rxq_info *
429 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
430 {
431 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
432 	struct rte_eth_dev *eth_dev;
433 	struct sfc_adapter_shared *sas;
434 
435 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
436 	eth_dev = &rte_eth_devices[dpq->port_id];
437 
438 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
439 
440 	SFC_ASSERT(dpq->queue_id < sas->rxq_count);
441 	return &sas->rxq_info[dpq->queue_id];
442 }
443 
444 struct sfc_rxq *
445 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
446 {
447 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
448 	struct rte_eth_dev *eth_dev;
449 	struct sfc_adapter *sa;
450 
451 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
452 	eth_dev = &rte_eth_devices[dpq->port_id];
453 
454 	sa = sfc_adapter_by_eth_dev(eth_dev);
455 
456 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
457 	return &sa->rxq_ctrl[dpq->queue_id];
458 }
459 
460 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
461 static int
462 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
463 			  __rte_unused struct sfc_dp_rx_hw_limits *limits,
464 			  __rte_unused struct rte_mempool *mb_pool,
465 			  unsigned int *rxq_entries,
466 			  unsigned int *evq_entries,
467 			  unsigned int *rxq_max_fill_level)
468 {
469 	*rxq_entries = nb_rx_desc;
470 	*evq_entries = nb_rx_desc;
471 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
472 	return 0;
473 }
474 
475 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
476 static int
477 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
478 		   const struct rte_pci_addr *pci_addr, int socket_id,
479 		   const struct sfc_dp_rx_qcreate_info *info,
480 		   struct sfc_dp_rxq **dp_rxqp)
481 {
482 	struct sfc_efx_rxq *rxq;
483 	int rc;
484 
485 	rc = ENOMEM;
486 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
487 				 RTE_CACHE_LINE_SIZE, socket_id);
488 	if (rxq == NULL)
489 		goto fail_rxq_alloc;
490 
491 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
492 
493 	rc = ENOMEM;
494 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
495 					 info->rxq_entries,
496 					 sizeof(*rxq->sw_desc),
497 					 RTE_CACHE_LINE_SIZE, socket_id);
498 	if (rxq->sw_desc == NULL)
499 		goto fail_desc_alloc;
500 
501 	/* efx datapath is bound to efx control path */
502 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
503 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
504 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
505 	rxq->ptr_mask = info->rxq_entries - 1;
506 	rxq->batch_max = info->batch_max;
507 	rxq->prefix_size = info->prefix_size;
508 	rxq->max_fill_level = info->max_fill_level;
509 	rxq->refill_threshold = info->refill_threshold;
510 	rxq->buf_size = info->buf_size;
511 	rxq->refill_mb_pool = info->refill_mb_pool;
512 
513 	*dp_rxqp = &rxq->dp;
514 	return 0;
515 
516 fail_desc_alloc:
517 	rte_free(rxq);
518 
519 fail_rxq_alloc:
520 	return rc;
521 }
522 
523 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
524 static void
525 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
526 {
527 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
528 
529 	rte_free(rxq->sw_desc);
530 	rte_free(rxq);
531 }
532 
533 
534 /* Use qstop and qstart functions in the case of qstart failure */
535 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
536 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
537 
538 
539 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
540 static int
541 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
542 		  __rte_unused unsigned int evq_read_ptr,
543 		  const efx_rx_prefix_layout_t *pinfo)
544 {
545 	/* libefx-based datapath is specific to libefx-based PMD */
546 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
547 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
548 	int rc;
549 
550 	/*
551 	 * libefx API is used to extract information from Rx prefix and
552 	 * it guarantees consistency. Just do length check to ensure
553 	 * that we reserved space in Rx buffers correctly.
554 	 */
555 	if (rxq->prefix_size != pinfo->erpl_length)
556 		return ENOTSUP;
557 
558 	rxq->common = crxq->common;
559 
560 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
561 
562 	sfc_efx_rx_qrefill(rxq);
563 
564 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
565 
566 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
567 		rc = sfc_efx_rx_qprime(rxq);
568 		if (rc != 0)
569 			goto fail_rx_qprime;
570 	}
571 
572 	return 0;
573 
574 fail_rx_qprime:
575 	sfc_efx_rx_qstop(dp_rxq, NULL);
576 	sfc_efx_rx_qpurge(dp_rxq);
577 	return rc;
578 }
579 
580 static void
581 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
582 		 __rte_unused unsigned int *evq_read_ptr)
583 {
584 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
585 
586 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
587 
588 	/* libefx-based datapath is bound to libefx-based PMD and uses
589 	 * event queue structure directly. So, there is no necessity to
590 	 * return EvQ read pointer.
591 	 */
592 }
593 
594 static void
595 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
596 {
597 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
598 	unsigned int i;
599 	struct sfc_efx_rx_sw_desc *rxd;
600 
601 	for (i = rxq->completed; i != rxq->added; ++i) {
602 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
603 		rte_mbuf_raw_free(rxd->mbuf);
604 		rxd->mbuf = NULL;
605 		/* Packed stream relies on 0 in inactive SW desc.
606 		 * Rx queue stop is not performance critical, so
607 		 * there is no harm to do it always.
608 		 */
609 		rxd->flags = 0;
610 		rxd->size = 0;
611 	}
612 
613 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
614 }
615 
616 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
617 static int
618 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
619 {
620 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
621 	int rc = 0;
622 
623 	rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
624 	if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
625 		rc = sfc_efx_rx_qprime(rxq);
626 		if (rc != 0)
627 			rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
628 	}
629 	return rc;
630 }
631 
632 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
633 static int
634 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
635 {
636 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
637 
638 	/* Cannot disarm, just disable rearm */
639 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
640 	return 0;
641 }
642 
643 struct sfc_dp_rx sfc_efx_rx = {
644 	.dp = {
645 		.name		= SFC_KVARG_DATAPATH_EFX,
646 		.type		= SFC_DP_RX,
647 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_RX_EFX,
648 	},
649 	.features		= SFC_DP_RX_FEAT_INTR,
650 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
651 				  DEV_RX_OFFLOAD_RSS_HASH,
652 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
653 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
654 	.qcreate		= sfc_efx_rx_qcreate,
655 	.qdestroy		= sfc_efx_rx_qdestroy,
656 	.qstart			= sfc_efx_rx_qstart,
657 	.qstop			= sfc_efx_rx_qstop,
658 	.qpurge			= sfc_efx_rx_qpurge,
659 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
660 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
661 	.qdesc_status		= sfc_efx_rx_qdesc_status,
662 	.intr_enable		= sfc_efx_rx_intr_enable,
663 	.intr_disable		= sfc_efx_rx_intr_disable,
664 	.pkt_burst		= sfc_efx_recv_pkts,
665 };
666 
667 static void
668 sfc_rx_qflush(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
669 {
670 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
671 	sfc_ethdev_qid_t ethdev_qid;
672 	struct sfc_rxq_info *rxq_info;
673 	struct sfc_rxq *rxq;
674 	unsigned int retry_count;
675 	unsigned int wait_count;
676 	int rc;
677 
678 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
679 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
680 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
681 
682 	rxq = &sa->rxq_ctrl[sw_index];
683 
684 	/*
685 	 * Retry Rx queue flushing in the case of flush failed or
686 	 * timeout. In the worst case it can delay for 6 seconds.
687 	 */
688 	for (retry_count = 0;
689 	     ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
690 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
691 	     ++retry_count) {
692 		rc = efx_rx_qflush(rxq->common);
693 		if (rc != 0) {
694 			rxq_info->state |= (rc == EALREADY) ?
695 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
696 			break;
697 		}
698 		rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
699 		rxq_info->state |= SFC_RXQ_FLUSHING;
700 
701 		/*
702 		 * Wait for Rx queue flush done or failed event at least
703 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
704 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
705 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
706 		 */
707 		wait_count = 0;
708 		do {
709 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
710 			sfc_ev_qpoll(rxq->evq);
711 		} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
712 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
713 
714 		if (rxq_info->state & SFC_RXQ_FLUSHING)
715 			sfc_err(sa, "RxQ %d (internal %u) flush timed out",
716 				ethdev_qid, sw_index);
717 
718 		if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
719 			sfc_err(sa, "RxQ %d (internal %u) flush failed",
720 				ethdev_qid, sw_index);
721 
722 		if (rxq_info->state & SFC_RXQ_FLUSHED)
723 			sfc_notice(sa, "RxQ %d (internal %u) flushed",
724 				   ethdev_qid, sw_index);
725 	}
726 
727 	sa->priv.dp_rx->qpurge(rxq_info->dp);
728 }
729 
730 static int
731 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
732 {
733 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
734 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
735 	struct sfc_port *port = &sa->port;
736 	int rc;
737 
738 	/*
739 	 * If promiscuous or all-multicast mode has been requested, setting
740 	 * filter for the default Rx queue might fail, in particular, while
741 	 * running over PCI function which is not a member of corresponding
742 	 * privilege groups; if this occurs, few iterations will be made to
743 	 * repeat this step without promiscuous and all-multicast flags set
744 	 */
745 retry:
746 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
747 	if (rc == 0)
748 		return 0;
749 	else if (rc != EOPNOTSUPP)
750 		return rc;
751 
752 	if (port->promisc) {
753 		sfc_warn(sa, "promiscuous mode has been requested, "
754 			     "but the HW rejects it");
755 		sfc_warn(sa, "promiscuous mode will be disabled");
756 
757 		port->promisc = B_FALSE;
758 		sa->eth_dev->data->promiscuous = 0;
759 		rc = sfc_set_rx_mode_unchecked(sa);
760 		if (rc != 0)
761 			return rc;
762 
763 		goto retry;
764 	}
765 
766 	if (port->allmulti) {
767 		sfc_warn(sa, "all-multicast mode has been requested, "
768 			     "but the HW rejects it");
769 		sfc_warn(sa, "all-multicast mode will be disabled");
770 
771 		port->allmulti = B_FALSE;
772 		sa->eth_dev->data->all_multicast = 0;
773 		rc = sfc_set_rx_mode_unchecked(sa);
774 		if (rc != 0)
775 			return rc;
776 
777 		goto retry;
778 	}
779 
780 	return rc;
781 }
782 
783 int
784 sfc_rx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
785 {
786 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
787 	sfc_ethdev_qid_t ethdev_qid;
788 	struct sfc_rxq_info *rxq_info;
789 	struct sfc_rxq *rxq;
790 	struct sfc_evq *evq;
791 	efx_rx_prefix_layout_t pinfo;
792 	int rc;
793 
794 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
795 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
796 
797 	sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
798 
799 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
800 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
801 
802 	rxq = &sa->rxq_ctrl[sw_index];
803 	evq = rxq->evq;
804 
805 	rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index));
806 	if (rc != 0)
807 		goto fail_ev_qstart;
808 
809 	switch (rxq_info->type) {
810 	case EFX_RXQ_TYPE_DEFAULT:
811 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
812 			rxq->buf_size,
813 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
814 			rxq_info->type_flags, evq->common, &rxq->common);
815 		break;
816 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
817 		struct rte_mempool *mp = rxq_info->refill_mb_pool;
818 		struct rte_mempool_info mp_info;
819 
820 		rc = rte_mempool_ops_get_info(mp, &mp_info);
821 		if (rc != 0) {
822 			/* Positive errno is used in the driver */
823 			rc = -rc;
824 			goto fail_mp_get_info;
825 		}
826 		if (mp_info.contig_block_size <= 0) {
827 			rc = EINVAL;
828 			goto fail_bad_contig_block_size;
829 		}
830 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
831 			mp_info.contig_block_size, rxq->buf_size,
832 			mp->header_size + mp->elt_size + mp->trailer_size,
833 			sa->rxd_wait_timeout_ns,
834 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
835 			evq->common, &rxq->common);
836 		break;
837 	}
838 	default:
839 		rc = ENOTSUP;
840 	}
841 	if (rc != 0)
842 		goto fail_rx_qcreate;
843 
844 	rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
845 	if (rc != 0)
846 		goto fail_prefix_get_layout;
847 
848 	efx_rx_qenable(rxq->common);
849 
850 	rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
851 	if (rc != 0)
852 		goto fail_dp_qstart;
853 
854 	rxq_info->state |= SFC_RXQ_STARTED;
855 
856 	if (ethdev_qid == 0 && !sfc_sa2shared(sa)->isolated) {
857 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
858 		if (rc != 0)
859 			goto fail_mac_filter_default_rxq_set;
860 	}
861 
862 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
863 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
864 		sa->eth_dev->data->rx_queue_state[ethdev_qid] =
865 			RTE_ETH_QUEUE_STATE_STARTED;
866 
867 	return 0;
868 
869 fail_mac_filter_default_rxq_set:
870 	sfc_rx_qflush(sa, sw_index);
871 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
872 	rxq_info->state = SFC_RXQ_INITIALIZED;
873 
874 fail_dp_qstart:
875 	efx_rx_qdestroy(rxq->common);
876 
877 fail_prefix_get_layout:
878 fail_rx_qcreate:
879 fail_bad_contig_block_size:
880 fail_mp_get_info:
881 	sfc_ev_qstop(evq);
882 
883 fail_ev_qstart:
884 	return rc;
885 }
886 
887 void
888 sfc_rx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
889 {
890 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
891 	sfc_ethdev_qid_t ethdev_qid;
892 	struct sfc_rxq_info *rxq_info;
893 	struct sfc_rxq *rxq;
894 
895 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
896 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
897 
898 	sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
899 
900 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
901 
902 	if (rxq_info->state == SFC_RXQ_INITIALIZED)
903 		return;
904 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
905 
906 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
907 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
908 		sa->eth_dev->data->rx_queue_state[ethdev_qid] =
909 			RTE_ETH_QUEUE_STATE_STOPPED;
910 
911 	rxq = &sa->rxq_ctrl[sw_index];
912 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
913 
914 	if (ethdev_qid == 0)
915 		efx_mac_filter_default_rxq_clear(sa->nic);
916 
917 	sfc_rx_qflush(sa, sw_index);
918 
919 	rxq_info->state = SFC_RXQ_INITIALIZED;
920 
921 	efx_rx_qdestroy(rxq->common);
922 
923 	sfc_ev_qstop(rxq->evq);
924 }
925 
926 static uint64_t
927 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
928 {
929 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
930 	uint64_t no_caps = 0;
931 
932 	if (encp->enc_tunnel_encapsulations_supported == 0)
933 		no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
934 
935 	return ~no_caps;
936 }
937 
938 uint64_t
939 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
940 {
941 	uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
942 
943 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
944 
945 	return caps & sfc_rx_get_offload_mask(sa);
946 }
947 
948 uint64_t
949 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
950 {
951 	return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
952 }
953 
954 static int
955 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
956 		   const struct rte_eth_rxconf *rx_conf,
957 		   __rte_unused uint64_t offloads)
958 {
959 	int rc = 0;
960 
961 	if (rx_conf->rx_thresh.pthresh != 0 ||
962 	    rx_conf->rx_thresh.hthresh != 0 ||
963 	    rx_conf->rx_thresh.wthresh != 0) {
964 		sfc_warn(sa,
965 			"RxQ prefetch/host/writeback thresholds are not supported");
966 	}
967 
968 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
969 		sfc_err(sa,
970 			"RxQ free threshold too large: %u vs maximum %u",
971 			rx_conf->rx_free_thresh, rxq_max_fill_level);
972 		rc = EINVAL;
973 	}
974 
975 	if (rx_conf->rx_drop_en == 0) {
976 		sfc_err(sa, "RxQ drop disable is not supported");
977 		rc = EINVAL;
978 	}
979 
980 	return rc;
981 }
982 
983 static unsigned int
984 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
985 {
986 	uint32_t data_off;
987 	uint32_t order;
988 
989 	/* The mbuf object itself is always cache line aligned */
990 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
991 
992 	/* Data offset from mbuf object start */
993 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
994 		RTE_PKTMBUF_HEADROOM;
995 
996 	order = MIN(order, rte_bsf32(data_off));
997 
998 	return 1u << order;
999 }
1000 
1001 static uint16_t
1002 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
1003 {
1004 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1005 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
1006 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
1007 	uint16_t buf_size;
1008 	unsigned int buf_aligned;
1009 	unsigned int start_alignment;
1010 	unsigned int end_padding_alignment;
1011 
1012 	/* Below it is assumed that both alignments are power of 2 */
1013 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
1014 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
1015 
1016 	/*
1017 	 * mbuf is always cache line aligned, double-check
1018 	 * that it meets rx buffer start alignment requirements.
1019 	 */
1020 
1021 	/* Start from mbuf pool data room size */
1022 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
1023 
1024 	/* Remove headroom */
1025 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1026 		sfc_err(sa,
1027 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1028 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1029 		return 0;
1030 	}
1031 	buf_size -= RTE_PKTMBUF_HEADROOM;
1032 
1033 	/* Calculate guaranteed data start alignment */
1034 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1035 
1036 	/* Reserve space for start alignment */
1037 	if (buf_aligned < nic_align_start) {
1038 		start_alignment = nic_align_start - buf_aligned;
1039 		if (buf_size <= start_alignment) {
1040 			sfc_err(sa,
1041 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1042 				mb_pool->name,
1043 				rte_pktmbuf_data_room_size(mb_pool),
1044 				RTE_PKTMBUF_HEADROOM, start_alignment);
1045 			return 0;
1046 		}
1047 		buf_aligned = nic_align_start;
1048 		buf_size -= start_alignment;
1049 	} else {
1050 		start_alignment = 0;
1051 	}
1052 
1053 	/* Make sure that end padding does not write beyond the buffer */
1054 	if (buf_aligned < nic_align_end) {
1055 		/*
1056 		 * Estimate space which can be lost. If guarnteed buffer
1057 		 * size is odd, lost space is (nic_align_end - 1). More
1058 		 * accurate formula is below.
1059 		 */
1060 		end_padding_alignment = nic_align_end -
1061 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1062 		if (buf_size <= end_padding_alignment) {
1063 			sfc_err(sa,
1064 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1065 				mb_pool->name,
1066 				rte_pktmbuf_data_room_size(mb_pool),
1067 				RTE_PKTMBUF_HEADROOM, start_alignment,
1068 				end_padding_alignment);
1069 			return 0;
1070 		}
1071 		buf_size -= end_padding_alignment;
1072 	} else {
1073 		/*
1074 		 * Start is aligned the same or better than end,
1075 		 * just align length.
1076 		 */
1077 		buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1078 	}
1079 
1080 	return buf_size;
1081 }
1082 
1083 int
1084 sfc_rx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1085 	     uint16_t nb_rx_desc, unsigned int socket_id,
1086 	     const struct rte_eth_rxconf *rx_conf,
1087 	     struct rte_mempool *mb_pool)
1088 {
1089 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1090 	sfc_ethdev_qid_t ethdev_qid;
1091 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1092 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1093 	int rc;
1094 	unsigned int rxq_entries;
1095 	unsigned int evq_entries;
1096 	unsigned int rxq_max_fill_level;
1097 	uint64_t offloads;
1098 	uint16_t buf_size;
1099 	struct sfc_rxq_info *rxq_info;
1100 	struct sfc_evq *evq;
1101 	struct sfc_rxq *rxq;
1102 	struct sfc_dp_rx_qcreate_info info;
1103 	struct sfc_dp_rx_hw_limits hw_limits;
1104 	uint16_t rx_free_thresh;
1105 	const char *error;
1106 
1107 	memset(&hw_limits, 0, sizeof(hw_limits));
1108 	hw_limits.rxq_max_entries = sa->rxq_max_entries;
1109 	hw_limits.rxq_min_entries = sa->rxq_min_entries;
1110 	hw_limits.evq_max_entries = sa->evq_max_entries;
1111 	hw_limits.evq_min_entries = sa->evq_min_entries;
1112 
1113 	rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1114 					    &rxq_entries, &evq_entries,
1115 					    &rxq_max_fill_level);
1116 	if (rc != 0)
1117 		goto fail_size_up_rings;
1118 	SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1119 	SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1120 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1121 
1122 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1123 
1124 	offloads = rx_conf->offloads;
1125 	/* Add device level Rx offloads if the queue is an ethdev Rx queue */
1126 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1127 		offloads |= sa->eth_dev->data->dev_conf.rxmode.offloads;
1128 
1129 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1130 	if (rc != 0)
1131 		goto fail_bad_conf;
1132 
1133 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1134 	if (buf_size == 0) {
1135 		sfc_err(sa,
1136 			"RxQ %d (internal %u) mbuf pool object size is too small",
1137 			ethdev_qid, sw_index);
1138 		rc = EINVAL;
1139 		goto fail_bad_conf;
1140 	}
1141 
1142 	if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1143 				  encp->enc_rx_prefix_size,
1144 				  (offloads & DEV_RX_OFFLOAD_SCATTER),
1145 				  encp->enc_rx_scatter_max,
1146 				  &error)) {
1147 		sfc_err(sa, "RxQ %d (internal %u) MTU check failed: %s",
1148 			ethdev_qid, sw_index, error);
1149 		sfc_err(sa,
1150 			"RxQ %d (internal %u) calculated Rx buffer size is %u vs "
1151 			"PDU size %u plus Rx prefix %u bytes",
1152 			ethdev_qid, sw_index, buf_size,
1153 			(unsigned int)sa->port.pdu, encp->enc_rx_prefix_size);
1154 		rc = EINVAL;
1155 		goto fail_bad_conf;
1156 	}
1157 
1158 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1159 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1160 
1161 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1162 	rxq_info->entries = rxq_entries;
1163 
1164 	if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1165 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1166 	else
1167 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1168 
1169 	rxq_info->type_flags |=
1170 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1171 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1172 
1173 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1174 	    (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1175 	     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1176 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1177 
1178 	if (offloads & DEV_RX_OFFLOAD_RSS_HASH)
1179 		rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1180 
1181 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1182 			  evq_entries, socket_id, &evq);
1183 	if (rc != 0)
1184 		goto fail_ev_qinit;
1185 
1186 	rxq = &sa->rxq_ctrl[sw_index];
1187 	rxq->evq = evq;
1188 	rxq->hw_index = sw_index;
1189 	/*
1190 	 * If Rx refill threshold is specified (its value is non zero) in
1191 	 * Rx configuration, use specified value. Otherwise use 1/8 of
1192 	 * the Rx descriptors number as the default. It allows to keep
1193 	 * Rx ring full-enough and does not refill too aggressive if
1194 	 * packet rate is high.
1195 	 *
1196 	 * Since PMD refills in bulks waiting for full bulk may be
1197 	 * refilled (basically round down), it is better to round up
1198 	 * here to mitigate it a bit.
1199 	 */
1200 	rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1201 		rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1202 	/* Rx refill threshold cannot be smaller than refill bulk */
1203 	rxq_info->refill_threshold =
1204 		RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1205 	rxq_info->refill_mb_pool = mb_pool;
1206 
1207 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1208 	    (offloads & DEV_RX_OFFLOAD_RSS_HASH))
1209 		rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1210 	else
1211 		rxq_info->rxq_flags = 0;
1212 
1213 	rxq->buf_size = buf_size;
1214 
1215 	rc = sfc_dma_alloc(sa, "rxq", sw_index,
1216 			   efx_rxq_size(sa->nic, rxq_info->entries),
1217 			   socket_id, &rxq->mem);
1218 	if (rc != 0)
1219 		goto fail_dma_alloc;
1220 
1221 	memset(&info, 0, sizeof(info));
1222 	info.refill_mb_pool = rxq_info->refill_mb_pool;
1223 	info.max_fill_level = rxq_max_fill_level;
1224 	info.refill_threshold = rxq_info->refill_threshold;
1225 	info.buf_size = buf_size;
1226 	info.batch_max = encp->enc_rx_batch_max;
1227 	info.prefix_size = encp->enc_rx_prefix_size;
1228 	info.flags = rxq_info->rxq_flags;
1229 	info.rxq_entries = rxq_info->entries;
1230 	info.rxq_hw_ring = rxq->mem.esm_base;
1231 	info.evq_hw_index = sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index);
1232 	info.evq_entries = evq_entries;
1233 	info.evq_hw_ring = evq->mem.esm_base;
1234 	info.hw_index = rxq->hw_index;
1235 	info.mem_bar = sa->mem_bar.esb_base;
1236 	info.vi_window_shift = encp->enc_vi_window_shift;
1237 	info.fcw_offset = sa->fcw_offset;
1238 
1239 	rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1240 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1241 				     socket_id, &info, &rxq_info->dp);
1242 	if (rc != 0)
1243 		goto fail_dp_rx_qcreate;
1244 
1245 	evq->dp_rxq = rxq_info->dp;
1246 
1247 	rxq_info->state = SFC_RXQ_INITIALIZED;
1248 
1249 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1250 
1251 	return 0;
1252 
1253 fail_dp_rx_qcreate:
1254 	sfc_dma_free(sa, &rxq->mem);
1255 
1256 fail_dma_alloc:
1257 	sfc_ev_qfini(evq);
1258 
1259 fail_ev_qinit:
1260 	rxq_info->entries = 0;
1261 
1262 fail_bad_conf:
1263 fail_size_up_rings:
1264 	sfc_log_init(sa, "failed %d", rc);
1265 	return rc;
1266 }
1267 
1268 void
1269 sfc_rx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
1270 {
1271 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1272 	sfc_ethdev_qid_t ethdev_qid;
1273 	struct sfc_rxq_info *rxq_info;
1274 	struct sfc_rxq *rxq;
1275 
1276 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1277 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1278 
1279 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1280 		sa->eth_dev->data->rx_queues[ethdev_qid] = NULL;
1281 
1282 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1283 
1284 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1285 
1286 	sa->priv.dp_rx->qdestroy(rxq_info->dp);
1287 	rxq_info->dp = NULL;
1288 
1289 	rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1290 	rxq_info->entries = 0;
1291 
1292 	rxq = &sa->rxq_ctrl[sw_index];
1293 
1294 	sfc_dma_free(sa, &rxq->mem);
1295 
1296 	sfc_ev_qfini(rxq->evq);
1297 	rxq->evq = NULL;
1298 }
1299 
1300 /*
1301  * Mapping between RTE RSS hash functions and their EFX counterparts.
1302  */
1303 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1304 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1305 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1306 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1307 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1308 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1309 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1310 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1311 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1312 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1313 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1314 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1315 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1316 	  ETH_RSS_IPV6_EX,
1317 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1318 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1319 };
1320 
1321 static efx_rx_hash_type_t
1322 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1323 			    unsigned int *hash_type_flags_supported,
1324 			    unsigned int nb_hash_type_flags_supported)
1325 {
1326 	efx_rx_hash_type_t hash_type_masked = 0;
1327 	unsigned int i, j;
1328 
1329 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1330 		unsigned int class_tuple_lbn[] = {
1331 			EFX_RX_CLASS_IPV4_TCP_LBN,
1332 			EFX_RX_CLASS_IPV4_UDP_LBN,
1333 			EFX_RX_CLASS_IPV4_LBN,
1334 			EFX_RX_CLASS_IPV6_TCP_LBN,
1335 			EFX_RX_CLASS_IPV6_UDP_LBN,
1336 			EFX_RX_CLASS_IPV6_LBN
1337 		};
1338 
1339 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1340 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1341 			unsigned int flag;
1342 
1343 			tuple_mask <<= class_tuple_lbn[j];
1344 			flag = hash_type & tuple_mask;
1345 
1346 			if (flag == hash_type_flags_supported[i])
1347 				hash_type_masked |= flag;
1348 		}
1349 	}
1350 
1351 	return hash_type_masked;
1352 }
1353 
1354 int
1355 sfc_rx_hash_init(struct sfc_adapter *sa)
1356 {
1357 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1358 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1359 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1360 	efx_rx_hash_alg_t alg;
1361 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1362 	unsigned int nb_flags_supp;
1363 	struct sfc_rss_hf_rte_to_efx *hf_map;
1364 	struct sfc_rss_hf_rte_to_efx *entry;
1365 	efx_rx_hash_type_t efx_hash_types;
1366 	unsigned int i;
1367 	int rc;
1368 
1369 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1370 		alg = EFX_RX_HASHALG_TOEPLITZ;
1371 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1372 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1373 	else
1374 		return EINVAL;
1375 
1376 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1377 					 RTE_DIM(flags_supp), &nb_flags_supp);
1378 	if (rc != 0)
1379 		return rc;
1380 
1381 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1382 				   RTE_DIM(sfc_rss_hf_map),
1383 				   sizeof(*hf_map), 0, sa->socket_id);
1384 	if (hf_map == NULL)
1385 		return ENOMEM;
1386 
1387 	entry = hf_map;
1388 	efx_hash_types = 0;
1389 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1390 		efx_rx_hash_type_t ht;
1391 
1392 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1393 						 flags_supp, nb_flags_supp);
1394 		if (ht != 0) {
1395 			entry->rte = sfc_rss_hf_map[i].rte;
1396 			entry->efx = ht;
1397 			efx_hash_types |= ht;
1398 			++entry;
1399 		}
1400 	}
1401 
1402 	rss->hash_alg = alg;
1403 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1404 	rss->hf_map = hf_map;
1405 	rss->hash_types = efx_hash_types;
1406 
1407 	return 0;
1408 }
1409 
1410 void
1411 sfc_rx_hash_fini(struct sfc_adapter *sa)
1412 {
1413 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1414 
1415 	rte_free(rss->hf_map);
1416 }
1417 
1418 int
1419 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1420 		     efx_rx_hash_type_t *efx)
1421 {
1422 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1423 	efx_rx_hash_type_t hash_types = 0;
1424 	unsigned int i;
1425 
1426 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1427 		uint64_t rte_mask = rss->hf_map[i].rte;
1428 
1429 		if ((rte & rte_mask) != 0) {
1430 			rte &= ~rte_mask;
1431 			hash_types |= rss->hf_map[i].efx;
1432 		}
1433 	}
1434 
1435 	if (rte != 0) {
1436 		sfc_err(sa, "unsupported hash functions requested");
1437 		return EINVAL;
1438 	}
1439 
1440 	*efx = hash_types;
1441 
1442 	return 0;
1443 }
1444 
1445 uint64_t
1446 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1447 {
1448 	uint64_t rte = 0;
1449 	unsigned int i;
1450 
1451 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1452 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1453 
1454 		if ((efx & hash_type) == hash_type)
1455 			rte |= rss->hf_map[i].rte;
1456 	}
1457 
1458 	return rte;
1459 }
1460 
1461 static int
1462 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1463 			    struct rte_eth_rss_conf *conf)
1464 {
1465 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1466 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1467 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1468 	int rc;
1469 
1470 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1471 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1472 		    conf->rss_key != NULL)
1473 			return EINVAL;
1474 	}
1475 
1476 	if (conf->rss_hf != 0) {
1477 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1478 		if (rc != 0)
1479 			return rc;
1480 	}
1481 
1482 	if (conf->rss_key != NULL) {
1483 		if (conf->rss_key_len != sizeof(rss->key)) {
1484 			sfc_err(sa, "RSS key size is wrong (should be %zu)",
1485 				sizeof(rss->key));
1486 			return EINVAL;
1487 		}
1488 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1489 	}
1490 
1491 	rss->hash_types = efx_hash_types;
1492 
1493 	return 0;
1494 }
1495 
1496 static int
1497 sfc_rx_rss_config(struct sfc_adapter *sa)
1498 {
1499 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1500 	int rc = 0;
1501 
1502 	if (rss->channels > 0) {
1503 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1504 					   rss->hash_alg, rss->hash_types,
1505 					   B_TRUE);
1506 		if (rc != 0)
1507 			goto finish;
1508 
1509 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1510 					  rss->key, sizeof(rss->key));
1511 		if (rc != 0)
1512 			goto finish;
1513 
1514 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1515 					  rss->tbl, RTE_DIM(rss->tbl));
1516 	}
1517 
1518 finish:
1519 	return rc;
1520 }
1521 
1522 struct sfc_rxq_info *
1523 sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
1524 			   sfc_ethdev_qid_t ethdev_qid)
1525 {
1526 	sfc_sw_index_t sw_index;
1527 
1528 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1529 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1530 
1531 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1532 	return &sas->rxq_info[sw_index];
1533 }
1534 
1535 struct sfc_rxq *
1536 sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter *sa, sfc_ethdev_qid_t ethdev_qid)
1537 {
1538 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1539 	sfc_sw_index_t sw_index;
1540 
1541 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1542 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1543 
1544 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1545 	return &sa->rxq_ctrl[sw_index];
1546 }
1547 
1548 int
1549 sfc_rx_start(struct sfc_adapter *sa)
1550 {
1551 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1552 	sfc_sw_index_t sw_index;
1553 	int rc;
1554 
1555 	sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1556 		     sas->rxq_count);
1557 
1558 	rc = efx_rx_init(sa->nic);
1559 	if (rc != 0)
1560 		goto fail_rx_init;
1561 
1562 	rc = sfc_rx_rss_config(sa);
1563 	if (rc != 0)
1564 		goto fail_rss_config;
1565 
1566 	for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1567 		if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1568 		    (!sas->rxq_info[sw_index].deferred_start ||
1569 		     sas->rxq_info[sw_index].deferred_started)) {
1570 			rc = sfc_rx_qstart(sa, sw_index);
1571 			if (rc != 0)
1572 				goto fail_rx_qstart;
1573 		}
1574 	}
1575 
1576 	return 0;
1577 
1578 fail_rx_qstart:
1579 	while (sw_index-- > 0)
1580 		sfc_rx_qstop(sa, sw_index);
1581 
1582 fail_rss_config:
1583 	efx_rx_fini(sa->nic);
1584 
1585 fail_rx_init:
1586 	sfc_log_init(sa, "failed %d", rc);
1587 	return rc;
1588 }
1589 
1590 void
1591 sfc_rx_stop(struct sfc_adapter *sa)
1592 {
1593 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1594 	sfc_sw_index_t sw_index;
1595 
1596 	sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1597 		     sas->rxq_count);
1598 
1599 	sw_index = sas->rxq_count;
1600 	while (sw_index-- > 0) {
1601 		if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1602 			sfc_rx_qstop(sa, sw_index);
1603 	}
1604 
1605 	efx_rx_fini(sa->nic);
1606 }
1607 
1608 int
1609 sfc_rx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1610 		  unsigned int extra_efx_type_flags)
1611 {
1612 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1613 	struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1614 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1615 	unsigned int max_entries;
1616 
1617 	max_entries = encp->enc_rxq_max_ndescs;
1618 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1619 
1620 	rxq_info->max_entries = max_entries;
1621 	rxq_info->type_flags = extra_efx_type_flags;
1622 
1623 	return 0;
1624 }
1625 
1626 static int
1627 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1628 {
1629 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1630 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1631 				      sfc_rx_get_queue_offload_caps(sa);
1632 	struct sfc_rss *rss = &sas->rss;
1633 	int rc = 0;
1634 
1635 	switch (rxmode->mq_mode) {
1636 	case ETH_MQ_RX_NONE:
1637 		/* No special checks are required */
1638 		break;
1639 	case ETH_MQ_RX_RSS:
1640 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1641 			sfc_err(sa, "RSS is not available");
1642 			rc = EINVAL;
1643 		}
1644 		break;
1645 	default:
1646 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1647 			rxmode->mq_mode);
1648 		rc = EINVAL;
1649 	}
1650 
1651 	/*
1652 	 * Requested offloads are validated against supported by ethdev,
1653 	 * so unsupported offloads cannot be added as the result of
1654 	 * below check.
1655 	 */
1656 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1657 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1658 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1659 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1660 	}
1661 
1662 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1663 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1664 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1665 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1666 	}
1667 
1668 	return rc;
1669 }
1670 
1671 /**
1672  * Destroy excess queues that are no longer needed after reconfiguration
1673  * or complete close.
1674  */
1675 static void
1676 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1677 {
1678 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1679 	sfc_sw_index_t sw_index;
1680 	sfc_ethdev_qid_t ethdev_qid;
1681 
1682 	SFC_ASSERT(nb_rx_queues <= sas->ethdev_rxq_count);
1683 
1684 	/*
1685 	 * Finalize only ethdev queues since other ones are finalized only
1686 	 * on device close and they may require additional deinitializaton.
1687 	 */
1688 	ethdev_qid = sas->ethdev_rxq_count;
1689 	while (--ethdev_qid >= (int)nb_rx_queues) {
1690 		struct sfc_rxq_info *rxq_info;
1691 
1692 		rxq_info = sfc_rxq_info_by_ethdev_qid(sas, ethdev_qid);
1693 		if (rxq_info->state & SFC_RXQ_INITIALIZED) {
1694 			sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1695 								ethdev_qid);
1696 			sfc_rx_qfini(sa, sw_index);
1697 		}
1698 
1699 	}
1700 
1701 	sas->ethdev_rxq_count = nb_rx_queues;
1702 }
1703 
1704 /**
1705  * Initialize Rx subsystem.
1706  *
1707  * Called at device (re)configuration stage when number of receive queues is
1708  * specified together with other device level receive configuration.
1709  *
1710  * It should be used to allocate NUMA-unaware resources.
1711  */
1712 int
1713 sfc_rx_configure(struct sfc_adapter *sa)
1714 {
1715 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1716 	struct sfc_rss *rss = &sas->rss;
1717 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1718 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1719 	const unsigned int nb_rsrv_rx_queues = sfc_nb_reserved_rxq(sas);
1720 	const unsigned int nb_rxq_total = nb_rx_queues + nb_rsrv_rx_queues;
1721 	bool reconfigure;
1722 	int rc;
1723 
1724 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1725 		     nb_rx_queues, sas->ethdev_rxq_count);
1726 
1727 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1728 	if (rc != 0)
1729 		goto fail_check_mode;
1730 
1731 	if (nb_rxq_total == sas->rxq_count) {
1732 		reconfigure = true;
1733 		goto configure_rss;
1734 	}
1735 
1736 	if (sas->rxq_info == NULL) {
1737 		reconfigure = false;
1738 		rc = ENOMEM;
1739 		sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rxq_total,
1740 						  sizeof(sas->rxq_info[0]), 0,
1741 						  sa->socket_id);
1742 		if (sas->rxq_info == NULL)
1743 			goto fail_rxqs_alloc;
1744 
1745 		/*
1746 		 * Allocate primary process only RxQ control from heap
1747 		 * since it should not be shared.
1748 		 */
1749 		rc = ENOMEM;
1750 		sa->rxq_ctrl = calloc(nb_rxq_total, sizeof(sa->rxq_ctrl[0]));
1751 		if (sa->rxq_ctrl == NULL)
1752 			goto fail_rxqs_ctrl_alloc;
1753 	} else {
1754 		struct sfc_rxq_info *new_rxq_info;
1755 		struct sfc_rxq *new_rxq_ctrl;
1756 
1757 		reconfigure = true;
1758 
1759 		/* Do not ununitialize reserved queues */
1760 		if (nb_rx_queues < sas->ethdev_rxq_count)
1761 			sfc_rx_fini_queues(sa, nb_rx_queues);
1762 
1763 		rc = ENOMEM;
1764 		new_rxq_info =
1765 			rte_realloc(sas->rxq_info,
1766 				    nb_rxq_total * sizeof(sas->rxq_info[0]), 0);
1767 		if (new_rxq_info == NULL && nb_rxq_total > 0)
1768 			goto fail_rxqs_realloc;
1769 
1770 		rc = ENOMEM;
1771 		new_rxq_ctrl = realloc(sa->rxq_ctrl,
1772 				       nb_rxq_total * sizeof(sa->rxq_ctrl[0]));
1773 		if (new_rxq_ctrl == NULL && nb_rxq_total > 0)
1774 			goto fail_rxqs_ctrl_realloc;
1775 
1776 		sas->rxq_info = new_rxq_info;
1777 		sa->rxq_ctrl = new_rxq_ctrl;
1778 		if (nb_rxq_total > sas->rxq_count) {
1779 			unsigned int rxq_count = sas->rxq_count;
1780 
1781 			memset(&sas->rxq_info[rxq_count], 0,
1782 			       (nb_rxq_total - rxq_count) *
1783 			       sizeof(sas->rxq_info[0]));
1784 			memset(&sa->rxq_ctrl[rxq_count], 0,
1785 			       (nb_rxq_total - rxq_count) *
1786 			       sizeof(sa->rxq_ctrl[0]));
1787 		}
1788 	}
1789 
1790 	while (sas->ethdev_rxq_count < nb_rx_queues) {
1791 		sfc_sw_index_t sw_index;
1792 
1793 		sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1794 							sas->ethdev_rxq_count);
1795 		rc = sfc_rx_qinit_info(sa, sw_index, 0);
1796 		if (rc != 0)
1797 			goto fail_rx_qinit_info;
1798 
1799 		sas->ethdev_rxq_count++;
1800 	}
1801 
1802 	sas->rxq_count = sas->ethdev_rxq_count + nb_rsrv_rx_queues;
1803 
1804 	if (!reconfigure) {
1805 		rc = sfc_mae_counter_rxq_init(sa);
1806 		if (rc != 0)
1807 			goto fail_count_rxq_init;
1808 	}
1809 
1810 configure_rss:
1811 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1812 			 MIN(sas->ethdev_rxq_count, EFX_MAXRSS) : 0;
1813 
1814 	if (rss->channels > 0) {
1815 		struct rte_eth_rss_conf *adv_conf_rss;
1816 		sfc_sw_index_t sw_index;
1817 
1818 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1819 			rss->tbl[sw_index] = sw_index % rss->channels;
1820 
1821 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1822 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1823 		if (rc != 0)
1824 			goto fail_rx_process_adv_conf_rss;
1825 	}
1826 
1827 	return 0;
1828 
1829 fail_rx_process_adv_conf_rss:
1830 	if (!reconfigure)
1831 		sfc_mae_counter_rxq_fini(sa);
1832 
1833 fail_count_rxq_init:
1834 fail_rx_qinit_info:
1835 fail_rxqs_ctrl_realloc:
1836 fail_rxqs_realloc:
1837 fail_rxqs_ctrl_alloc:
1838 fail_rxqs_alloc:
1839 	sfc_rx_close(sa);
1840 
1841 fail_check_mode:
1842 	sfc_log_init(sa, "failed %d", rc);
1843 	return rc;
1844 }
1845 
1846 /**
1847  * Shutdown Rx subsystem.
1848  *
1849  * Called at device close stage, for example, before device shutdown.
1850  */
1851 void
1852 sfc_rx_close(struct sfc_adapter *sa)
1853 {
1854 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1855 
1856 	sfc_rx_fini_queues(sa, 0);
1857 	sfc_mae_counter_rxq_fini(sa);
1858 
1859 	rss->channels = 0;
1860 
1861 	free(sa->rxq_ctrl);
1862 	sa->rxq_ctrl = NULL;
1863 
1864 	rte_free(sfc_sa2shared(sa)->rxq_info);
1865 	sfc_sa2shared(sa)->rxq_info = NULL;
1866 }
1867